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ABSTRACT An encoderless quantum code is capable of connecting quantum information by replacing
the encoder circuit with a fault-tolerant single-qubit gate arrangement. As a further benefit, in contrast to
state preparation techniques, our encoderless scheme requires no prior knowledge of the input information,
therefore totally unknown states can be encoded fault-tolerantly. Our encoderless quantum code delivers a
frame error rate that is three orders of magnitude lower than that of the corresponding scheme relying on a
non-fault-tolerant encoder, when the gate error probability is as high as 1073.

INDEX TERMS Fault tolerance, quantum error correction codes, quantum stabilizer codes, quantum gates,

Encoderless quantum code.

I. INTRODUCTION
A quantum error correction code (QECC) must be imple-
mented by a fault-tolerant circuit that is capable of avoiding
avalanche-like error-proliferation' in quantum gates. More
explicitly, a fault-tolerant circuit limits the effects of a single
gate error to a correctable number of qubit errors [1]. How-
ever, unfortunately many traditional encoding circuits are
not fault-tolerant [1]—[3]. This is because these circuits have
two-qubit controlled-NOT (CNOT) gate connections which
have the property that a single qubit error propagates to many
qubits, hence proliferating the errors [4]. This overwhelms
the error correction capability of the [n, k, d] QECC, hence
more errors are inflicted by the circuit than are corrected,
where 7 is the number of encoded physical qubits, k is the
number of original information qubits, d is the minimum
distance and ¢ is the error correction capability where we have
t = (d — 1)/2 for the family of maximum-minimum distance
codes. Therefore, rather than satisfying our original objective
of improving the error rates, the QECC failing to rely on a
fault-tolerant architecture prepares encoded states that have a
higher error rate than the original uncoded information [3].
To mitigate these problems, we present an alterna-
tive scheme that prepares encoded quantum states without

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren

I'We define error-proliferation as the event when a single error inflicts
more than one error. This is in contrast to error-propagation, which passes
on the same number of errors as its input.

179346

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

applying non-fault-tolerant encoding circuits. More explic-
itly, this outputs an encoded state with a Frame-Error-Rate”
(FER) that is lower than that of the uncoded informa-
tion, even when the gate error probability is high. This is
achieved by using a circuit, which is entirely comprised
only of single-qubit gates. Hence the resultant circuit has a
fault-tolerant arrangement, in which no error proliferation can
occur. Rather than directly encoding the information using a
quantum error correction encoder, this ‘encoderless’ scheme
first prepares an n-qubit state that is a superposition of legit-
imate codewords or correctable error patterns. The resultant
encoded state is carefully chosen so that any error patterns
within the code’s correction capability can be corrected by the
syndrome decoder. As a benefit, following the action of the
syndrome decoder, only valid codewords are created which
represent the n-qubit encoded version of the k-qubit input
information. Again we refer to our proposed method as the
‘encoderless scheme’.

This approach is reminiscent of quantum state preparation
techniques [5]. Further investigations of Steane code state
preparation were presented in [6]—-[9], where the logical states
such as |0) and |¥) are prepared fault-tolerantly. Improve-
ments that minimize the ancilla qubit overheads required for
Steane code state preparation were provided in [10]. In addi-
tion, methods of preparing the encoded states of longer codes

2 A frame error event is defined as the occurrence of more than the number
of correctable errors ¢
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were conceived in [11] for circumventing the employment of
complex encoding circuits. Finally, state preparation assum-
ing a local 2D-architecture was designed in [12], [13].

The scheme presented here has the added benefit that it can
be applied to unknown input information, implying that we
have no prior knowledge of the state before encoding. In this
paper, what is referred to as a known state |1) is one whereby
we do have prior knowledge of the value of the complex
probability amplitudes « and g in the state |) = «|0)+S]1).
Therefore, with no knowledge about the value of « and g the
state is said to be unknown.

Unitary encoding and decoding circuits are prone to the
proliferation of errors, because the circuits are not fault toler-
ant and therefore they inflict more errors than the QECC can
correct [2], [4], [5]. The scheme presented in this paper offers
fault tolerant encoding of unknown states with the aid of a
single stabilizer measurement and two extra Hadamard gates.
The ability to encode states with no prior knowledge of the
information qubits will be necessary for systems relying on
multiple networked devices. Another benefit of this scheme
is that it has a simpler circuit than the state preparation
schemes for certain known states [6]. This is advantageous
in near-intermediate-scale-quantum (NISQ) processors hav-
ing limited qubit coherence times and error-infested circuit
components [14]. However, the prerequisite for using this
scheme is that it needs clean all-zero ancilla qubits in order
to achieve fault-tolerance. In addition, this scheme relies on
a full stabilizer measurement, which is costly compared to
the non-fault tolerant unitary encoding circuit in terms of
qubit overheads [3], [15]. Nevertheless, if the architectural
assumptions of the stabilizer circuit are met by the proces-
sor, the encoderless scheme imposes no further connectiv-
ity constraints on the device. Therefore the implementation
is likely to be applicable to a number of state-of-the art
devices, where the stabilizer measurements can be readily
implemented.

Based on the aforementioned background, our novel con-
tributions are:

1) We propose a technique of preparing the n-qubit
encoded version of a k-qubit quantum state using
imperfect quantum logic gates that are prone to the
deleterious effects of decoherence both to repetition
codes and to Steanes code. This scheme has the added
benefit that it does not require prior knowledge of
the information to be encoded. We demonstrate that
provided the gate error probability is below a certain
threshold, a reduced gate error probability is attained.

2) Our solution is capable of encoding quantum infor-
mation without the need for encoding circuits, which
are inherently error-prone. We achieve this ambitious
objective by proposing an additional syndrome decod-
ing step, which prepares a code space containing the
same legitimate codewords. This encoderless scheme
relies on a fault-tolerant circuit and as a further benefit,
it requires fewer gates than the family of common state
preparation techniques [1], [2].
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3) Using the proposed encoderless scheme, upper bounds
of the qubit decoherence probability and gate error are
derived that define the conditions of constructing an
output state having an error rate of 1072,

The structure of the paper is described as follows.
First the Steane code is introduced in Section I-B.
Then Section I-C to I-D portray the fault-tolerant imple-
mentation of a stabilizer measurement, while Section I-E
elaborates on the stabilizer measurements applied to arbi-
trary input states. The encoderless codes advocated are intro-
duced in Section II using the rudimentary example of the
repetition code. This is then extended to Steane’s code [16]
in Section III, followed by our results recorded for imper-
fect gates. Finally, our encoderless scheme is extended to
state preparation protocols in Section IV, where qubit deco-
herence probability and gate error probability bounds are
derived.

A. INTRODUCTION TO QECC

Due to the small scale of near-intermediate-scale-quantum
(NISQ) devices [14], there has been great interest in solutions
that do not require the qubit overheads of QECC. However,
despite the progress made in improving gate fidelity and qubit
coherence times, QECC will be necessary to mitigate com-
ponent errors in large-scale practical quantum algorithms.
A QECC attaches redundancy to quantum information in such
a way that the individual qubit errors can be corrected without
corrupting the logical qubit state. However, the encoding
and decoding circuits are built by individual quantum gates.
If these components are error-prone it will increase the qubit
error probability, hence leading to an even more grave cor-
ruption of the data qubits. Therefore constructing a QECC
that has fault tolerant circuitry is crucial for creating quantum
solutions.

There has been a lot of progress in QECC since its incep-
tion by Shor in 1995, where he conceived the é-rate code [17].
This was based on the repetition code, and has the ability to
correct both bit and phase-errors. Shor’s code motivated the
design of Calderbank-Shor-Steane (CSS) codes [18], [19],
which exploit the properties of classical linear block codes,
providing a more general framework to correct both bit and
phase-errors than Shor’s code. As a further development,
using the [7, 4, 3] Hamming code the %—rate Steane code was
devised, which can correct a single arbitrary qubit error [19].
This code rate was then further improved in [20], [21], show-
ing that a %-rate code was the shortest possible codeword
length capable fo correcting a single qubit error. Gottesman
then outlined the quantum stabilizer code (QSC) formalism
in his PhD thesis [22] for providing a general framework
capable of further improving the efficiency of QECCs [23].
The benefit of QSCs is that their construction is not restricted
to CSS codes, therefore their inception sparked off the devel-
opment of a wide variety of QECCs (see [24]). Since the focus
of this paper is on the %-rate Steane code, let us introduce this
in the next section.
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B. TRADITIONAL STEANE CODE

Let us first briefly introduce the Steane Code, whilst men-
tioning that its tutorial description be found in [3], [25]. The
Steane code belongs to the family of Calderbank-Shor-Steane
(CSS) code, which is a general construction using a pair of
classical linear block codes C; and C, where C; C C;. The
Steane code is a dual-containing CSS code obeying the prop-
ertyof Co =C IL This is constructed using the [7, 4, 3] classi-
cal Hamming code. Since this is a single bit-error correcting
code, it leads to a single-qubit error correcting quantum code
having the parameters of [7, 1, 3]. Therefore a single data
qubit is encoded into 7 physical qubits. The encoded states
can be prepared by the traditional Steane encoding circuit?
V shown in Figure 1. This is applied to the unknown state
|[v) = «|0) + B]1) and (n — k) auxiliary qubits as follows

V) = V(¥) ®10)°0) = «|0) + BI1), (1

X X . X X
X X

X X

FIGURE 1. Traditional Steane encoding circuit suffering from X error
proliferation [15].

where we have
1
NG
+11100110) 4 |0001111) + |1011010)
+10111100) + |1101001)] 2)

0) = —=[10000000) 4 [1010101) 4 [0110110)

and
— 1
[1) = —[|1111111) 4+ |0101010) 4 |1001100)
ﬁ[
+10011001) 4 |1110000) + |0100101)

+]1000011) + |0010110)]. 3)
The Steane code stabilizers are as follows
K| = IIIXXXX,
K> = XIXIXIX,
K3 = IXXIIXX,
Ky = 1117777,

3The flow of time in a quantum circuit diagram is from left to right.
The qubit register is represented from top to bottom, where the spatial
connectivity required is indicated by the qubits coupled by two-qubit gates.
Where the outcome of a circuit block is input to another it is indicated by
solid a line and arrows.
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Ks = ZIZIZIZ,
K¢ = 1ZZ1IZZ. “4)

which forms S = {K;}.

The stabilizers are applied via a syndrome extraction cir-
cuit, whereby additional ancilla qubits are coupled to the
codeword state. This is done by applying a series of two-qubit
gates with a pre-determined location according to the opera-
tors in Eq. (4). The measurement of the ancilla qubit extracts
the syndrome outcome, which illustrates the outcome of the
relevant parity checks of the physical codeword qubits. There-
fore if the data qubits contain a single qubit error, the location
of this error will be indicated by the combination of classical
bit measurement outcomes. A correction can then be applied
in order to return the corrupted word to a legitimate codeword
state. Likewise, if the data is error-free, the all-zero syndrome
will be extracted, indicating that no error correction operation
is necessary.

C. FAULT-TOLERANT STABILIZER

Figure 2 shows the circuit construction of the Steane code
stabilizer of K| = I[IIXXXX [16], in which a single bit-flip
error on the ancilla qubit is propagated to r > 1 errors in the
data qubits. This is because the bit-flip error on the control
qubit of the first CNOT gate leads to the application of the
NOT gate (D) on the target qubit. Moreover, the control error
is not deleted by the action of the logic gate, since the CNOT
is a reversible gate. This means that the input information is
preserved at the output of the logic gate. Therefore the bit-flip
error on the control qubit is input into the second, third and
fourth CNOT gates. What began as a single error is spread
across the qubit register to r = 4 errors. Since the Steane code
has a minimum distance of d = 3 this circuit construction is
not fault-tolerant.

SN »X
NP
Data L TNT T =X
R
L TN - X
N
: : : \\7>X
B T
I R N R B '
0)— H = H (A

FIGURE 2. Non-fault-tolerant implementation of the Steane code
stabilizer Ky = HIXXXX [2].

This error-proliferation phenomenon is a general property
of all stabilizer circuits obeying the architecture of Figure 2.
Fortunately, fault-tolerant schemes do exist, such as the one
developed by

Peter Shor in [5] which is described in this section. How-
ever, in most practical cases, a more efficient scheme would
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be employed such as those in [16], [26], [27], which require
reduced qubit overheads [10], [28], [29].

Figure 3 shows the fault-tolerant implementation of the
K1 = HIIXXXX Steane code stabilizer. The general idea of the
scheme is that the ancilla qubit is replaced by an error-free
superimposed state [5]. Replacing the ancilla with a state
that is error-free ensures that less qubit errors are propagated
to the data qubits by the gates coupling the ancilla and the
data. An N-qubit superimposed state is chosen, where N is
the same as the number of CNOT gates in the traditional
stabilizer. This is equivalent to the weight* of the stabilizer,
so for example we have N = wt(/IIXXXX) = 4. Replacing an
ancilla qubit by an ancilla state means that the CNOT gates in
the stabilizer can be applied to the ancilla relying on the same
circuit construction as a transversal CNOT gate. This inherits
the fault-tolerant properties of the transversal CNOT gates,
see [3], [15]. The transversal construction ensures that there
are no scenarios whereby a single qubit error can result in
increased-weight errors at the circuit’s output. This is because
there are no qubits either in the data or in the ancilla state that
are connected by more than a single CNOT connection.

A
N
Data T
N
(D
N
L (D
NI
— °
Ancilla o
|0000)+[1111)
V2 °
- ®

FIGURE 3. Fault-tolerant implementation of the Steane code stabilizer
Ky = HIXXXX [2].

The aim of the stabilizer is to copy the error information
into the ancilla qubit without directly measuring the data
qubits. To do this, the ancilla must be in an equi-probable
superposition so that the eigenstate of the data is encapsulated
in a 1 phase difference. Figure 2 shows that a Hadamard
gate is applied to the ancilla qubit before the stabilizer.
Therefore the stabilizer circuit puts the ancilla qubit into the

4The weight wt(S) of a quantum operator S is defined as the number of
qubits that differ from the identity operator. Therefore wt(XIZ) = 2.
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state w before applying the controlled-K gate’. This

state is extended in the fault-tolerant circuit construction to
the following N-qubit superimposed state

(100...00) + [11...11))
5 .

Then the £1 eigenstate in the data is passed to the ancilla
state [00...00) & |11...11), where the 1 phase difference
can be detected by a measurement. A fault-tolerant way to do
this measurement is to apply a Hadamard gate to all N qubits.
This is because we see that

Lyov (100...00) +[11...11))
V2

has an even weight, when the phase difference is positive
and odd weight when the phase difference is negative. It is
necessary to use a superimposed state in the ancilla rather
than simply duplicating the ancilla qubit N times because
in this case the ancilla state would be |+)®V, but this will
not work because the eigenstate of the data is determined by
directly measuring each qubit of the ancilla state.

&)

= [i)®N (©6)

D. SUPERIMPOSED STATE PREPARATION

This section describes how the ancilla state is prepared with-
out an error. The scheme to do this was developed by Shor
in [5]. The circuit shown in Figure 4 prepares the corre-
sponding superimposed state. This circuit is not itself fault-
tolerant, but the superimposed state is part of a fault-tolerant
stabilizer implementation [5]. An error-free superimposed
state is determined by detecting errors using a parity check
and an extra ancilla qubit. For example, an N = 4 qubit
example of a superimposed state is

(10000) + |1111))

7 @)
(1) |0) H
(2) |0) D
(3) 10) i
(4) 10) b

(5) 10) PP A~

FIGURE 4. Circuit to construct a superimposed state [30].

This state represents an equi-probable superposition of
equally weighted N-qubit all-zero and all-one vectors. The
qubit locations of the parity check CNOT gates should be
chosen randomly and repeated until the state can be deemed

5An arbitrary stabilizer K can be implemented as a controlled-K gate [2].
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error-free [4], [5]. For example, let us assume that an X7 error
is imposed by the CNOT gate connecting qubits (2) and (3)
in Figure 4. This will result in the following state

(10100) + [1011))
= .

In this case there is an error on qubit (2) which will be
detected by a parity check measurement between different
circuit locations to that shown in Figure 4. A gate error which
results in the state

®)

(10010) + [1101))
V2

is detected by another parity check combination. Likewise,
other error combinations include

(/1000) + 10111))

V2
(11100) + 10011))

V2
(J0001) + |1110))

NG )
which can be detected by measuring the parity check ancilla
qubit (marked (5) in Figure 4). If a qubit error is propagated
to all N = 4 qubits, the resultant superimposed state remains
unaffected. Therefore, the specific location of the parity
check in Figure 4 will detect the most common error, where
the first and last qubits are not similar. If the measurement
outcome indicates that the ancilla is in the |0) state, then the
superimposed state has been prepared without error. If by
contrast a |1) state is measured, this indicates that the state
prepared should be thrown away and the process must be re-
initialized.

The above-mentioned state construction ensures that there
are no X errors in the ancilla qubits, since error detection is
used for spotting and throwing away the states with bit-flip
errors. Therefore there will be no bit-flip error proliferation
imposed on the data qubits. However, there are a pair of
scenarios that may results in an incorrect syndrome measure-
ment. A single phase error during the superimposed state
preparation results in the phenomenon that the ancilla state
[00...00) —|11...11) forces the +1 eigenvalues to switch
places. This would result in an incorrect syndrome measure-
ment. The second scenario is that a gate failure in the CNOT
gates constructing the syndrome operator would also result in
an incorrect measurement outcome.

To combat this problem, the full stabilizer procedure must
be repeated for example three times [31]. Then a majority vote
is taken to determine the final stabilizer value but the third
stabilizer measurement is only necessary when the first two
measurement outcomes differ. This means that an incorrect
stabilizer result will occur at a probability order of p> where
p is the probability of a component error, because two of
the stabilizer implementations must simultaneously contain
a component error for the majority vote to conclude the
absence of errors due to a pair of errors. Therefore in the best

&)
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case scenario, a single syndrome measurement requires an
additional 10 ancilla qubits assuming that the superimposed
state is prepared without error first time and the first as
well as second syndrome measurements match. However,
it is possible for this to become more than doubled, because
multiple superimposed states may have to be produced to
distill a single error free version and this must be done for
each repeated stabilizer measurement. Therefore the extent of
the qubit overheads is determined by the efficiency of creating
an error-free ancilla state. For the full [ = n-k = 6 Steane
code stabilizer set it is not unreasonable to expect more than
60 additional ancilla qubits which is in stark contrast to the
6 required for the non-fault-tolerant scheme.

E. STABILIZER MEASUREMENTS WITH ARBITRARY
INPUT STATE

This sub-section follows from the section entitled as Non-
Destructive Operator Measurement in [3]. It is useful to
determine the effect of an operator measurement in Figure 5
for any arbitrary input state ) [32].

[4)

data

00— H

A

- === =-441

1 H

¥) 1) |12)

FIGURE 5. Measurement of an arbitrary single stabilizer operator K.
(from [3]).

Let us describe the transformation of the circuit in Figure 5
step-by-step for input state |y/). The first Hadamard gate in
the circuit in Figure 5 has the transformation described by

L
/2

The controlled-K gate applies the K operator only when the
ancilla qubitis in the | 1) state [2]. Therefore the controlled-K
gate has the transformation

)10) = [+ = —=[ )10} + WD = 1), (10)

) — |¢>IO>+K|¢>|1>]=I1/;1>- (11

2l
V2
and we arrive at an expression for |Y1). After applying
another Hadamard gate after |i1) we get

1
V2

)10y + K[y 1) | = - [¥)1+) + K1Y =)
V2

= [¥) (12)
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Expanding Eq. (12) gives the state of the system before the
ancilla measurement

~ 1
[V2) = 5[(|¢>+K|1ﬁ))|0>+(|¢)—Kl’#))Il)]- (13)

Let us now describe the effect of this circuit using the sim-
ple example of the repetition code. In this case the input state
is a superposition of error-free legitimate code word states.
Consider the circuit in Figure 5 with [{) = «|000) 4+ g[111)
the stabilizer operator K1 = ZZI. Note that this stabilizer
leaves the legitimate code word state |1) unchanged, there-
fore K1 |v) = |). Then Eq.(13) is shown to be

1
5[(|1ﬁ) + ¥ DI0) + (1Y) — II//))II)] =[¥)10). (14

Therefore in the event that a legitimate codeword state is the
input, the outcome of the ancilla measurement is 0.

Let us consider the scenario that the input state is a
superposition of illegitimate code word states, for example
|[v) = «[100) + B|011). This state contains a single qubit
error and therefore it can be corrected by the repetition code,
so K1 |y) = —|v). Within these restrictions Eq. (13) becomes

1
5[(“&) + (=[¥yMI0) + (¥) — (—IIﬂ))Il)] =y)Ih. (15

Therefore in the event that a correctable error is input, then
the outcome of the ancilla measurement becomes 1.

In the case where the input state is a superposition of %1
eigenstates, the measurement of the stabilizer operator will
have the effect of ‘projecting’ the data into either of the +1
eigenstates [2], [32]. The quantum stabilizer measurement is
designed so that the data is entangled with the ancilla, and
the measurement of the ancilla projects the data into a %1
eigenstate of the stabilizer.

Let us now elaborate on a scenario that explains this in
more detail. Consider Figure 5 when |¢) = «|000) 4 £]100),
namely a superposition of legitimate and illegitimate code-
words. When K is applied to this state, the outcome is
Ki|Y¥) = «|000) — B]100). Substituting this into Eq.(13) and
simplifying it further leads to

«|000)|0) + B|100)]1). (16)

ifa 1 is measured in the ancilla, we can guarantee the data now
resides in the state |100). The ancilla measurement triggers
an error correction operation, which then returns the data to a
legitimate code word state, in this case |000). Likewise is a 0
is measured in the ancilla it indicates the data now resides in
the |000) state. It can be said that the stabilizer measurement
‘projects’ the input information into a legitimate or illegiti-
mate codeword state [2], [32].

Then referring back to Eq. (13), in general when the ancilla
qubit of Figure 5 is in the state |0), the data qubits are
described by

~ 1
1Y) = §(|1//)+K|I/f>), A7)
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which is the +1 eigenstate of K. Likewise, when a |1) is
measured in the ancilla, the state of the data qubits is given
by

1
E(Ilﬁ) —Kly)), (18)

which is the —1 eigenstate of K. These equations will be
referred back to when determining the effect of the measure-
ment of a stabilizer for an arbitrary input state of |{/).

Il. ENCODERLESS QECC

Section IV will outline a scheme whereby a known state
can be prepared without the application of the traditional
encoder [32]. This can be achieved by preparing an initial
input state that is understood to evolve to the intended known
encoded state with the application of syndrome decoding.
However it is not yet understood if this approach can be
pursued for encoding an unknown state [33], which we have
no prior information concerning the probability o and S
before encoding. This section proposes a scheme for solving
this problem. In practice traditional unitary encoding circuits
must be applied for encoding an unknown state.

The scheme operating in the face of combined gate error
and quantum bit error channel model presented in [3] requires
the gate error P, to be an order of magnitude lower than the
quantum bit decoherence probability P,. This is the limita-
tion imposed by the gate error in the encoding circuit. The
error rate of the encoding circuit is upper bounded by single
gate errors, therefore introducing an error rate on the order
of O(P,) after syndrome decoding. This section presents a
scheme which does not require encoding circuits, therefore
reducing the probability of gate error in the encoder the order
of (’)(P?) that can nevertheless encode an unknown state.

A. ENCODERLESS REPETITION CODE

Again quantum information can be protected without an
encoding circuit by preparing a legitimate and illegitimate
codeword states in a superposition and then applying syn-
drome decoding to transform this to valid codeword states.
Let us now explore this idea in more detail. Firstly, let us
compare the repetition encoded state of

[¥) = «[0) + BI1) = «|000) + BI111), 19)

to the state produced by the circuit that replaces the encoder
by a pair of Hadamard gates, as shown in Figure 6. After
applying both Hadamard gates to the unknown input state of
|Y) = «|0) 4+ B|1), the system is in the state

. 10) + [1) 10) +11)
= («|0 1 . (20
V) = («]0) + B| >)®( 7 )@( 7 ) (20)

Expanding this gives
[¥) = «|000) 4+ |001) + «|010) 4 «|011)

+B|111) + BI110) + B|101) + B|100).  (21)

The vectors that overlap with the state shown in Eq. (19) are
underlined.
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The vectors that are not underlined must be corrected to
one of the valid code word states in Eq. (19). Additionally,
the coefficients o or 8 have to be consistent with the encoded
state of a|6) + ,3|T). For example, the vector $/100) must
be corrected to B|111). This can be done by measuring the
traditional repetition code stabilizers K1 = ZZI as well as
K, = ZIZ and then carrying out the recovery operations
shown in Table 1. To elaborate these operations are similar
to those based on the traditional repetition code (see [34])
except that when the ancilla qubits are in state |11), the bit
flip correction is applied to both the second and third data
qubits X>X3 ensuring that

a|011) 4+ B]100) — |000) + B[111). 22)

TABLE 1. Error recovery operators R for the encoderless [3, 1, 3]
Repetition code.

R |data)|ancilla)
II | («]000) + B[111))[00)
X | («|001) + 5|110>) )
IXI | («|010) + B|101))[10)
IXX | («|011) + B|100))[11)

This is necessary because if the traditional single qubit cor-
rection X; was made, this would result in the state «|111) +
B1000). In this case the coefficients are the wrong way
around therefore the result is not consistent with Eq. (19).
The aim of the scheme in Figure 6 is to ensure that
|¥) = «]000) + B|111).

Let us now describe the operations in Table 1 is discovered.
The input state of Eq. (21) evolves under the measurement of
the stabilizers K; and K> according to Eq. (17) and Eq. (18),
yielding

- 1 - 1
[V2) = 5(|w> +KIY) )= 5(|w> —Kly).  (23)

Let us consider the example that a |0) is measured ~in both Ehe
ancilla qubits each described by Eq. (17). First, |¢) — |v¥1)
when K of Figure 6 is measured, given by

~ 1, - ~
1) = = 5 (1) + ZZI 1)) = @l000) + |001)

+ B|111) + B|110).

This state is then input to the measurement of the K, stabi-
lizer. A |0) is also measured in the second ancilla qubit, giving

- 1, - .
[V2) = z(llﬁl) +ZIZ|yn)) = «|000) + BI111).  (24)

This shows that the encoded state |1/) is recovered without
having to apply an error correction operation R.

Let us now check the effect of measuring the |01) ancilla
states. After the K stabilizer is applied, the system is in
the same state, as described in Eq. (24). Then the second
measurement of the K; stabilizer results in the |1) state in
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FIGURE 6. Encoderless [3, 1, 3] Repetition Code.

the ancilla qubit. This is described by Eq. (18), so in this case
we have

[Y2) = %(II&]) — ZIZ|Yn1)) = «|001) 4 B[110)  (25)
and a bit flip recovery operation X3 will return the state to [1/).
The same calculation can be done for the other two scenarios
listed in Table 1.

Let us see the effect of measuring the |10) ancilla states.
After the K stabilizer is applied the system is in

- 1, ~ -
Y1) = §(|1/f> — ZZIY)) = «|010) + «[011)
+ B|101) + B100). (26)

The |0) state is measured in the second ancilla qubit, giving
~ 1, - ~
[V2) = 5(|w1> +ZIZ|yn)) = «|010) + BI101).  (27)

hence the R = IXI correction operation recovers |). Simi-
larly, if the |11) ancilla state is measured, we have

[¥2) = %(|1//1)—ZIZ|I//1>)=Ol|()11>+/3|100) (28)
and the R = IXX correction operation recovers |J).

Furthermore, any single Hadamard gate error acts trivially
on the state |/). So even though at this step in the circuit the
state is not strictly encoded in the state [1/), the scheme is
still robust against the gate errors of its preparation circuits.
For example, a Hadamard gate error on the middle qubit can
be described by IXI for the bit-flip channel £(.). The channel
output is described by

ENYY)) = IXINY) = |¥), (29)

where |v/) is given by Eq. (21). This error takes one vector
state in the superposition state |¥) to another and preserves
the coefficients o and S. Similarly a Hadamard gate error
on qubit (3) has the same effect, namely IIX|1/~/) = |1Z).
In fact, two simultaneous Hadamard gate errors occurring
with probability P§ is also trivial, since we have IXX|) =
|¥/). Therefore no possible gate error combination suffers
from an error that cannot be corrected by the measurement
of S.
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Note that the error correction operations must still be
applied. Since the state in Eq. (21) consists of only +1
eigenstates of S the application of R results in |1ﬂ) — |1p)
as seen in Figure 6. In simple terms, the input state W) is
in a superposition of the code word states and correctable
errors. This state is carefully designed in such a way that the
unknown coefficients o and 8 are preserved after R. So the
unknown state |) effectively ends up in the encoded state
|¥/) by the application of Sand R.

B. ENCODERLESS TRANSVERSAL CNOT GATE

The encoderless scheme depicted in Figure 7 applies the
transversal CNOT gate Uf to the control and target qubits
|¢1) and |¢o). Both qubits are separately prepared in the
partially encoded state in Eq. (21) with the addition of n—k =
2 ancilla qubits. In this scheme the original repetition code
recovery operation R is applied, therefore FER improve-
ments are expected with the aid of R. This scheme applies
the following transformation

Tr(1pn) + D))+ +) 25 Tr(dn)ida).  (G0)

1)

0) H

0) H

|$2) D -1
0y — H DS HR
0 N - L
O H i il

42

FIGURE 7. Encoderless transversal CNOT using the [3, 1, 3] Repetition
Code.

so that after syndrome decoding the control and target states
|¢1) and |¢,) are encoded as well as transformed by the
CNOT gate. Syndrome decoding is applied after the transver-
sal CNOT gate since U, '+ commutes with S see [3].
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C. FER WITHOUT ENCODER

Figure 8 shows the upper and lower bound of the FER to
be derived in this section for the encoderless scheme with a
channel model, whereby each CNOT and Hadamard gate is a
potential source of error location with a gate error probability
of Pg. This section contrasts our simulation results to these
bounds. The FER before decoding at position |yr;) of Figure 7
is

FER, = TP, +21P; (31)

100 T T T T
Encoder —H—
No Encoder —©&—
10" F Uncoded —¥¢— b
Upper Bound A
Lower Bound °
Exact ]
102} -
o
w
™
3L -
10 2P
Simulation
Analytical -
107 -
2
9.7Pg
105 1 A 1 1 2
10 10 108 102 10 10°

Gate Error Probability, Py

FIGURE 8. Transversal CNOT gate in the bit-flip channel with [3, 1, 3]
repetition code with and without the traditional encoding circuit.

More explicitly, since this circuit construction is fault-
tolerant, the term 7P, can be ignored as any single gate
error can be corrected by the syndrome decoders. There-
fore it is only necessary to consider the proportion of errors
occurring owing to a pair of simultaneous gate errors. Given
4 Hadamard gates and 3 CNOT gates in the circuit there are
21 combinations of two simultaneous gate errors, so Eq. (31)
can be re-written as

FER, = nP; < 21P;. (32)

Therefore the upper bound of the FER marked with a triangle
in Figure 8 is

FERVPPPR = 21p3. (33)

The value of 1 in Eq. (31) is found by considering the proba-
bility that two simultaneous gate errors can be corrected, and
subtracting this probability from 21P§.

There are three general categories that the 21 combinations
of two simultaneous gate errors may take:

o Two simultaneous
(6 combinations),

Hadamard gate errors
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o Two simultaneous CNOT gate errors (3 combinations),
o Simultaneous CNOT gate and Hadamard gate error
(12 combinations),

These will be considered in each subsection that follows.

1) TWO SIMULTANEOUS HADAMARD GATE ERRORS

Let us start with analyzing the six combinations of two
simultaneous Hadamard gate errors, which contributes 6P§
to FER;. Firstly, a single qubit gate objected to the bit flip
channel simply incurs an X error with a probability of P,
(namely the gate error). Therefore more than qubit errors
will be encountered, only when two Hadamard gates in the
same encoded block impose an error in either the top or the
bottom syndrome decoder of Figure 7 This only occurs in 2
out of the 6 two-Hadamard gate error combinations. Then two
simultaneous Hadamard gate errors can be corrected with a
probability of 4P§ giving 17P§ < 17P§.

2) TWO SIMULTANEOUS CNOT GATE ERRORS

Furthermore, there are only three scenarios, where a pair
of CNOT gates have an error simultaneously, which con-
tributes a probability of 3P§ to FER,. When we consider the
two-qubit gate bit-flip error event of (IX, XI, XX) two CNOT
gates suffer from an error, this gives 9 combinations, each
occurring with a probability of % . %. Each combination is
listed in Table 2 and visualized in Figure 9. There are only
two combinations that result in a single qubit error being
input into the top and bottom syndrome decoder in Figure 9.
Therefore each time when two CNOT gates have an error

simultaneously this may be corrected with a probability of
2
%. Then accounting for all three ‘two-simultaneous-CNOT-

gate-error’ combinations gives nPf, < 16.3P§.

TABLE 2. Combinations of two simultaneous CNOT gate error in the
bit-flip channel.

CNOT 1 CNOT 2 | Correctable
IX IX N
IX XI Y
IX XX N
XI IX Y
XI XI N
XI XX N
XX IX N
XX XI N
XX XX N

3) SIMULTANEOUS CNOT GATE AND HADAMARD GATE
ERROR

Next there are twelve scenarios, where a Hadamard and a
CNOT gate have an error simultaneously. There are two ways
this could happen. Let us start with the simplest case namely
which a Hadamard gate error is input to the CNOT gate,
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FIGURE 9. IX error on both CNOT 1 and CNOT 2 resulting in two qubit
error input into the bottom encoder.

as shown in Figure 10. In this case there may be no more than
one error entered into each syndrome decoder in Figure 10.
This is because the transversal CNOT gate will not proliferate
the input error to more than one error. Additionally, the CNOT
gate error cancels the propagated Hadamard gate error. There
are four scenarios, where a Hadamard gate is applied to a
qubit before it is input to a CNOT gate - therefore we have
nP; < 12.3P;.

4R
N

FIGURE 10. A scenario where one error event cancels another.
A Hadamard gate incurs an X error that is subsequently input to the
control qubit of a CNOT gate, which itself has incurred an IX error.

The last 8 scenarios are where the Hadamard gate error
is at a location that is either in an encoded block, but its
output is not entered into that specific CNOT gate, which
has a simultaneous gate error, as sglown in Figure 11. Table 3

shows that with a probability of % this combination will not
incur a [3, 1, 3] frame error. This is valid for 31128 combina-
tions. Hence the total associated probability is 8%. Therefore
finally we get nP§ < 9.7P§, which gives n ~ 9.7 in
Eq. (31). Consequently the lower bound marked with a circle
in Figure 8 is given by

FER"OVER = 9.7P?. (34)
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FIGURE 11. X error imposed on a Hadamard gate occurring in the same
encoded block as the control qubit error of a CNOT associated with an X/
error.

TABLE 3. Combinations of a Hadamard gate error in the same encoded
block as the target qubit of a simultaneous CNOT gate error in the bit flip
channel. See Figure 11.

H | CNOT | Correctable
X IX Y
X X1 N
X XX N

Having introduced the basis of the encoderless scheme, let us
now focus our attention on the more practical Steane code in
the next section.

I1l. ENCODERLESS STEANE CODE

A. ENCODERLESS STEANE CODE

The scheme of Figure 12 replaces the traditional n = 7
qubit unitary encoding circuit V seen in Figure 1. Ordinarily,
the encoder V is applied to both the unknown state |¢) =
«|0) + B|1) and to (n — k) auxiliary qubits as follows [34]

V) = V(¥) @ |0)20=0), (35)

This achieves the encoded state,
where we have:

— o
V) = —=

NG
+[1100110) 4 |0001111) 4 [1011010)

+10111100) +1101001)]
B
NG
+10011001) + |1110000) + [0100101)
+11000011) + 10010110)]. (36)

[10000000) + [1010101) + [0110011)

+-C-[I1111111) + [0101010) + |1001100)

Let us compare this to the state produced by the circuit
that replaces the encoder by three Hadamard gates, as shown
in Figure 12. After applying the Hadamard gates below the
unknown input state |) = «|0) + B]|1), the system is found
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FIGURE 12. Encoderless Steane Code with three Hadamard Gates.

in the state

~ 0 1
[¥) = («|0) + A1) ® (M)

V2
10) + 1) 10) + 1)
®< 7 )@( 5 >®|000>. (37)

Expanding this gives
1) = %[IOOOOOOO) -+ 10010000) + [01000000)

+ 10110000) 4 [0001000) + [0011000)
+10101000) + |0111000)]

+ —8[|1110000) + 11000000) + |1010000)

+(1100000) + |1001000) + |1011000)
+[1101000) + |1111000)]. (38)

The underlined vectors represent those that overlap with the
conventionally encoded state shown in Eq. (36). The vectors
that are not underlined represent errors that can be corrected.
Then by the same reasoning as for the repetition code of
Section II-A, the encoded state in Eq. (36) is fixed after the
application of the stabilizer operators in Eq. (4).

Then the vectors that are not underlined are corrected by
the syndrome decoder of Figure 13. This is shown by Eq. (17).
We can readily see that the encoded state in Eq (36) can be
recovered by the following calculations

1 - ~
Y = () + Kily)
1
[V2) = (Y1) + Ka|¥1)

2
1

¥3) = 5(12) + K31¥2)
1

Va) = S(1¥3) + Kal¥3)

179355



IEEE Access

R. Cane et al.: Gate-Error-Resilient Quantum Steane Codes

1
Ws) = (1) + Ks[a))

1 _
We) = S(s) + KelYs)) = |¥), (39)

where K to K¢ corresponds to the Steane code stabilizers
in Eq. (4). Therefore the encoderless schemes can be readily
combined with transversal gates in the same way, as described
for the repetition code of Section II-B. The full scheme is
shown in Figure 13.

Us
|1) o : H
0 HH H < H
0 H M - H T
‘O> ——H ; ;S_R_
o) — S
0) I ~4 0 r
R — LU
|65) D I H
0 H 1 H—P — H F
o {1 — S
0 H H & -~ R
0) % D1+ H
0) : D1
0) —— DA H F

FIGURE 13. Full Scheme of the Transversal CNOT gate with the
encoderless Steane code.

B. FURTHER IMPROVEMENTS

The number of Hadamard gates in the scheme seen
in Figure 13 can be reduced to as few as two, which is shown
in Figure 14. Let us elaborate on this scenario by using the
same method as that in the previous section. If we have
|¢p1) = «|0) 4+ B|1), the top encoded qubit of Figure 14 can
be described by

l¥) = 10) ® (]0) + BI1))

[0) +|1) [0) + [1)
0 o 0 T 0).
oma (L) o (241) o
(40)
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FIGURE 14. Encoderless Steane Code with two Hadamard Gates.

This may be expanded to give
o
NE
+10001010)]

+ %[|0101010> +10101000) + [0100010)

N
+10100000)], (41)

l¥) = —[]0000000) + [0000010) + [0001000)

where the underlined vectors overlap with the conventionally
encoded state in Eq. (36). After the application of the syn-
drome decoder, the encoded state in Eq. (36) can be recovered
as shown in Eq. (39).

This methodology can also be applied to other codes,
where the positioning of Hadamard gates and of the original
information qubit |¢;) = «|0) + B|1) are arragned for
ensuring that a single vector belonging to the logical state
|0) appears with an % coefficient. Likewise, a single vector

belonging to the logical |1) state appears with an £ coef-

ficient. Therefore, where the code satisfies the property that
|1) = X®7|0) the vectors with the smallest (classical) weight
indicate the position of the smallest number of Hadamard
gates. Then the application of the stabilizer measurements
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projects this expansion to the correctly encoded state V) =
«|0) + B|1). Therefore it is feasible that the broad class
of QSCs may exhibit encoderless properties, provided that
stabilizer measurements can be implemented fault-tolerantly.

C. SIMULATION RESULTS & DISCUSSIONS

Figure 15 shows that the FER upper bound of the encoderless
scheme is FER = 78P§, which is derived by the probability
of two simultaneous gate errors of Figure 13 by

D ‘ D
FER < P, where n;= (;) . (42)
i=1

Observe in Figure 15 that the simulation results appear to
be better than the estimated ‘upper bound’ indicating that
there are certain simultaneous two-gate errors that actually
impose qubit error that can be corrected by the syndrome
decoder. The gate error rate below which the scheme offers
an CNOT gate accuracy better than an uncoded gate is seen
to be Py, = 0.024.Naturally we aim for P, < Py,. Further-
more, to achieve a FER less than 10™* this scheme requires
individual components having a gate error probability lower
than 1073, as seen in Figure 15.

0
10 I T T
With Encoder [
No Encoder3H O
No Encoder 2H A
Uncoded X
10" ]

Simulation
Analytical -

FER

Py,=0.024

1 0-5 * : 1
105 104

L L L 1
103 102 10" 10°
Gate Error, Pg

FIGURE 15. Encoderless scheme comparing the systems of Figure 13 (3H)
and Figure 14 (2H). The analytical circle represents the upper bound and
the square is a tighter bound.

The encoderless scheme provides better-than-uncoded
FER performance for both the bit-flip and depolarizing chan-
nel. This is because the scheme dispenses with the non-
fault-tolerant traditional encoding circuits, which increase the
qubit error probability owing to error proliferation. Therefore
the encoderless scheme of Figure 14 provides a compelling
proof-of-concept for implementing QECCs fault-tolerantly
without any initial assumption about the information being
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computed. Moreover the encoderless scheme provides a FER
improvement for Steane’s code even when constructed from
imperfect gates.

QECCs constructed based on traditional encoding cir-
cuits have the advantage that they are capable of encod-
ing unknown information. However these circuits are not
fault-tolerant [1]. Hence techniques of encoding known infor-
mation without a traditional encoding circuit have been inves-
tigated in [35] for example. However these schemes have
the drawback that only certain simple quantum states can
be encoded. By contrasting the scheme presented here cir-
cumvents these issues by using stabilizer measurements for
encoding unknown states. This means that an additional error
correction step is required, which has a substantial qubit
overhead, when implemented fault-tolerantly, as described in
Section I-C. Nevertheless, these results provide a proof-of-
concept for the family of the techniques that are capable of
encoding any arbitrary information without the need for non-
fault-tolerant encoding circuits.

IV. STATE PREPARATION

This section investigates how the known state |) = |0)
can be encoded by applying certain Steane code stabilizers to
a specific input state [35]. This circumvents the application
of the traditional unitary encoding circuit characterised by
Eq. (1) albeit with the drawback that the state that is being
encoded must be known [1]. The basic idea is that the sta-
bilizers K, K> and K3 in Eq. (4) are applied to the all-zero
qubit input state |1ﬂ) = |0)®7, as shown in Figure 16. This
gives [) = |0) in Eq. (2), which is the encoded version of
|[v) = |0). It is not necessary to apply the full stabilizer set,
because |¥) = |0)®" is already a +1 eigenvalue of K1, K>
and K3 [32].

|0>®7

=)
[
S

I, LR

:

11
|0>‘H: ; 1H [~
0)qH —— H %
0) 1 H | ——1 H [~

) ) ) )

FIGURE 16. Preparing the known state |0) encoded by the Steane code
using the stabilizer measurements of K, , K, and K3 in Eq. (4).
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Let us consider the most straightforward scenario, whereby
the measurement of the stabilizers K, K> and K3 in Eq. (4)
results in the |0) state in the ancilla, as described by Eq. (18).
If the measurement of K| = IIIXXXX results in |0) in the
ancilla, the system is in the state of

Y1) = %(hif) + K1[)) = [0000000) + [0001111).  (43)

This state is input to the Ky = XIXIg(IX stabilizer, which is
also measured in the |0) state. Then |y2) describes the system
after this measurement

1, - .

1¥2) = 5 (I91) + Kal 1)) = 10000000) + 0001111) +
(44)

11010101) + [1011010). (45)

Finally the |0) state is measured in the ancilla, when the
K3 = IXXIIXX stabilizer is applied to the state in |y,). This
gives

[¥3) = %(Ilffz) + K3|y)) = [0000000) + [0001111)
+11010101) + [1011010) + [0110011)
+10111100) 4 |1100110) + [1101001)

= |0), (46)

which is the Steane encoded |/) = |0) in Eq. (2).

Once the encoded |0) state is prepared, it becomes pos-
sible to prepare the encoded version of any arbitrary state
|[Y¥) = «|0) 4+ B|1), provided that we know the value of «
and B [2]. This is possible as long as the processor has an
encoded universal gate set as defined in [36]. This will mean
that any arbitrary gate operation can be applied to the encoded
data allowing the encoded zero state to be transformed to
any arbitrary superposition of code word basis states. For
example, we might like to prepare the encoded sate |/) = [1),
where 8 = 1. This can be done by preparing the |0) state as
outlined above and then applying the transversal bit-flip gate
as follows

X10) — |1), (47)

therefore preparing |) = |[1). Similarly, to prepare the
encoded version of the equi-probable superposition state of

— 10y + 1)
V) = 5
the same method may be employed. First the encoded |0)

state in Eq. (2) is prepared, followed by the application of
the transversal Hadamard gate,

(48)

HI|0) — (49)
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FIGURE 17. Preparing the Steane encoded |0) state.
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FIGURE 18. Preparing the Steane encoded |1) state.
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FIGURE 19. Preparing the unknown Steane encoded |y) state without an
encoder using 3 Hadamard gates.
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FIGURE 20. Preparing the unknown Steane encoded |y) state with
traditional Steane encoder.

A. SYSTEM MODEL

In this system the encoded version of various single qubit
states is encoded by the Steane code, therefore in general
this system has the transformation |¢/) — [¢). This is
seen in 19, 20 and Figure 21, where any unknown state is
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FIGURE 21. Preparing the unknown Steane encoded |y) state without
encoder using two Hadamard gates.

prepared. The known state preparation constituted a specific
case of these schemes, as seen in Figure 17, 18 and 22.
For example in Figure 17 we can see that |0) — |0). The
encoded |1) described in Eq. (47) is shown in Figure 18.
Moreover, the encoded |+) described in Eq. (49) is shown in
Figure 22. Each scheme is simulated in the face of gate errors
as well as qubit decoherence error probability of P, before
the syndrome decoder in Figure 17, 18 and 22. Therefore
Figure 22 has an additional syndrome decoder, meaning that
the |0) state is prepared to achieve the transformation seen
in Eq. (49). There may be circuit implementations that have
a reduced number of syndrome decoding steps, reminiscent
of the approach taken in Section II-B. However, this is not
explored here. Since a single qubit state is encoded (not
a quantum gate) the uncoded scheme has an error rate of
FER = P,.

0ot S UR HH HS HR |

ro L1 L1

FIGURE 22. Preparing the Steane encoded |+) state.

B. RESULTS AND DISCUSSION

In this simulation we assume that both the stabilizer and
the error recovery circuits of Figure 17, 18 and 22 are
fault-tolerant (see Sectionl-C) and incur a negligible error
rate. Therefore the FER associated with preparing the
encoded |0) state is upper bounded by (;)Pg The scheme
shown in Figure 21 demonstrates the best FER perfor-
mance of encoding an unknown input state. See Table 4 for
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FIGURE 23. FER vs. Pg for State Preparation aided Steane encoded states
at Pe = 1072,

0
10 1 1
|psi> 2H [ ]
lpsi>3H X
|psi> encoder  +
|0> O
10 1 L [1> <&
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™
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o o T Qo g
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FIGURE 24. FER vs. Pg for State Preparation aided Steane encoded states
atPe = 1073,

TABLE 4. Table summarising the results in Figure 23-28 for the
2H encoderless scheme.

Summary of Fig. 23-28
Fig. Py P, FER =
2324 | 5x 103 103 107
25-26 102 107 10%
27-28 103 5 x 107 10°

a summary of results of this scheme in Figures 23-28. This
is due to the low complexity of its circuit, which helps in
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FIGURE 25. FER vs. Pg for State Preparation aided Steane encoded states
at Pe = 1074,
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FIGURE 26. FER vs. Pe for State Preparation aided Steane encoded states
atPg = 1072,

limiting the error proliferation. For example, when P, =
0.01 (Figure 23) and P, = 0.005 the scheme relying on a
traditional encoding circuit has a FER 386% higher than the
encoderless scheme using two Hadamard gates. To achieve
FER ~ 107, a gate error probability of P, =5 x 1073
and P, = 1073 are required, as shown in Figure 24. In this
case the encoderless 2H scheme achieves a FER almost two
orders of magnitude lower than that of the uncoded scheme.

179360
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FIGURE 27. FER vs. Pe for State Preparation aided Steane encoded states
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g
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FIGURE 28. FER vs. Pe for State Preparation aided Steane encoded states
atPg = 1074,
g

Where gate error probability is P, > 1073, FER < 107
can be achieved, provided that the qubit decoherence is below
(P, = 10~%), as seen in Figure 25.

When the gate error probability is as high as P, = 0.01,
the encoderless scheme achieves only a modest improvement
on the uncoded scheme, namely a 24% reduction in FER
at P, = 1074, as seen in Figure 26. However, Figure 27
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shows that when the gate error probability is P, = 1073,
then a qubit decoherence at P, = 5 x 10~* can be tolerated,
while still achieving FER < 107>, In this case the ‘Three
Hadamard Gate Encoderless scheme’ reduces the error rate
by three orders of magnitude compared to the scheme using
the traditional encoder. This is because the circuit in Figure |
is not fault-tolerant and therefore the gate error proba-
biltiy dominates the FER. For even further improvements a
smaller gate error is required, as seen in Figure 28, where
P, =107%

V. CONCLUSION

The encoderless scheme achieves better FER performance
since the complexity of the circuit it reduced. The arrange-
ment of fewer single qubit gates means that the circuit is
fault-tolerant leading to a FER crossover with the uncoded
scheme, where P, < Py. This can be applied to state prepa-
ration where the encoderless quantum codes outperform the
preparation of 1), |[+) and | =) states. However the simplicity
of the preparation of the |0) state means that this achieves
the best FER performance. These schemes offer significant
improvements on the traditional encoder which cannot offer
a FER better than the uncoded scheme.

The unknown state may be replaced by a known state for
and the encoderless scheme may offer a better scheme. This
is a promising avenue for future research. In addition the
stabilizer set may be reduced for certain cases, and additional
insight can be obtained by simulating error propagation in
these circuits.
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