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ABSTRACT This work applies a hierarchical transfer learning to implement deep neural network
(DNN)-based multilingual text-to-speech (TTS) for low-resource languages. DNN-based system typically
requires a large amount of training data. In recent years, while DNN-based TTS has made remarkable
results for high-resource languages, it still suffers from a data scarcity problem for low-resource languages.
In this article, we propose a multi-stage transfer learning strategy to train our TTS model for low-resource
languages. We make use of a high-resource language and a joint multilingual dataset of low-resource
languages. A pre-trained monolingual TTS on the high-resource language is fine-tuned on the low-resource
language using the same model architecture. Then, we apply partial network-based transfer learning from
the pre-trained monolingual TTS to a multilingual TTS and finally from the pre-trained multilingual TTS to
a multilingual with style transfer TTS. Our experiment on Indonesian, Javanese, and Sundanese languages
show adequate quality of synthesized speech. The evaluation of our multilingual TTS reaches a mean opinion
score (MOS) of 4.35 for Indonesian (ground truth = 4.36). Whereas for Javanese and Sundanese it reaches
a MOS of 4.20 (ground truth= 4.38) and 4.28 (ground truth= 4.20), respectively. For parallel style transfer
evaluation, our TTS model reaches an F0 frame error (FFE) of 9.08%, 10.13%, and 8.43% for Indonesian,
Javanese, and Sundanese, respectively. The results indicate that the proposed strategy can be effectively
applied to the low-resource languages target domain. With a small amount of training data, our models
are able to learn step by step from a smaller TTS network to larger networks, produce intelligible speech
approaching the real human voice, and successfully transfer speaking style from a reference audio.

INDEX TERMS Deep neural network, hierarchical transfer learning, low-resource, multi-speaker, multilin-
gual, style transfer, text-to-speech.

I. INTRODUCTION
Speech is the most natural verbal communication tool that
can be easily understood by normal humans [1]. The com-
puter’s ability to process voice signals is necessary in the
area of human computer interaction (HCI). It helps the com-
puter to communicate and interact with humans or to be
used as a communication device between normal humans
and visual/speech impaired people. Text-to-speech (TTS)
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learns how a computer can read text or symbols and pro-
nounce them by producing sound waves automatically [2].
The purpose of building TTS is to produce synthesized
speech that can be easily understood and is indistinguish-
able from sound produced by real humans [3]. In general,
modern TTS involves three main processes: text analysis,
acoustic modeling, and synthesizing speech waveforms [4].
Model-based TTS research has been dominated by statisti-
cal parametric speech synthesis (SPSS) [5]–[9] until recent
years in which deep learning has delivered extraordinary
achievements in various fields [10]–[12]. This has attracted
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many researchers to exploit DNN in all TTS process stages.
Beyond parametric speech synthesis (BPSS) that applies
DNN for both features and rules learning has become increas-
ingly researched [13]–[22]. Tacotron-2 [13], a state-of-the-art
DNN-based TTS that can be trained end-to-end using <text,
audio> data pairs, successfully produces human-like syn-
thesized speech. Besides producing high-quality synthetic
sounds, DNN-based TTS introduces many possibilities to
produce speech in various types of sounds, speech styles,
and emotional states. E2E-prosody [23], Tacotron-GST [24],
and Mellotron [25] proposed a DNN-based prosody model
that has an important role in transferring a reference speak-
ing style when generating synthesized speech. These works
showed satisfactory results.

Despite the remarkable performance, DNN-based TTS has
a very strong dependence on a large amount of training data
to understand latent data patterns. This data dependency is
one of the most serious problems for DNN-based model. The
scale of the DNN model and the size of required training
data correlate almost linearly [26]. Based on our prelimi-
nary study, a minimum 10 hours of data is required to train
Tacotron-2-based single-speaker monolingual TTS on the
Indonesian domain. Training data below 3 hours is unable to
produce intelligible speech. As formulti-speakermultilingual
TTS, 10 hours of data is still insufficient to train the model.
This study confirms that the bigger the scale of the TTS net-
work, the bigger the amount of training data needed. Rather
than building a bigger dataset that is expensive and needs
human efforts, it is necessary to find alternative strategies to
train the model on low-resource language domains.

There have been several efforts to train a DNN-based TTS
model using a small amount of annotated<text, audio> data
pairs. Semi-supervised training proposed by [27] to make
use of textual and acoustic knowledge from non-parallel
large text and speech corpora for training end-to-end TTS
with a small amount of parallel data. Other studies used
cycle consistency training using the automatic speech recog-
nition (ASR) model to train TTS [28], [29]. In the training
process, ASR is used to look for transcripts from sounds,
while TTS reconstructs transcripts into sounds. However,
these approaches still require a large amount of unlabelled
text and unlabelled audio corpora that are limitedly avail-
able for low-resource domain. Speech chain machine for
cross-lingual is proposed by [30] that applies cycle consis-
tency training for cross-lingual ASR-TTS. Work [31] pro-
posed an approach to discover cross-lingual symbol mapping
from abundant source data.

Transfer learning is an interesting option to overcome the
lack of data in low-resource language by allowing what has
been learned in a source domain be exploited to improve
generalization in a target domain. Referring to the classifi-
cation of transfer learning approaches in traditional machine
learning by [32], [33], there are four transfer categories:
instance transfer, feature-representation transfer, parame-
ter transfer, and relational-knowledge transfer. Especially
for deep learning, a study by [26] classifies deep transfer

learning (DTL) into different four categories: instances-
based DTL, mapping-based DTL, network-based DTL, and
adversarial-based DTL. Some DNN-based systems have suc-
cessfully applied deep transfer learning, including TTS [31],
image classification [34], [35], machine translation [36], [37],
automatic speech recognition [38]–[40], language identifica-
tion [41], and sentiment classification [42].

We propose hierarchical transfer learning, a network-based
DTL, to train the TTS model on low-resource (target) lan-
guages by utilizing a high-resource (source) language. This
strategy is a multi-stage learning inspired by the human learn-
ing process to accumulate knowledge from previous learning,
step by step from a simple task to more complex ones. Fur-
thermore, we exploit the benefit of using a joint multilingual
dataset of low-resource languages to maximize the latent
variable learning from more data of other languages. For this
reason, we develop DNN-based multilingual multi-speaker
TTS with and without style transferring by extending the
Tacotron-2 architecture with additional networks for multi-
speaker, multilingual, and style transfer. Adding a multi-
lingual component has two benefits. First, TTS model can
learn from more data of other languages. More data can
generalize the network parameters better. Second, it allows
a native speaker of a language to speak fluently in other lan-
guages. We train TTSmodels using the proposed hierarchical
transfer learning in several stages. For each transfer stage,
it has a background motive to transfer particular knowledge
from previous learning: parameter generalization including
alignment map between text input and spectrogram output
from a high-resource language, pronunciation learning from
a phonologically close language, and multilingual multi-
speaker learning from a joint multilingual data. After these
learned capabilities are transferred, the TTS model at the last
stage learns to imitate the speaking style from a reference
audio.

Our experiment uses an English dataset as the source
domain and a joint multilingual dataset of Indonesian,
Javanese, and Sundanese as the target domain. These tar-
get languages are phonologically close. Using international
phonetic alphabet (IPA), Indonesian has 32 phonemes, while
the other languages have all Indonesian phonemes with addi-
tional three phonemes for Javanese and one phoneme for Sun-
danese. The models are able to generate synthesized speech
that is close to a real human voice by training them using
less than 1 hour of monolingual dataset and 11 hours of joint
multilingual dataset (Javanese and Sundanese are less than
three hours each). Our study reports that these amounts are
inadequate to train the TTS models from scratch. In com-
parison, single-speaker monolingual Tacotron-2 uses more
than 24 hours, multi-speaker monolingual Mellotron uses
44 hours and 41.7 hours, and monolingual E2E-Prosody
uses 147 hours and 296 hours for single-speaker and multi-
speaker, respectively. TTS evaluation for Indonesian and
Sundanese reaches a smaller MOS difference from the real
human speech than the baseline Tacotron-2 on English
and better mel-cepstral distortion (MCD) than the baseline
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E2E-Prosody on English. As for transfer style, our model on
female speakers provides better FFE than Mellotron.

In summary, our main contributions are as follows:

1. We present Tacotron-2-based TTS that supports multi-
speaker, multilingual, and style transfer by adding new
network components. Multilingual component enables
TTS model to be trained on a joint multilingual dataset.
The joint dataset can help TTS model improve the gener-
alization learning of a low-resource language using more
data from other languages with phonetic similarity and
allow a speaker of one language to speak fluently in other
languages with/without style transfer.

2. We propose a hierarchical transfer learning scheme to
train TTS for low-resource languages in several stages.
Firstly, it utilizes pre-trained model on a high-resource
single-speaker monolingual source domain and fine-tune
on a single-speaker monolingual target domain. Secondly,
we use a partial network-based DTL from the pre-trained
single-speaker monolingual TTS to build a multi-speaker
multilingual TTS that is fine-tuned using a joint multilin-
gual dataset. Finally, similar partial network-based DTL is
used to build a multi-speaker multilingual with style trans-
fer TTS from the pre-trained multi-speaker multilingual
TTS model.

The rest of the paper is organized as follows: Section II
presents previous related works. Section III introduces our
DNN-based TTS architecture and proposed hierarchical
transfer learning. Section IV provides implementation details.
Section V presents the experimental results and Section VI
concludes the study.

II. RELATED WORKS
A. END-TO-END DNN-BASED TTS
A recent promising beyond parametric speech synthe-
sis (BPSS) is the end-to-end TTS system that combines the
main stages of the TTS process into a DNN framework
that can be trained directly using <text, audio> data pairs.
There are several advantages of such an integrated end-
to-end TTS system [4]: It does not require phoneme level
alignment and reduces the need for exhausting engineering
features; It is easier for conditioning on various attributes,
such as speakers, languages, or high-level features such as
sentiment; It is easier to adapt to new data; It tends to be
stronger than a multi-stage model where the errors of each
component can accumulate. Tacotron-2 [13], a simplifica-
tion of Tacotron [15], is a fully end-to-end DNN-based TTS
system that can be trained directly using <text, audio>
data pairs and directly processes raw orthographic text to
produce spectograms. Tacotron-2 uses WaveNet [16] as a
vocoder conditioned on the mel-spectogram instead of using
the Griffin-Lim algorithm as in Tacotron.

To convey human-like speech, the TTS system needs
to learn how to make a prosody model, such as par-
alinguistic information (intention, attitude, and emotion),
pitch, rhythm, intonation, stress, and style. Tacotron [15]

and Tacotron-2 [13] do not model prosody explicitly. E2E
Prosody [23] added a reference encoder network to Tacotron
architecture as a prosodic modeling derived from a reference
audio. Tacotron-GST [24] proposed modeling speech style
using global style token (GST) by adding style token layer
that consumes the reference encoder outputs [23] using a
multi-head attention scheme [43]. Recently, Mellotron [25]
combined GST, pitch, and rhythm for style transferring
and successfully reduced F0 frame error (FFE) significantly
between synthesized audio and reference audio.

Different from these end-to-end TTS models, we add mul-
tilingual component to exploit the benefits of using a joint
multilingual dataset. We also extend Tacotron-2 to support
style transfer using GST [24] by conditioning the decoder
with pitch and rhythm obtained from a reference audio signal
as applied in Mellotron. GST can express various expressive
styles without requiring explicit prosody labels. The GST
network is jointly trained with the whole model that is only
driven by the reconstruction loss of the Tacotron-2 decoder.
However, unlike Mellotron that uses phoneme-level in the
text processing, our approach uses character level. Therefore,
it does not need to make a phonetic dictionary that requires
human annotation effort. As for the vocoder, we employs
WaveGlow [44] instead of WaveNet used by Tacotron-2.
Unlike WaveNet that produces very natural speech wave-
forms but is very slow due to the autoregressive generation
process, WaveGlow is a non-autoregressive vocoder that pro-
vides fast, efficient and high-quality audio synthesis without
auto-regression.

B. LOW-RESOURCE PROBLEM
Deep learning has a very strong dependence on a large
amount of training data. Previous studies related to data
efficiency for training the DNN-based TTS model [27]–[29]
are less suitable for low-resource language. Even though
these approaches do not require a large amount of parallel
data, they still need a large amount of non-parallel text and
speech corpora. ASR-TTS proposed by [30] need additional
ASR to assist TTS learning. Mapping-based DTL is explored
in [31] by adding a phonetic transformation network (PTN)
model to learn amapping between source and target linguistic
symbols. An ASR system is used to train PTN separately.
However, this approach can only be applied to the same
TTS network. It does not have the flexibility to transfer the
learning on a more complex network.

Different from the solutions proposed in [27]–[29], our
proposed strategy does not require a large amount of
non-parallel text and audio corpora. Our strategy is simpler
than [30] as it does not need additional system such as
ASR. Similar to [31], we apply DTL approach. However,
our DTL is network-based approach that is more flexible
than mapping-based DTL applied by [31] in which with
multi stages of transfer learning the previous learned DNN
parameters can be passed on to a larger network. The hier-
archical transfer learning scheme proposed in this article is
an extended study of our previous work [45]. This prior
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FIGURE 1. TTS Architecture. The prediction network of T2-mlms contains T2, whereas T2-mlms-gst prediction network
contains T2-mlms such that T2 ⊂ T2-mlms ⊂ T2-mlms-gst. All models use WaveGlow as a vocoder.

work used pre-trained TTS model on a source domain and
fine-tune it on a target domain using the same monolin-
gual single-speaker TTS model. Our new proposed transfer
scheme can be applied to both the same TTS model trained
on a monolingual target domain and different, more complex
models trained on a joint multilingual target domain. The new
scheme exploits the benefit of generalization learning from
other languages with phonetic similarity, allows a speaker of
a language to speak other languages, and transfers speaking
style from one speaker to another speaker.

III. METHODS
This section explains the proposed TTS architecture and hier-
archical transfer learning training strategy.

A. MODEL ARCHITECTURES
TTS architecture in our work consists of three modules:
Encoder module that converts inputs into feature representa-
tions; Decoder module that changes the representation of fea-
tures into the acoustic parameters mel-spectogram; Vocoder
module that produces sound signals from mel-spectogram.

The encoder-decoder network can also be called spectogram
prediction network that predicts spectrogram output from text
input.

The entire proposed multilingual multi-speaker TTS mod-
el, illustrated in Figure 1, is a sequence-to-sequence (seq-
to-seq) Tacotron-2 network [13] with some additions: style
embedding as in [24], pitch contour and attention map as
in [25], language embedding, and speaker embedding. These
additional networks are for handling multilingual, multi-
speaker, and transfer of speaking style, pitch, and rhythm
from a reference audio.

There are three TTS models used in our study: T2,
a Tacotron-2-based encoder decoder architecture; T2-mlms,
an extension of T2 by adding language embedding and
speaker embedding; T2-mlms-gst, an extension of T2-mlms
with the addition of GST encoder, pitch, and rhythm compo-
nents for prosody transferring.

1) TEXT ENCODER
Text encoder generates a TX_dX -dimensional representation
of the grapheme sequence. TX is the length of the encoded
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text (usually the same as the transcript length) and dX
is the dimension of the encoded text. We adopt the text
encoder networks used in Tacotron-2. It consists of learnable
dX -dimensional character embedding, followed by stacked
convolutional layers with filter that spans 5 characters to
model long-term context (N -grams) of the input sequence.
After batch normalization and ReLU activation, the output of
the convolutional layer is passed into a single bi-LSTM with
dX units.

2) MULTILINGUAL MULTI-SPEAKER
To model multilingual and multi-speaker, we use learn-
able dL-dimensional language embedding network and
dS -dimensional speaker embedding network that are jointly
trained with the TTS task without the need for changes in
loss metrics. The training process updates the parameters so
that similar languages/speakers in relation to synthesis task
have close distance in the vector space. For both multilingual
and multi-speaker model, we use a channel-wise embedding
concatenated with the encoder output.

3) GLOBAL STYLE TOKEN
To model acoustic expressiveness we apply a style embed-
ding using a GST encoder to capture speaking style from
a reference audio as in [24]. The GST encoder calculates
a dG-dimensional style embedding that corresponds to the
mel-spectogram of a reference audio. It consists of reference
encoder network as in [23] followed by a style token layer
that are jointly trained with the rest of the model, driven by
the reconstruction loss from TTS decoder.

4) PITCH CONTOUR
GST only offers rough control over expressive speech char-
acteristics. To carry out finer and detailed control, we add
networks to condition melodic information such as pitch
and rhythm. In addition to GST network, we adopt scheme
in [25] to explicitly model expressive speech variables, such
as fundamental frequency contour (F0) or pitch, and voicing
decision (voiced/unvoiced), and rhythm variables. The pitch
contour is extracted using the YIN algorithm [46] with a
harmony threshold between 0.1 and 0.25 from the reference
audio. The pitch goes to a convolutional layer followed by
ReLU to get dP-dimensional pitch representation.

5) RHYTHM
Rhythm, also called alignment map, is learnt from text and
spectrogram as described in [13] by using location-sensitive
attention [47], which is an extension of additive atten-
tion [48]. Alignment map is a TM_TX -dimensional matrix
that contains alignment (or attention weight) of an input
text X with the length of TX characters and reference
mel-spectogramM with the length of TM frames. By learning
the alignment map during training, we can control the rhythm
during inference. Alignment map is extracted using a forced-
aligner from <reference audio, transcription> pair data,

as in [25]. TTS can produce the same rhythm as the reference
audio using the extracted alignment map.

6) WAVEGLOW
WaveGlow is a non-autoregressive vocoder that is able to
convert mel-spectrogram into waveforms faster than real
time [44]. WaveGlow combines flow-based generative model
Glow [49] and WaveNet [16] to achieve the generation of
non-autoregressive waveforms, making it possible to speed
up the training process on a large scale while maintaining
the naturalness of synthesized speech. WaveGlow vocoder
consists of a single network that is trained using a single cost
function to maximize the likelihood of training data andmake
training procedures simpler and more stable.

B. PREDICTION NETWORK FORMULATION
The following section describes the spectrogram prediction
network formulation for T2, T2-mlms, and T2-mlms-gst
in more detail. The spectogram prediction network is the
encoder and decoder part of the architecture illustrated
in Figure 1. It is a seq-to-seq model that converts an input
text sequence X = (x1, . . . , xTx) into an output spectrogram
sequence Y = (y1, . . . , yTY ). Each yt is predicted based on
all previous outputs y1, . . . , yt−1. The prediction is computed
using the attention-based encoder decoder scheme.

1) MODEL T2
The proposed T2 model adopts the spectrogram prediction
network used by Tacotron-2 [13]. In T2 model, the encoder
processes input text sequence X = (x1, . . . , xTx), where
TX is the number of characters in the text that has been
normalized, and then converts them into TX_dX -dimensional
hidden representations H = (h1, . . . ,hTx) in the following
way:

H = (h1, . . . ,hTx) = encoderθe (X) , (1)

where θe is the encoder model parameters. The hidden
representations H = (h1, . . . ,hTx) are processed by the
decoder network to produce predicted mel-spectogram Y =
(y1, . . . , yTY ) fromwhich the vocoder generates speechwave-
forms. To produce output yt , the decoder calculates a new
decoder hidden state st based on the prior state st−1, prior
output yt−1, and attention context vector ct . The decoder state
st is formulated as follows:

st = decoderθd
(
st−1, yt−1, ct

)
, (2)

where θd is the decoder model parameters, and ct is the
context vector and is computed using attention scheme:

ct =
∑TX

i
αt,ihi, (3)

where αt,i is the attention weight and is calculated as follows:

αt,i = softmax
(
et,i
)
, (4)

where et,i is the attention score or energy that is calculated
using location-sensitive attention as follows:

et,i = wT tanh
(
Wst−1 + Vhi + Uft,i + b

)
, (5)
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ft = F ∗ αt−1, (6)

where st−1 is the decoder hidden state from the prior time
step, hi is the ith encoder hidden state, ft,i is the location
feature (∗ is a 1-dimensional convolution operator). U, V,W,
and F are trainable weight matrices, w is a trainable weight
vector, and b is a trainable bias.

Finally, output mel-spectogram Y = (y1, . . . , yTY ) and
stop token Z = (z1, . . . , zTY ) are produced. For each time
step t , yt and zt are calculated using the following equation:

yt = fFC (st) , (7)

zt = fST (st) , (8)

where fFC is a fully connected network that processes the
decoder state st by a linear projection to produce the predicted
output and fST is a linear projection followed by sigmoid
to predict when the production is stopped. A stacked con-
volutional post-net consumes Y = (y1, . . . , yTY ) to obtain
Y ′ = (y′t , . . . , y

′
TY ) by adding a residual prediction to improve

the overall reconstruction as follows:

Y ′ = Y + postnetθp (Y ) . (9)

2) MODEL T2-MLMS
T2-mlms model is an extension of T2 by adding dL-dimen-
sional language embedding l and dS -dimensional speaker
embedding q. The embedding l and q are concatenated with
the TX_dX -dimensional text encoder hidden representation
outputH = (h1, . . . ,hTx) before being consumed by decoder
network, yielding H ′ = (h′1, . . . ,h

′
Tx) with TX_(dX + dL +

dS )-dimension, where for each h′i is formulated as follows:

h′i = hi ⊕ l⊕ q, (10)

where⊕ is a concatenation operator, l is the language embed-
ding, and q is the speaker embedding. With this additional
information, Equation (3) is changed into:

ct =
∑TX

i
αt,ih′i, (11)

where h′i is the concatenation of text, language, and speaker
embedding. Likewise, Equation (5) is also changed into:

et,i = wT tanh
(
Wst−1 + Vh′i + Uft,i + b

)
. (12)

3) MODEL T2-MLMS-GST
T2-mlms-gst model is an extension of T2-mlms by adding
dG-dimensional style embedding g, dP-dimensional pitch
embedding, and TM_TX -dimensional rhythm R. Pitch P is
extracted from the reference audioM = (m1, . . . ,mTM ) with
a length of TM and R is the TM_TX -dimensional alignment
map between the reference audio M and the text. During
the training process, the ground truth audio is used as the
reference audioM and R is set with ‘‘none’’. Whereas during
the model inference, R is extracted using T2-mlms-gst by
performing teacher-forced forward pass from any desired
reference audio M . The predicted mel-spectogram’s length

TY is equal to the reference mel-spectogram’s length TM
because we apply force alignment.

In T2-mlms-gst model, the text hidden representationH =
(h1, . . . ,hTx) is concatenated with language embedding l,
speaker embedding q, and style embedding g to produce
H ′′ = (h′′1, . . . ,h

′′
Tx) with TX_(dX+dL+dS+dG)-dimension.

Each h′′i is computed as follows:

h′′i = hi ⊕ l⊕ q⊕ g, (13)

Style embedding g is generated by the GST network from the
reference audio and formulated as follows:

g = GSTθG (M) , (14)

where θG is the GST network parameters and M =

(m1, . . . ,mTM ) is the mel-spectogram of the reference audio.
With this addition, in T2-mlms-gst model, Equation (3) is
changed into:

ct =
∑TX

i
αt,ih′′i , (15)

where h′′i is the hidden representation of the text encoder
concatenated with language, speaker, and style embedding.
In here, the formulation between themodel training and infer-
ence slightly differs. During training, the attention weight αt,i
is calculated using Equation (4) by changing Equation (5)
into:

et,i = wT tanh
(
Wst−1 + Vh′′i + Uft,i + b

)
. (16)

Whereas during inference, the attention weight αt,i is
obtained from extracted alignment map R, as follows:

αt,i = rt,i, rt,i ∈ R. (17)

Meanwhile, the pitch information P = (p1, . . . , pTM ) is
extracted from the reference audio M using YIN algorithm
that is processed through the pre-net-F0 decoder. Pitch pt is
concatenated with the previous spectogram output yt−1 that
is processed through the pre-net decoder. This information is
used by the decoder to find the decoder hidden state st . It is
calculated with a new equation, replacing Equation (2):

st = decoderθd
(
st−1, yt−1, pt , ct

)
. (18)

C. HIERARCHICAL TRANSFER LEARNING
Our models are trained using teacher-forcing procedure, the
standard maximum-likelihood training, by feeding in the
ground truth spectrogram frame instead of the predicted one
to the decoder network. Thus, yt−1 in Equation (2) and (18) is
replaced by ground truth ygtt−1 during the training process. The
model is optimized by minimizing the summedmean squared
error (MSE) for the following objective function:

FLoss =
(
Y gt − Y

)2
+
(
Y gt − Y ′

)2
+
(
Zgt − Z

)2
, (19)

where Y gt is the ground truth/target mel-spectogram, Y is
the predicted mel-spectogram, Y ′ is the predicted mel-
spectogram after post-net, Zgt is the ground truth stop token
sequence, and Z is the predicted stop token sequence.
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FIGURE 2. Hierarchical Transfer Learning for TTS. The first layer uses
pre-trained T2 model on the English dataset, referred as T2-LJS. The
parameters of T2-LJS are transferred to the model at the second layer and
then it is fine-tuned on the Indonesian dataset resulting T2-id. The similar
is done on the Javanese/Sundanese dataset to produce single-speaker
monolingual T2-jv/T2-su. In the third layer, T2-id model parameters are
transferred to initialize T2-mlms that is then fine-tuned on the joint
multilingual dataset, ID-JV-SU. In the fourth layer, model T2-mlms-gst is
partially initialized using pre-trained T2-mlms and fine-tuned using the
same multilingual dataset.

There are four layers of training stages in our pro-
posed hierarchical transfer learning architecture as illustrated
in Figure 2. In the first layer, the monolingual single-speaker
T2 model is trained on a high-resource language source
domain. We use English source domain. In the second layer,
the pre-trained monolingual single-speaker T2 model from
the first layer is fine-tuned on a low-resource language target
domain. We train our T2 model for Indonesian, Javanese,
and Sundanese separately. In the third layer, the pre-trained
model obtained on the second layer is transferred to initialize
the multilingual multi-speaker T2-mlms model. Then, it is
fine-tuned on a multilingual multi-speaker target domain.
We use joint multilingual dataset of Indonesian, Javanese,
and Sundanese languages. In the fourth layer, the pre-trained
T2-mlms is transferred to partially initialize the multilingual
multi-speaker with style transfer T2-mlms-gst model. Then,
it is fine-tuned on the same joint dataset as target domain.
Each model optimization in the hierarchical transfer learning
scheme is shown in Algorithm 1 and Algorithm 2.

The network-based deep transfer learning to the same
model, such as T2 in the first and second layers,

Algorithm 1 Hierarchical Transfer Learning for Multi-TTS
Input: Three different <text,audio> datasets: D(X1,Y1),
D(X2,Y2), and D(X3,Y3), where D(X2,Y2) ⊂ D(X3,Y3).
D(X1,Y1) is a high-resource (source) language for single-
speaker. D(X2,Y2) is a low-resource target language for
single-speaker. D(X3,Y3) is a jointmultilingualmulti-speaker
dataset of low-resource target languages.
1. Compute argmax P(Y1|X1; θ1) where θ1 is the T2 model

parameters. Compute argmaxP(Y2|X2;θ2) where θ2 is the
T2 model parameters fine-tuned on θ1.

2. Initialize T2-mlms parameters θmlms_init using standard
initialization and transfer the weights from the corre-
sponding T2 parameters θ2 using Algorithm 2.

3. Compute argmax P(Y3|X3,Q3,L3; θmlms) where Q3 and
L3 are the speaker and language representations in the
dataset D(X3,Y3), whereas θmlms are the T2-mlms model
parameters fine-tuned on θmlms_init .

4. Initialize T2-mlms-gst parameters θmlms_gst_init and
transfer the weights from the corresponding T2-mlms
parameters θmlms using Algorithm 2.

5. Compute argmax P(Y3|X3,Q3,L3,G3,P3; θmlms_gst )
whereG3 and P3 are the speaking style and the pitch rep-
resentations extracted from the reference audio (ground
truth audio Y3), whereas θmlms_gst is the model parame-
ters fine-tuned on θmlms_gst_init .

Output: θ2, θmlms, and θmlms_gst

Algorithm 2 Transfer Parameter Weights for Multi-Models
Input: Model parameters target θtarget and model parameters
source θsource, where structure(θsource) ⊂ structure(θtarget ).
1. For each θ sw ⊂ θsource that corresponds to θ tw ⊂ θtarget ,

where θ sw and θ tw are trainable weight vectors, matrices,
or 3D-tensors of a layer in our DNN models:

2. If dimension(θ sw) = dimension(θ tw):
3. θ tw = θ

s
w.

4. Else: #dimension(θ sw) < dimension(θ tw)
5. #update θ tw using element-wise update
6. If θ sw is a vector, for each wsa ∈ θ

s
w:

7. wta = wsa,w
t
a ∈ θ

t
w

8. Else-if θ sw is a matrix, for each wsa,b ∈ θ
s
w:

9. wta,b = wsa,b,w
t
a,b ∈ θ

t
w

10. Else-if θ sw is a 3D-tensor, for each wsa,b,c ∈ θ
s
w:

11. wta,b,c = wsa,b,c,w
t
a,b,c ∈ θ

t
w

Output: model parameter target θtarget .

is quite simple. All network parameters of the pre-trained
model on the source domain are transferred as initialized
model in the next layer. Then, it is further fine-tuned on the
target domain. If the transfer learning is from a simpler model
to a more complex model, such as T2-mlms in the third and
T2-mlms-gst in the fourth layers, an additional process is
required to transfer the learned weights to a different model
structure (see the second and fourth steps of Algorithm 1).
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A different layer structure has a different trainable weight
shape. In our models, the same layers with different structures
are found in the attention and decoder. Hence, these layers
have different dimension of weight matrices between prior
model and success model. After the success model is created
using the standard initialization, we transfer the prior model
parameters to the corresponding success model parameters
using Algorithm 2. The weight matrix (or vector or tensor)
transfer learning, though only partially, is more effective
than training the whole weight matrix from scratch. The
partial weight matrix transfer allows us to fine-tune the higher
dimension weight matrix of the success model by making use
of the learned lower dimension weight matrix of the prior
model.

IV. EXPERIMENTS
A. DATASET
Our work utilizes publicly available datasets: LJSpeech [50],
an English speech corpus with a total duration of about
24 hours; TITML-IDN [51], an Indonesian (ID) speech cor-
puswith an average of 43minutes for each speaker; OpenSLR
jv-ID [52], a Javanese (JV) speech corpus with an average
of 10 minutes for each speaker; OpenSLR su-ID [52], a Sun-
danese (SU) speech corpus with an average of 7 minutes for
each speaker.

TABLE 1. Single-speaker Monolingual Dataset in Indonesian, Javanese,
and Sundanese.

TABLE 2. Multi-speaker Multilingual Dataset in Indonesian, Javanese,
and Sundanese.

T2 model for Indonesian, Javanese, and Sundanese uses
a subset of corpus consisting of one female speaker for
each language as shown in Table 1. Whereas for T2-mlms
and T2mlms-gst, we use a joint multi-speaker multilin-
gual dataset, referred as 10ID-10JV-10SU dataset as shown
in Table 2. Data pre-processing was carried out to equalize
the sample rate of audio to 16000 Hz and clean up text
transcriptions.

B. MODEL IMPLEMENTATION
We implement our TTSmodel using PyTorch library [53]. For
T2 model, we modify the open source code from NVIDIA

Tacotron-2 [54] to support text processing for Indonesian,
Javanese and Sundanese languages. For T2-mlms model,
we add embedding networks to handle speaker and language
identity. For T2-mlms-gst model, we add a reference encoder
network for style embedding [23], GST network as in [24],
and pitch and rhythm as in [25].

For each model, we use the same feature representations,
both text and acoustic features. For text features, grapheme
level is used to produce encoded text with a dimension of 512.
We use 80 channels mel-spectrogram for the acoustic feature.
We use a language embedding dimension of 8, a speaker
embedding dimension of 128, a style embedding dimension
of 256, and a 1-dimensional pitch embedding. More details
about the spectral analysis and the model hyper-parameters
can be seen in Table 3.

TABLE 3. The model Hyper-parameters of t2, t2-mlms, and t2-mlms-gst.

C. TRAINING SETUP
Each model is trained using two schemes: training from
scratch and transfer learning. Each training scenario is car-
ried out using a batch size of 32. We use 300K training
steps except for T2 using transfer learning that uses 10K
steps. The spectrogram prediction network training uses the
standard maximum-likelihood (MLE) by feeding in the cor-
rect output instead of the prediction on the decoder side,
referred as teacher-forcing. We use ADAM optimization [55]
with default parameters, learning rates starting at 1e-3 and
weight decay 1e-6.Models are trained using a single NVIDIA
DGX-1 GPU.

Table 4 show the model names referred in this article
along with the training setup information: the architecture,
language, dataset, and pre-trainedmodel for transfer learning.
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TABLE 4. Model names, architectures, languages, datasets, and
pre-trained models.

For T2 on Javanese and Sundanese, we use pre-trained T2 on
IDF-01 instead of on LJS as explained in our prior work [45].

As for the vocoder, we use the pre-trained WaveGlow
on LJS dataset [56] and fine-tune on IDF-01 dataset for
single-speaker monolingual T2 model. Our experiments sug-
gest that WaveGlow trained on the English LJS gives poor
result when applied to Indonesian speech, so we need to
fine-tune on Indonesian domain. Our experiments also con-
clude that WaveGlow trained on a female speaker can only
produces good synthesize speech on the same gender speak-
ers, but poor result on male speakers. Thus, for multi-speaker
multilingual TTS, we further fine-tune WaveGlow on
10ID-10JV-10SU dataset.

D. MODEL EVALUATION
To evaluate our models, we use subjective assessments
involving 9-20 respondents and objective assessments by
measuring acoustic features. Two subjective evaluations are
employed to measure the intelligibility of speech using
semantically unpredictable sentences (SUS) [57] and to mea-
sure the quality of speech synthesis using a mean opin-
ion score (MOS) [58] with scale of 1-5 with an increase
of 1. Whereas the objective evaluations use four metrics as
in [23]: mel-cepstral distortion (MCDK) [59], gross pitch
error (GPE) [60], voicing decision error (VDE) [60], and
F0 frame error (FFE) [61].

Before calculating the objective metrics, we apply padding
according to the type of domain to equalize the length of
signal frames because not all models produce the same sig-
nal length as of the reference audio. For MCDK evaluation,
we use 13 coefficients of mel-frequency cepstral coefficient
(MFCC), producing the MCD13 metric. We extract pitch and
voicing decisions using YIN algorithm [46] to calculate GPE,
VDE, and FFE.

V. RESULTS AND ANALYSIS
This section presents the comparison of alignment learn-
ing using two training schemes: training from scratch and
hierarchical transfer learning schemes for all models. It also

presents the evaluation of the speech synthesis produced by
the TTS models trained using the transfer learning scheme.

A. ALIGNMENT LEARNING
TTS is a seq-to-seq problem, when given text sequence it
produces sound wave sequence. As a typical of seq-to-seq
problems, it is important to learn the alignment between
input sequence and output sequence. The TTS model that
fails to do a reasonable alignment mapping is unable to
synthesize intelligible speech that can be understood. We use
location-sensitive attention scheme [47] to learn the mapping
between input text and output mel-spectogram. This mapping
is referred as an alignment map or attention map. TTSmodels
that are able to produce intelligible speech can be indicated
from the alignment that forms a diagonal map. In accor-
dance with the nature of the TTS seq-to-seq problem using
attention-based encoder decoder framework, the diagonal
map shows that the alignment learning between the encoder
steps and the decoder steps has been successful.

Our preliminary study suggests that training T2 model
from scratch needs at least 10 hours of data to produce good
quality of synthesized speech. Data under 3 hours was unable
to produce clear synthesized speech and it is impossible for
data below 1 hour to produce intelligible speech. However,
for bigger scale models such as T2-mlms and T2-mlms-
gst, 10 hours of training data is still insufficient. The stan-
dard training scheme fails to produce an accurate alignment
map, hence the models are unable to produce intelligible
speech. Different results are reported when we apply the
proposed hierarchical transfer learning scheme. This scheme
is able to learn fast and produce a reasonable alignment map
using training data below 1 hour for T2 model (39, 16, and
18 minutes for Indonesian, Javanese, and Sundanese, respec-
tively) and 11 hours data for T2-mlms and T2-mlms-gst.
The learning process is shown in Figure 3 and the alignment
maps are shown in Figure 4, Figure 5, and Figure 6 for T2,
T2-mlms, and T2-mlms-gst, respectively.

These figures show the effectiveness of the transfer learn-
ing strategy applied on single-speaker monolingual TTS
model T2 and multi-speaker multilingual with/without style
transfer TTS models, T2-mlms-gst and T2-mlms. Using this
learning scheme, all models can quickly learn the alignment.
This is not the case for the standard training scheme, in which
up to 300K iterations the model is still unable to produce
reasonable map. Performing more iteration up to 500K does
not enable T2-mlms-gst model to learn the proper mapping
between text input and mel-spectogram output.

B. INTELLIGIBILITY AND NATURALNESS
The intelligibility and naturalness of the speech synthesized
by TTSmodels are evaluated using SUS andMOS of a female
speaker. The results are shown in Table 5.

Table 5 contains the results of MOS evaluations of
T2 for Indonesian (ID), Javanese (JV), and Sundanese (SU),
T2-mlms-tl, and T2-mlms-gst-tl. For SUS evaluations,
we reports T2 and T2-mlms models only. For comparison,

179806 VOLUME 8, 2020



K. Azizah et al.: Hierarchical Transfer Learning for Multilingual, Multi-Speaker, and Style Transfer DNN-Based TTS

FIGURE 3. The loss of Transfer Learning and Standard Training on T2,
T2-mlms, and T2-mlms-gst. The loss charts are plotted starting at the
10-th iteration up to the 300K iteration, except for T2-id-tl that is up to
10K iterations. Learning process for all models converge starting at about
10K iterations. All graphs show that transfer learning converges faster
and has better loss than standard training.

FIGURE 4. Alignment Map of Standard Training and Transfer Learning of
T2 model on IDF-01 dataset. Up to 300K iterations, the standard
training (top) is still unable to learn the alignment properly. Whereas by
using the transfer learning (bottom), the model can learn the alignment
at the very early iterations (1K iterations). The training using transfer
learning is done up to 10K iterations, because it is already convergent
and produces good synthesized speech.

the table also presents the MOS result of baseline Tacotron-2
[13] for English (ENG). For each language, the MOS of the

FIGURE 5. Alignment Map of Standard Learning and Transfer Learning of
T2-mlms on 10ID-10JV-10SU dataset. By using the standard training (top),
the model fails to learn the alignment with iterations up to 300K. While
by using the transfer learning (bottom) the model is able to learn the
alignment successfully.

FIGURE 6. Alignment Map of Standard Learning and Transfer Learning of
T2-mlms-gst on 10ID-10JV-10SU dataset. By using the standard training
scheme (top), the model fails to learn the alignment even with iterations
up to 500K. While by using the transfer learning (bottom), it can produce
a reasonable diagonal map.

real human voice is presented as the ground truth and a ‘‘diff’’
which contains theMOS difference between ground truth and
synthesized speech produced by our models.

The MOS and SUS results demonstrate that only using
training data less than 1 hour, our T2 model gives com-
parable MOS to the baseline Tacotron-2 trained on a large
numbers of English dataset (24.6 hours). Likewise the more
complex multi-speaker multilingual models, T2-mlms and
T2-mlms-gst, can be trained using 11 hours of the joint
multilingual dataset. Using the proposed learning scheme,
our multilingual model provide even better ‘‘diff’’ value than
of the English Tacotron-2 (‘‘diff’’ = 0.056), specifically on
Indonesian, and Sundanese with a ‘‘diff’’ of 0.017 and -0.08,
respectively. The SUS evaluations show that our models are
able to produce intelligible synthesized speech that can be
understood. The SUS evaluation on Indonesian has the best
performance with the word accuracy of 98.96%, whereas the
SUS accuracy for Javanese and Sundanese are 98.52% and
97.53%, respectively.
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TABLE 5. MOS and SUS-Wacc evaluation results.

Overall, the SUS and MOS evaluations show that the
performances of the model trained on the joint multilingual
dataset are better than that of the model trained on the
monolingual dataset. Using the joint multilingual dataset can
significantly improve the naturalness and the intelligibility of
the synthesized speech on each language. The model can gen-
eralize a language better by benefitting from other languages
included in the joint multilingual dataset. Interestingly, Sun-
danese that has the least amount of data in the joint dataset
(1.7 hours) has the most MOS improvement, an increment
of 0.36 from T2-su-tl MOS to T2-mlms-gst-tl MOS on Sun-
danese, and gives better MOS than the ground truth. Whereas
Javanese with 2.3 hours data in the joint dataset provides a
MOS increment of 0.123 from T2-jv-tl MOS to T2-mlms-tl
MOS on Javanese. As for Indonesian that shares 7 hours data,
a MOS increment of 0.074 is obtained from T2-id-tl MOS to
T2-mlms-tl MOS on Indonesian. In addition to the obvious
benefit in using more data from other languages, we can
see that the closer the phonetic similarity, the more benefit
the language can gain. Sundanese that has only one addi-
tional phoneme of Indonesian’s phonemes (while Javanese
has three) obtains the most advantage from the phonetics
similarity of Indonesian that shares the highest amount of data
in the joint dataset, when it combines with style transferring.

C. PARALLEL STYLE TRANSFER
Parallel style transfer is the transfer of speaking style using
the same sentence between the synthesized speech signal and
reference signal. To evaluate the style transferring perfor-
mance, we useGPE,VDE, FFE, andMCDKmetrics proposed
by E2E-Prosody [23], each of which reflects the acoustic
prosody correlation. For MCDK evaluation we use MCD13
with k = 13 coefficients of MFCC.

Table 6 shows the GPE, VDE, FFE, and MCD evalua-
tion results of speech synthesized by our models that are
trained using transfer learning scheme: T2 for each language,
T2-mlms, and T2-mlms-gst. The table also presents the eval-
uation results of E2E-Prosody [23] and Mellotron [25] for
comparison. It also displays metrics per gender: F is for
female, M is for male, and F/M is for both. The metrics
are calculated by comparing the synthesized speech signal
and the reference signal by speaker mentioned in ‘‘speaker’’
and ‘‘ref’’ columns, respectively. The synthesized speech
are produced by the TTS model mentioned in ‘‘model’’
column.

1) PITCH TRACKING
Pitch tracking between synthesized speech and reference
audio can be measured using FFE. FFE metric is a com-
bination of two metrics: GPE that compares the pitch
magnitude between the synthesized speech signals and the
reference signal and VDE that compares the voicing decision
(voiced/unvoiced). For prosody transfers, the lower the FFE
the more successful style transfer is.

From Table 6 we can see that by applying style transfer,
T2-mlms-gst model provides a better FFEmeasure compared
to T2 and T2-mlms that do not apply it. The FFE results also
demonstrate the effectiveness of our proposed hierarchical
transfer learning to learn style transfer in T2-mlms-gst model.
Using far less amount of training data (11 hours of joint
multilingual dataset), our multilingual models give much
better performance than monolingual E2E-Prosody that uses
147 hours and 296 hours training data for single-speaker
and multi-speaker, respectively. In most cases, especially
on female speakers, our T2-mlms-gst model is also better
than Mellotron trained using 44 hours of LJS-Sally dataset
and 41.7 hours of LibriTTS dataset. Moreover, our model
is capable of transferring cross-lingual speakers that is not
supported by both E2E-prosody and Mellotron. Our model
allows speakers of one language to speak fluently in other
languages. However, we can see there is gender bias in FFE
results: FFE on male speakers are slightly worse than FFE on
female speakers.

Figure 7 shows the comparison of pitch tracking between
synthesized speech signal and reference signal for the same
sentence in each language. We can see that the model apply-
ing prosody transfer, T2-mlms-gst-tl, is able to imitate the
reference pitch contours well. T2-mlms-tl that does not apply
prosody transfer produces different contours.

2) MEL-SPECTOGRAM
MCD13 is a metric for measuring distortion between syn-
thesized signal and reference signal using 13 coefficients of
MFCC. Lower score ofMCD13 has better performance. From
Tables 6, the MCD13 scores of our models for Indonesian
and Sundanese are better than E2E-Prosody’s. Different from
FFE gender bias, the MCD13 scores differ among speak-
ers regardless their gender. MFCC is computed using dis-
crete cosine transform (DCT) operation on mel-spectogram.
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TABLE 6. GPE, VDE, FFE, and MCD for multi-speaker.

FIGURE 7. Pitch Contour Comparison between Reference and
Synthesized speech by T2-mlms-gst-tl (top) and T2-mlms-tl (bottom) for
Indonesian (left), Javanese (middle), and Sundanese (right). The
sentences used are ‘‘hanya dalam waktu kurang dari lima menit tamara
bleszinsky muncul kembali di panggung dengan busana berbeda’’ for
Indonesian (ID), ‘‘gedhung ingkang regine gangsal triliun niku kados
napa rupanipun’’ for Javanese (JV), and ‘‘dina bulan silih mulud taun dua
rebu lima belas seueur umat islam nu ngalakonan ibadah umroh’’ for
Sundanese (SU).

The mel-spectogram comparison between reference audio
and the synthesized audio of the same texts is illustrated
in Figure 8.

FIGURE 8. Mel-spectogram of the Reference Audio (top) and Synthesized
Speech by t2-mlms-gst (middle - vertical) and t2-mlms (bottom) for
Indonesian (left), Javanese (middle - horizontal), and Sundanese (right).
TX is the length of the embedding input text, TY is the length of the
predicted mel-spectogram by the models, and TM is the length of the
reference mel-spectogram. The sentences used are the same as in
Figure 7.

3) RHYTHM
Figure 9 shows the alignment map between text sentences
as used in Figure 8 and their corresponding speech signals
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FIGURE 9. Alignment Map of the Reference Audio (top) and Synthesized
Speech by t2-mlms-gst (middle - vertical) and t2-mlms (bottom) for
Indonesian (left), Javanese (middle - horizontal), and Sundanese (right).

in Indonesian, Javanese and Sundanese. The same texts,
represented as encoder steps, are mapped to the reference
signals (a), the predicted speech signals by T2-mlms-gst (b),
the predicted speech signals by T2-mlms (c). From this fig-
ure, we can also see that the synthesis by T2-mlms model
has a different number of decoder steps from the reference
signal’s, while using forced-alignment by feeding the rhythm
to T2-mlms-gst model can produce the same decoder steps as
the reference’s. The higher the number of decoder steps the
slower the rhythm, and vice versa, the fewer the decoder steps
the faster the rhythm of the speech.

VI. CONCLUSION
Our work develops Tacotron-2-based multi-speaker multi-
lingual TTS with/without style transfer by adding several
new components: speaker embedding, language embedding,
style embedding, pitch embedding, and rhythm. To train
the models, we propose hierarchical transfer learning,
a network-based transfer learning, that benefits from previous
learning on a high-resource (source) language. Pre-trained
model parameters are transferred to the same model that
is fine-tuned on a low-resource (target) language and to a
more complex model that is fine-tuned on a joint multilingual
dataset with phonetic similarity.

From the experiment results, we demonstrate that the hier-
archical transfer learning scheme is an effective choice to
be applied in low-resource target languages. The alignment
learning, that is crucial in attention-based encoder-decoder
TTS model, is successfully transferred from source to target

domain by fine-tuning the pre-trained source model on
a small amount of target data. Moreover, the model can
benefit from using a joint multilingual dataset for better
generalization. The TTS multilingual models are able to
generate intelligible human-like synthesized speech. In addi-
tion, our multi-speaker multilingual with style transfer TTS
is able to adequately transfer the speaking style of one
speaker to another speaker of the same language or different
ones.

Despite having high performance on a joint multilingual
dataset with phonetic similarity, it is challenging to study the
transfer learning strategy on a low-resource domain using
a multilingual dataset with high differences in linguistic
aspects such as phonetics, phonology, and grapheme symbol
diversity.
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