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ABSTRACT Anticancer peptide (ACP) is a class of anti-cancer peptide which can inhibit and kill
tumor cells. Identification of ACPs is of great significance for the development of new anti-cancer drugs.
However, most of computational methods make predictions based on machine learning using hand-crafted
features. In this article, we propose a new graph learning based computational model, named ACP-
GCN, to automatically and accurately predict ACPs based on graph convolution networks. In this model,
we for the first time take the ACP prediction as a graph classification task, where each peptide sample
is represented as a graph. The experimental results show that the proposed model outperforms most
of state-of-the-art methods, demonstrating that the proposed method can effectively distinguish ACPs
from non-ACPs. The excellent predictive ability will rapidly push forward their applications in cancer
therapy.

INDEX TERMS Anti-cancer peptides, graph convolution networks, machine learning, prediction methods.

I. INTRODUCTION
Cancer is one of the most deadly diseases in the world, killing
millions of people every year. Traditional treatment is to use
the conventional chemotherapy. However, its treatment effect
is not that good and usually has adverse effect on normal cells.
Therefore, there is an urgent need for more effective thera-
peutic treatment to overcome the shortcomings of traditional
chemotherapy. Anticancer peptides (ACPs), with a length
of 5 to 30 amino acids, have emerged as a new therapeutic
agent, opening a promising perspective for cancer treatment.
As compared with conventional chemotherapy, ACPs have
multiple attractive advantages, such as high tumor penetra-
tion, low cost, high specific, greater efficacy, and selectivity.
In recent years, peptide-based therapies are increasingly used
to treat various tumor types across different phases of clini-
cal trials. However, the number of experimentally validated
ACPs is very limited. How to identify potential ACPs in a
large number of proteins is a challenging task.
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Over the last decade, a series of computational efforts
have done for the identification of ACPs. Most of them are
motivated by the limit of biological experimental methods,
which are highly cost and time consuming for the predic-
tion of ACPs. Recent studies mainly focus on the compu-
tational methods like machine learning to identify ACPs.
For machine learning based methods, the regular way is to
extract features, and train a prediction model based on the
features to automatically classify the peptides as ACPs or
not [1]–[9]. Researchers have made some achievements in
the prediction of anticancer peptides using machine learn-
ing methods [10]. In the aspect of feature extraction, a lot
of feature extraction methods have been proposed, includ-
ing amino acid composition [11]–[13], dipeptide composi-
tion [14], [15], and binary profile of pattern. For example,
Chen et al. proposed a sequence-based predictor called iACP
by optimizing the g-gap dipeptide components. ACPred-FL
can automatically extract and learn sequence information by
using several different SVM models [16]–[23]. Moreover,
Tyagi et al. have designed and discovered a novel anticancer
peptide predictor in silico models called AntiCP. Recently,
Manavalan et al. proposed a machine learning-based model
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named MLACP to predict anticancer peptides. As introduced
above, most of current methods extract features based on
the peptide primary sequences. However, effective feature
extraction highly relies on the experience and knowledge of
researchers. On the other hand, most of existing hand-craft
features capture local information only, ignoring the global
information.

Deep learning has recently achieved a remarkable impact
on multiple bioinformatics fields, including biological
images [24], drug classification [25], protein fold recog-
nition [26], [27] and biomarker discovery [28], [29].
However, most of popular deep neural models, such as con-
volutional neural networks (CNNs) [30], only work on grid-
structured (Euclidean) data, and are not directly applicable
to graphs. As well known, the data in most of sequence
analysis and classification tasks are non-Euclidean data. For
this reason, peptide firstly extracts features from the peptide
graphs before applying a CNN. Recently, there has been
growing interest in extending deep learning techniques to
non-Euclidean data.

In this study, we proposed a novel predictor called
ACP-GCN to predict ACPs. In the proposed model, we use
one-hot encoding method and graph convolution net-
work (GCN) to predict. To be specific, see the following
sections. Firstly, the data sets are described in detail, includ-
ing training data set and independent test data set. Secondly,
the theoretical methods used in the research are introduced
in detail, that is, three main steps in ACP-GCN: data set
construction; feature embedding; GCN algorithm. Thirdly,
the performance evaluation, experimental process and results
of this project are described in detail. Finally, the research
results in this article are summarized, and the future work is
prospected.

II. METHODOLOGY
A. DATA SETS
In this study, we used the same date set collected in
Wei et al.’s study [31]. The data collecting procedure is as
follows. They collected 3212 ACPs with experimental valida-
tion as positive samples. The same number of anti-microbial
peptides (AMPs) that are not shown to have anticancer activ-
ity are used as negative samples. Afterwards, to avoid the
homology bias, they used the CD-HIT program to reduce
the similarity of the samples to 0.8 [32]. By doing so, 332
ACPs (positives) and 1023 non-ACPs (negatives) are remain-
ing in the dataset. They collected more other non-ACPs in
addition to the negative data set above, ultimately yield-
ing 332 ACPs samples and 2878 non-ACPs samples in the
data set. Of this dataset, they used 250 ACPs positive training
samples, and the same number of non-ACPs as negative
training samples, to construct the training dataset; the remain-
ing 82 ACPs positive samples and 2628 non-ACPs negative
samples were yielded as independent dataset. In our study,
we used the same training dataset for model training and
evaluation.

FIGURE 1. Model overview.

B. THE PREDICTIVE MODEL ARCHITECTURE
In this section, we introduce the overall framework of our
model. All steps of the model are shown in Figure 1: Step 1,
prepare the protein data set and get the amino acid sequence.
Step 2, extracted the features of proteins which was repre-
sented as amino acid sequence by one-hot encoding method.
Step 3, calculate the distance between the samples, and gets
the adjacency matrix. Step 4, construct the protein and amino
acid graph. Step 5, use GCN model to train datasets. Then
minimize the loss and get the classification results and various
evaluation indexes. And the cross entropy loss function was
used to optimize the classification result.

C. ONE-HOT ENCODING
One-hot encoding is an effective encoding method expressed
by binary vectors [33]–[36]. Only one bit is valid at any
time, other positions are set to 0. For example, if we want
to use one-hot to represent cat, dog and bird, we can use
100 to represent cat, 010 to represent dog, 001 to represent
bird. The primary structural information of protein is mainly
composed of 20 kinds of common amino acids. 20 kinds of
amino acids are represented by a single letter, separately. Set
AA is a table of all 20 letter sets involved in our experiment
dataset. AA = [A,C,E,F,G,H,I.K,L,M,N,P,Q,R,S,T,V,W,Y].
It is a basic protein encoding method. We encoded the
single letter A as 10000000000000000000, and letter C
as 01000000000000000000. Consequently, an amino acid
sequence CA can be expressed as 0100000000000000000010
000000000000000000 by one-hot encoding.

D. GRAPH CONVOLUTION NETWORKS
Graph convolution networks (GCN), Semi-Supervised Clas-
sification with Graph Convolution Networks, is a variant of
traditional convolution networks, which can be directly used
to process graph structure data. The theoretical formula of
single layer GCN is as follows:

H(l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H(l)W(l)) (1)

where H(l)
∈ RN×D, N is the number of nodes in the graph,

each node is represented by a D-dimension feature vector.
The input of layer l is H(l), thus the initial input layer is
H(0)
= X. A is an adjacency matrix. A is an adjacency matrix

with self-connections, Ã = A+ IN . D̃ is a degree matrix and
D̃ii =

∑
j Ãij.W

(l) is the trainable parameter,W(l)
∈ RD×D. σ

is the corresponding activation function, such as ReLU (·) or
max(0, ·). By calculating this formula, we can get the output
graph H(l+1). The above is the complete final form of GCN.
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E. PROBLEM DEFINITION
In this research, we cast the recognition of therapeutic peptide
as a text classification problem. Text classification is a fun-
damental problem in the field of natural language processing,
which has found numerous application scenarios including
news filtering, document organization, spam detection, and
opinion mining, etc. The models used for text classifica-
tion include traditional models (e.g., bag-of-word, n-grams,
entities in ontologies, etc.) and deep learning-based models
(e.g., CNN, RNN, LSTM, etc.). Recently, graph convo-
lutional networks are attracting more and more attention.
Its application to text classification achieved state-of-the-art
results on a number of benchmark graph datasets. In GCN
models, text elements are represented by a graph. The rela-
tionship between these elements is embedded in the graph
via links between nodes. For peptide recognition, comparison
with text classification, a peptide is regarded as a document
and an amino acid is regarded as a word. A graph is con-
structed on the entire peptide dataset. The node represents
peptide and amino acid. The edge is built by using the co-
occurrence information. Therefore, the peptide classification
is converted to node classification of the graph.

F. PEPTIDE GRAPH CONVOLUTIONAL NETWORK
The peptide and the amino acid are defined as the edges,
based on which a graph G = (V ,E) is constructed, where
V denotes the edges and E denotes the relationship between
edges. Let xi ∈ Rm be the feature vector associated with node
i, where m denotes the dimensionality of the feature space.
Let X ∈ R(n×m) denotes the matrix containing all n feature
vectors. Next, we need to construct an adjacency matrix
A ∈ R(n×n) that represents the relationship between nodes.
A degree matrix D ∈ R(n×n) of the adjacency matrix is then
obtained by summing over each row of A, i.e., Dii =

∑
j Aij,

where Aij represents the element of matrix A at position (i, j).
Given X as input, the output of the first layer neurons is
computed as follows.

L(1) = ρ (̃AXW0) (2)

whereW0 ∈ R(m×k) is a weight matrix, Ã = D(−1/2)AD(−1/2)

is the normalized symmetric adjacency matrix, and ρ(·) is
the activation function, e.g., ReLU ρ (x) = max (0, x). L(1)

denotes the feature representation of the first layer neurons in
the GCN. In GCN, the feature representation is propagated in
a stack of layers all the way to the final output layer. More
generally, the output of layer j is computed as follows,

L(j+1) = ρ (̃AL(j)W0) (3)

where L(0) = X .

G. CONSTRUCTION OF THE ADJACENCY MATRIX
As is mentioned before that the nodes represent both pep-
tides and amino acid, the relationship between edges is
constructed based on co-occurrence information, including
peptides-amino acid co-occurrence and amino acid-amino

FIGURE 2. Anticancer peptides classification based on graph
convolutional neural network.

acid co-occurrence. As such, a large and heterogeneous pep-
tide graph is constructed in which both global peptides-amino
acid relationship and local amino acid-amino acid relation-
ship are explicitly modeled, as shown in Figure 1. The whole
peptide dataset is used to build the graph, which we call the
corpus. The total number of nodes of the graph is the number
of peptides plus the number of unique amino acids.

For modeling an amino acid-amino acid pair, we employ
point-wise mutual information (PMI) to calculate weights
between two adjacent amino acids. The PMI value of an
amino acid-amino acid pair is computed as follows,

PMI (i, j) = log
p (i, j)
p (i) p (j)

(4)

p (i, j) =
#W (i, j)
#W

(5)

p (i) =
#W (i)
#W

(6)

where #W (i, j) denotes the number of sliding windows in
a corpus that contain word i, #W (i) denotes the number of
sliding windows in a corpus that contain word i, and #W
denotes the total number of sliding windows in the corpus.
The PMI value implies the semantic correlation of amino acid
in a corpus.

For modeling a peptide-amino acid pair, we employ term
frequency-inverse document frequency (TF-IDF), where
term frequency is the number of times the amino acid appears
in the peptide, and inverse document frequency is the loga-
rithmically scaled inverse fraction of the number of peptides
that contain amino acids.

As such, the adjacency matrix representing the weight
between nodes is constructed as follows,

Aij =


PMI (i, j) i, j are amino acids
TF − IDFij i is peptide, j is amino acid
1 i = j
0 otherwise

(7)

H. LOSS FUNCTION
The proposed peptide graph convolutional network takes as
input the initial data X as in Eq. (1), and propagates through
n layers to the output layer L(n), followed by a softmax layer,

Z = softmax
(
L(n)i

)
=

exp
(
L(n)i

)
∑

i exp
(
L(n)i

) (8)
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We employ cross entropy to define our loss function,

L = −
∑
d∈yD

F∑
f=1

Ydf ln Zdf (9)

where yD is the set of ground truth labels with the d-th label
Yd , f is the number of classes.
The layer weightsWi for i = 0, 1, . . . , n−1 are determined

by training the network on the training set. In the training
procedure, we perform 5-fold cross validation. We randomly
split the training set into two parts, i.e., 80 percent of the
dataset as training examples and 20 percent as validation set.
We repeat this procedure for a total of 5 times. We set the size
from 5 to 40 in steps of 5 The trained network is applied on
the test set to obtained the test results.

I. I. EVALUATION METRICS
For performance evaluation, we used five commonly used
metrics including sensitivity (SE), specificity (SP), accuracy
(ACC), and Matthew’s correlation coefficient (MCC), and
AUC (Area Under the Curve), which are widely used in
several bioinformatics fields [38]–[53]. The formulas of the
first four metrics are as follows:

SE =
TP

TP+ FN
× 100%

SP =
TN

TN + FP
× 100%

ACC =
TP+ TN

TP+ TN + FP+ FN
× 100%

MCC=
TP× TN − FP× FN

√
(TP+FN )(TP+FP)(TN+FN )(TN+FP)

×100%

(10)

where TP (true positive) represent the number of real ACPs
predicted as real ACPs; TN (true negative) represent the
number of non-ACPs predicted as non-ACPs; FP (false pos-
itive) represent the number of non-ACPs predicted as ACPs;
and FN (false negative) represent the number of real ACPs
predicted as non-ACPs. The SE and SP metrics measure
the predictive ability of the predictor for the positives and
negatives, respectively, while the other two metrics, ACC and
MCC,measure the overall predictive performance.Moreover,
we also plotted the ROC (receiver operating characteristic)
curve to visualize the overall performance of a binary clas-
sifier system for comparison purpose. The area under ROC
curve is calculated to quantitively evaluate the predictive
performance [54], [55]. The value of AUC ranges from 0.5
to 1. The higher the score of AUC achieves, the better the
performance of the models is.

III. RESULTS AND DISCUSSION
A. PARAMETER OPTIMIZATION IN THE MODELING
PROCESS
Different parameter settings may affect the accuracy of our
proposed model. To establish a more discriminative predic-
tion model, we compared the performance under different
parameters through five-fold cross validation to search for the

FIGURE 3. Performance comparison with different parameters on training
set.

best parameters, such as kmer, learning rate, word embeddim
and slide size. Specifically, in GCN, we set the k value of
kmer from 1 to 8 respectively, and compared the accuracy cor-
responding to different k values. Experiment results showed
that when k is 2, the accuracy reaches the highest value
of 73.4%. As for the neural network learning rate, we set
the learning rate to 0.001, 0.002, 0.004, 0.006, 0.010, 0.020
and 0.030, respectively. Comparing the performance under
different learning rates, the highest accuracy is 77.8% when
the learning rate is 0.002. In the process of PMI building,
the word embeddim is set to 7 different values, namely, 5,
20, 30, 40, 50, 100 and 200, respectively. The slide size is
set from 5 to 40 in steps of 5. We observed that when the
word embeddim is 20 or the slide size is 20, the highest
accuracy can both arrive 77.8%. Thus, we can determine
the best parameters based on the comparison results under
different parameters. The specific experimental results are
shown in Figure 3.

B. PERFORMANCE COMPARISON USING DIFFERENT
NEURAL NETWORK METHODS
To verify the effect of different neural network methods
on the accuracy of the established model, we compared

FIGURE 4. Performance comparison of GCN and other commonly-used
neural networks methods.
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FIGURE 5. The ROC curves of GCN and other commonly-used neural
networks methods.

the prediction performance using the GCN method with
other two commonly-used neural networkmethods, CNN and
CNN-LSTM.As shown in Figure 4, the GCNmethod reached
a highest accuracy of 77.8%, better than CNN (76.8%) and
CNN-LSTM (77.6%). The ROC curves of the prediction
models using three different neural networks methods are
shown in Figure 5. The GCN obtained an AUC of 0.78, which
is 0.02 lower than CNN and 0.01 higher than CNN-LSTM,
respectively. Although GCN is slightly lower than CNN in
terms of AUC, it is far better than CNN in terms of ACC.
Therefore, comprehensively comparing the performance of
ACC and AUC, we choose the GCN as our classification
method in the modeling process. These results demonstrate
that our proposed GCN-based method is better than other
commonly used deep learning methods in identification of
anti-cancer peptides.

IV. CONCLUSION
In this work, we have established a novel predict model to
identify ACPs, called ACP-GCN. It is a powerful bioinfor-
matics tool to identify ACPs. Experiments demonstrated that
the proposed method can work better compared to several
existing descriptors. Experimental results on both the 10-fold
cross validation and independent tests show that this pro-
posed predictor is more effective to discriminate ACPs from
non-ACPs. And we found that it can provide a significant
improvement of the predictive performance and the excel-
lent predictive ability will accelerate their applications in
cancer therapy. In the future work, we will try more com-
putational techniques for more precise and excellent predic-
tion [56]–[58]. Computational methods such as graph neural
networks [59], [60] and optimization algorithms [61], [62]
would also benefit for the ACPs prediction.
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