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ABSTRACT Compressive sensing (CS) has proven to be an efficient technique for acceleratingmagnetic res-
onance imaging (MRI) acquisition through breaking the Nyquist sampling limit. However, CSmeasurements
are often corrupted by noise in the sensing process, which greatly reduces the quality of reconstructed images
and deteriorates the performance of follow-up diagnosis tasks. In this paper, we propose a novel iterative
shrinkage-thresholding (IST) method based on enhanced Laplacian-scaled shrinkage operation for robust
CS-MRI reconstruction. Differing to existing nonlocal Laplacian-scaled based methods that easily cause
biased estimation in the presence of external noise, we design a side information-aided Laplacian-scaled
sparse representation model to adapt to spatially varying image structures. Reference information obtained
by performing Block-Matching 3D (BM3D) thresholding on the noisy observation is incorporated into the
Laplacian-scaled thresholding operator for enhancing the accuracy of sparse coding. Furthermore, we build
connections between IST algorithm and approximate message passing (AMP) algorithm and consider an
approximation of the divergence of thresholding, leading to an AMP-like iterative method. Experiments
validate the effectiveness of leveraging a combination of Laplacian-scaled and BM3D thresholding, and
demonstrate the superior robustness of the proposed method both quantitatively and visually as compared
with state-of-the-art methods.

INDEX TERMS Compressive sensing (CS), magnetic resonance imaging (MRI), Laplacian-scaled thresh-
olding, BM3D, iterative shrinkage-thresholding (IST), approximate message passing (AMP).

I. INTRODUCTION
Magnetic resonance imaging (MRI) [1] which is a nonin-
vasive, nonionizing imaging modality and offers a variety
of contrast mechanisms and excellent visualization of
anatomical structure, has been widely used in routine clin-
ical practice. Much research on MRI has focused on the
reduction of the acquisition time and accurate reconstruction
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from highly undersampled k-space data, which is a pair of
contradictions. Compressive sensing (CS) methods [2], [3] as
a fundamental developed methodology in information soci-
ety are able to achieve accurate image reconstruction from
very few linear measurements, and have been successfully
applied to MRI, which is known as CS-MRI [4], [5]. Using
CS-MRI techniques one can significantly reduce the amount
of k-space data and corresponding acquisition time by means
of undersampling without having to sacrifice the quality of
reconstructed MR images.
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The main challenge for CS-MRI reconstruction methods
is to find an algorithm that takes into account the under-
sampling undergone and can compensate the missing data
with the prior knowledge ofMR images. CS-MRI reconstruc-
tion algorithms include greedy algorithms such as matching
pursuit (MP) and orthogonal matching pursuit (OMP) [6],
iterative optimization algorithms and their variations such as
fast iterative shrinkage–thresholding algorithm (FISTA) [7],
a shorthand for Nesterov’s algorithm (NESTA) [8], alternat-
ing direction method of multipliers (ADMM) [9], Bregman
iterative algorithms [10], and Bayesian methods such as
sparse Bayesian learning (SBL) algorithms [11] and approx-
imate message passing (AMP) and its variations [12], [13].

Greedy algorithms aim to pursuit the sparsest solution
of underdetermined CS system while enforce adherence to
the observation through least squares fitting [6]. Iterative
optimization algorithms often contain the optimization of
the data fitting term and the regularization term where
shrinkage-thresholding operators are commonly used. In [8],
for achieving fast convergence rate and low computational
cost, two algorithms with convex relaxation that are based
on FISTA and NESTA frameworks respectively have been
designed to solve the tree-based MRI problem. With regard
to more complicated optimization functions, such as low
rank approximation and structural total variation (TV) reg-
ularization, ADMM and Bregman iterative algorithms are
frequently used to make the optimization more easily be
solved. In [9], the low rank inverse problem is extended to an
augmented Lagrangian that is solved by ADMM. Bayesian
methods usually build probabilistic models with statistical
distribution of signals, taking the distribution of both the
observation model and the prior into account. Markov Chain
Monte Carlo (MCMC) and variational Bayesian (VB) [14]
are often employed to implement probabilistic inference in
Bayesianmethods, which are generally slow. Amore efficient
Bayesian method AMP with simplified belief propagation
is used to do statistical learning in [13]. Among these
methods, iterative optimization algorithms such as FISTA,
ADMM, and AMP based methods have shown much benefi-
cial to CS-MRI image reconstruction due to their promising
performance and efficiency.

CS-MRI reconstruction algorithms share a common char-
acteristic that the regularization term which refers to the prior
of images plays an important role. Published works have
designed a large number of elaborate prior models, ranging
from the well-known total variation (TV) regularization [7],
the sparsity-based regularizations with transforms (e.g., DCT
and wavelets) [15], the patch-based sparse representation
models [16] to structural sparsity-based models [17], [18].
It is assumed that MR images are sparse under analytical
transforms in CS-MRI reconstruction methods based on TV
model or wavelets [15]. This type of sparsity can be summa-
rized as global sparsity implying that the entire MR image is
transformed to a certain sparse domain. However, the global
sparsity utilized by these methods is unable to express more
complex local edges and textures. By contrast, patch-based

sparse representation methods are more effective in repre-
senting local image structures with a few elemental structures
from a redundant dictionary. With classical dictionary learn-
ing (DL) method, DL-MRI [16] learned a small patch-based
synthesis while simultaneously performing image recon-
struction, however, it ignores the relationship among patches,
and has a computationally expensive dictionary learning step.

More sophisticated models i.e., structural sparsity-based
models have been incorporated into the reconstruction frame-
work, including tree-structured wavelet sparsity [13], [17],
and nonlocal sparsity which refers to the self-similarity in
MR images [18], [19]. Hidden Markov tree (HMT) statisti-
cal model has been established in the Bayesian reconstruc-
tion method Turbo-AMP [13], while iterative optimization
algorithms always prefer formulating regularization terms
of wavelet tree [12]. Tree-structured wavelet sparsity can
be classified into the category of global sparsity essentially,
thus also has the intrinsic deficiency of global sparsity-based
methods, i.e., lacking adaptability to local image patterns.
By contrast, nonlocal similarity belongs to patch-based struc-
tural sparsity which describes the resemblance of small image
patches in an image, and is often depicted by regularization
terms, filtering-based models and composite sparse models.
Regularization terms can categorized as follows: the nonlocal
total variation (NLTV) regularization [20] which exploits
the nonlocal sparsity in gradient domain, patch-based nonlo-
cal operator (PANO) [21] that uses semi-adaptive wavelets,
nonlocal low-rank regularization [22] that characterizes
the low-rank property of the two-dimensional data matrix
grouped by similar patches of MR image. Filtering-based
models or called plug-and-play priors are usually related
to the Block-Matching 3D (BM3D) filtering method [23],
where similar 2D image blocks are grouped into 3D data
arrays and then collaborative filtering is used for denoising.
D-AMP [24], BM3D-IT [25] and BM3D-AMP-MRI [26]
belong to this kind of algorithm. Composite sparse models
developed to soften and complement the nonlocal sparsity
have been shown to provide enhanced performance, includ-
ing a combination of low-rank regularization and TV reg-
ularization [27], a low-rank plus learned dictionary-sparse
model [28] and a composite sparse model that combines
low-rank modeling and block matching with transform learn-
ing for capturing both local and global features [29]. Recently,
deep neural networks have achieved exciting success for
acceleratingMRI. Reconstruction algorithms of this class can
be divided into two subcategories. In the first category, deep
neural networks are employed to learn mapping functions
from measurements or zero-filled image to high-resolution
MR image, such as AutoMap [30] and CS with Generative
Adversarial Networks (GANCS) [31]. In the second category,
iterative algorithms are explicitly unrolled and turned into
neural nets, such as ADMM-Net [32], ISTA-Net [33] and
Learned-DAMP [34]. However, these methods are held back
by the fact that the theory governing their performance needs
to be strengthened, and has to pre-train with a lot of time and
vast amounts of data, but large datasets of MRI are rare.
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Despite the great progress, the performance of CS-MRI
reconstruction method may degrade severely in the presence
of external noise, especially for deep learning-based meth-
ods. In this work, we propose a novel iterative shrinkage-
thresholding method based on side information-aided
Laplacian-scaled sparse representation model for robust
CS-MRI reconstruction. We use Laplacian scale mixture
(LSM) [35], [36] model to represent the sparse coefficients
packed by similar patches of the MR image, and turn
the simultaneous sparse coding procedure into a threshold-
ing operator called Laplacian-scaled thresholding operator.
Reference information obtained by BM3D thresholding at
each iteration is provided to help Laplacian-scaled thresh-
olding distinguish between noise and image components
and reduce the biased estimation problem, therefore, side
information-aided Laplacian-scaled thresholding model can
be regarded as an ingenious combination of Laplacian-
scaled thresholding and BM3D thresholding. Furthermore,
our iterative method is an AMP-like method, implying
that our method has the Onsager correction term, however,
the divergences of thresholding is approximated to predeter-
mined constants. We have observed that using predetermined
constants does not degrade the reconstruction performance
but reduces the computational complexity when the partial
Fourier measurement matrix is used. It is shown in experi-
ments that our method is more robust to noise when compared
to state-of-the-art methods.

II. BACKGROUND
A. COMPRESSIVE SENSING MAGNETIC RESONANCE
IMAGING
Applying CS theory in magnetic resonance imaging (MRI),
the MR scanning time can be significantly reduced. The
observation or data acquisition forward model for MR
image reconstruction can eventually be approximated as a
discretized linear system:

y = Ax + w (1)

where x ∈ Cn is the vectorization result of a MR image,
A ∈ Cm×n is a partial Fourier transform, y ∈ Cm is the sam-
pling measurement of x i.e., the undersampled k-space data,
and w denotes the additive noise. Since m < n, the inverse
problem of CS is underdetermined. Fortunately, MR images
are generally sparse and thus are able to reconstructed based
on CS theory. The MRI is first modeled as a CS problem in
SparseMRI [37]:

x = argmin
x

1
2
‖y− Ax‖22 + ρ ‖x‖TV + λ ‖9x‖1 (2)

In (2), 9 denotes the wavelet transform, ρ and λ are two
regularization parameters. The sparsity regularization is the
linear combination of total variation and wavelet sparsity
regularization, which is based on the observation that the
piecewise smooth MR images of organs can be sparsely
represented by the wavelet basis and should have small total
variations. To solve this model, the non-smooth l1 norm term

is transformed a smooth one by introducing an approximated
problem, which is then solved by the classical conjugate
gradient (CG) method [37]. The disadvantage of this method
is that no structural prior information is utilized other than
sparsity.

B. STRUCTURAL SPARSITY-BASED CS-MRI
Owing to the fact that the wavelet coefficients of real MR
images tend to be quadtree structured, wavelet tree sparsity
MRI (WaTMRI) [17] improves the reconstruction model
in (2) by introducing one more regularization term with tree
sparsity

x=argmin
x

1
2
‖y−Ax‖22+ρ ‖x‖TV+λ(‖9x‖1+

∑
xi∈Q

‖9xi‖2)

(3)

where Q denotes the set of all parent-child groups for the
wavelet quadtree and xi is one of such groups. Based on
the FISTA algorithm, this problem is solved very efficiently
Although it has improved the reconstruction result, it is still
a global sparsity-based method, which has the deficiency of
lacking adaptability to various local patterns.

The nonlocal sparsity referred to the fact that MR images
have abundant self-repeating patterns has shown more bene-
ficial to CS-MRI image reconstruction due to its better spatial
adaptation. In the work of CS recovery via nonlocal low-rank
regularization (NLR-CS) [22], a nonlocal sparsity-based
model that reflects the group sparsity of similar patches with
a low-rank regularization term for CS recovery is established
and can be formulated as follows

x=argmin
x

1
2
‖y−Ax‖22+ρ

∑G

i=1
{‖Xi−Li‖2F+λ ‖Li‖∗}

(4)

where Xi ∈ RM×N is a 2D matrix formed by similar
patches, G is the total number of similar patch groups, Li is
the low-rank data matrices to be estimated, ‖Li‖∗ is the
nuclear norm of Li, taking a sum value of its singular values,
i.e., ‖Li‖∗ =

∑
j

∣∣li,j∣∣ where li = [li,1, li,2, . . . , li,N ] denotes
the singular value vector of Li. This objective functional
is solved by alternatively minimizing the objective func-
tional with respect to the whole image x and low-rank data
matrices Li.

C. ITERATIVE ALGORITHMS
We can solve the above minimizing problems efficiently
with alternate optimization algorithms such as iterative
shrinkage-thresholding (IST) method [38] and approximate
message passing (AMP) algorithm [12]. As an example,
we consider solving min

x
‖y− Ax‖22

/
2+ λ ‖9x‖1. The alter-

nating expressions in the IST algorithm are

x(t+1) = η(x(t) + A∗z(t)) (5)

z(t) = y− Ax(t) (6)
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while the ones in the AMP algorithm are

x(t+1) = η(x(t) + A∗z(t)) (7)

z(t) = y− Ax(t) +
z(t−1)

m

∥∥∥η′(x(t−1) + A∗z(t−1))∥∥∥
1

(8)

where x(t) and z(t) are the estimates of x and the residual
at iteration t . The iteration starts from x(0) = 0, z(0) = y.
A∗ is the conjugate transpose of A. The functions η(·) and
η′(·) are the wavelet threshold function and its first derivative
respectively. These two algorithms are very similar except for
the last term in Eq. (8) called the Onsager correction term
which is introduced by AMP to approximately Gaussianize
the residual error at each iteration and thus makes existing
Gaussian denoisers more effective when compared to other
iterative solvers. Some AMP variants have been proposed
with various forms of regularizers, such as total variation,
a Cauchy prior in the wavelet domain [39] and a plug-
and-play prior which employs BM3D denoiser as an image
prior [24].

III. A NOVEL ITERATIVE METHOD WITH
LAPLACIAN-SCALED THRESHOLDING AND BM3D
THRESHOLDING
A. AN AMP-LIKE ITERATIVE METHOD
We consider the connection between the IST method and
the AMP method, which enables us to greatly improve the
performance of the conventional IST, and leads to a novel
iterative method for robust MR image reconstruction. To this
end, we transform the AMP method into a special IST
method by introducing three auxiliary variables q(t) = x(t) +
A∗z(t), d (t) =

∥∥η′(x(t−1) + A∗z(t−1))∥∥1/m where d (0) = 1,
f (x) = ‖y− Ax‖22

/
2 and then replace the z(t) in q(t) =

x(t) + A∗z(t) with Eq. (8)

q(t) = x(t) + A∗(y− Ax(t) + z(t−1)d (t−1))

= x(t) −∇f (x(t))+ A∗z(t−1)d (t−1)

= x(t) −
t∑
i=1

∇f (x(i))d (0)d (1) . . . d (t−i) (9)

where ∇f (x(t)) represents the gradient of f (x) at point x(t).
Therefore, the AMP method can be rewritten as x(t+1) =
η(q(t)) where q(t) computed by Eq. (9) can be regarded as a
temporary noisy image. The compution of q(t) is expressed as

q(t) = x(t) −∇f (x(t)) (10)

It is shown in Eq. (9) and Eq. (10) that the AMP method
uses a linear combination of gradients of the preceding
iteration solutions while the conventional IST method takes
only the gradient of the current iteration solution. When
the AMP algorithm is combined with the structural sparsity,
the shrinkage operator `(·) will become non derivable for the
result that they do not have an explicit input-output relation.
Fortunately, the Monte Carlo (MC) method has been applied
to simulate the derivative with random numbers in the work
of D-AMP [24], but it is time-consumed. In order to reduce

running time, we use predetermined constants to approx-
imate the derivative which is pre-trained with data based
on the observation that the evolutions of derivative along
with iteration for different images perform similar under
the same specific experimental settings, including sampling
ratio and the strength of external noise. Furthermore, moti-
vated by the effective acceleration scheme in fast iterative
shrinkage-thresholding algorithm (FISTA) [7], the simplified
AMP method is further accelerated with additional acceler-
ation steps i.e. Eq. (13) and Eq. (14). Our proposed method
has the following alternating expressions

q(t) = x(t) −
t∑
i=1

∇f (x(i))c(0)c(1) . . . c(t−i) (11)

x(t+1) = `(q(t)) (12)

u(t+1) = (1+
√
1+ 4(u(t))2)

/
2 (13)

x(t+1) = x(t+1) + (
u(t) − 1
u(t+1)

)(x(t+1) − x(t)) (14)

where c(0), c(1), . . . , c(t−1) are predetermined constants,
u(1) = 1, x(0) = 0. `(·) in Eq. (12) is a shrinkage operator
associated with the nonlocal sparse reconstruction through
the combination of Laplacian-scaled and BM3D thresholding
which can be viewed as the engine of our method.

B. EXPLORING THE POWER OF COMPLEMENTARY
REGULARIZERS
Although a number of complementary regularizers [27]–[29]
have been proposed to improve the performance of CS-MRI
reconstruction, most of these method combines a nonlocal
regularizer with a local (or global) regularizer e.g. low-rank
regularization plus learned dictionary-sparse model [28] (or
TV regularization [27]) for the purpose of fully utilizing
both the nonlocal and local (or global) image properties.
In this work, we propose employing two nonlocal regular-
izers to explore the power of complementary regularizers.
Laplacian-scaled thresholding operator which will be elab-
orated later is based on the nonlocal mean method (a denois-
ing algorithm in spatial domain), while the BM3D method
is a well-known image denoising algorithm in frequency
domain. Combining both methods brings us a dual domain
method and ensures a more accurate parameter estima-
tion in Laplacian-scaled thresholding especially in the noisy
environment.

The plug-and-play prior framework [40], [41] offers
simple integration between inversion problems and priors,
and allows that the prior to be used does not have to be
explicitly formulated as a penalty expression.We consider the
following composite sparse problem for CS-MRI

x = argmin
x

1
2
‖y− Ax‖22 + λg(x)+ ρh(x) (15)

Generally, g(x) and h(x) can be arbitrary regularizers.
Applying our proposed iterative method to solve this com-
posite sparse problem will only lead to a change in the
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formula (12), which becomes solving the following proximal
problem

x = argmin
x

1
2
‖x − q‖22 + λg(x)+ ρh(x) (16)

This composite problem can easily be solved by themethod of
composite splitting algorithm (CSA) [42]. CSA decomposes
the difficult composite regularization problem (16) into two
simpler regularization subproblems, and solves each of them
very efficiently. Then we have the following subproblems

x1 = argmin
x

1
2
‖x − q‖22 +

λ

ω1
g(x) (17)

x2 = argmin
x

1
2
‖x − q‖22 +

ρ

ω2
h(x) (18)

The solutions of Eq. (17) and Eq. (18) x1 and x2 corresponds
to the denoised results of Laplacian-scaled thresholding and
BM3D thresholding respectively. Finally, the solution of
Eq. (16) is obtained by linear combination of x1 and x2 with
the weights ω1 and ω2 as follows

x = ω1x1 + ω2x2 (19)

The conclusion that the solution of the composite sparse
problem is the average of the results obtained by the
two thresholding operations seems quite reasonable, which
enables us to achieve an easy and flexible combination of
arbitrary regularizers.

The BM3D thresholding is derived from the BM3D
method [23]. In the original version of BM3D, there is a
secondaryWiener filtering step, however, we found that using
the full denoising setup with theWiener filter does not signif-
icantly enhance the reconstruction performance despite the
increased computational complexity. Thus, we only consider
the initial hard thresholding step of the BM3D method which
is offered as follows

h(x) =
∑G

i=1

∥∥∥8X̃i∥∥∥
0

(20)

where8 denotes the 3Dwavelet transform and X̃i denotes the
i-th 3D group.

C. SIDE INFORMATION-AIDED LAPLACIAN-SCALED
THRESHOLDING
As for Laplacian-scaled thresholding i.e. solving Eq. (17),
we model sparse coefficients related to similar patches of MR
image with Laplacian scale mixture (LSM) distribution, and
regard the solving process of the sparse coding problem as
a thresholding operator. LSM distribution has been widely
utilized in modeling sparse coefficients of signal, such as the
sparse coefficients of local patches of natural images in [35],
the tensor coefficients of multi-frame images in [36], and
the sparse impulse noise in [43]. In our previous work [5],
we have applied LSM model in describing the nonlocal
sparsity of MR images. We extend the previous model to
a side information-aided Laplacian-scaled model which can
exploit the reference information provided by the BM3D
thresholding to enhance the robustness of our method.

In order to design our Laplacian-scaled thresholding oper-
ator, we consider the denoising problem y = x + v, where
v ∼ N (0, σ 2) denotes the additive Gaussian noise. We define
the Laplacian scale mixture distribution as

p(αi) =
∫
∞

0
p(αi|θi)p(θi)dθi (21)

where αi = θiβi represents the sparse coefficient. The
multiplier variable θi is a positive random variable with
probability p(θi), and βi has a Laplacian distribution with
scale 1. Supposing that βi and θi are independent, condi-
tioned on the parameter θi, the coefficient αi has a Laplacian
distribution p(αi|θi) = θ−1i exp(−θ−1i |αi|)

/
2. The side

information-aided sparse coding model of xi can be inter-
preted as a Maximum a Posterior (MAP) estimation

(αi, θi) = argmin
αi,θi

p(αi, θi|xi, si)

= argmin
αi,θi

p(xi, si|αi, θi)p(αi, θi)

= argmin
αi,θi

p(xi|αi, θi)p(si|αi, θi)p(αi|θi)p(θi) (22)

where s denotes the side information which is supposed to be
independent with x. First, we have the following likelihood
through the assumption that v is white Gaussian noise with
variance σ 2. Thus,

p(x|α, θ) =
1

√
2πσ 2

exp(−
1

2σ 2 ‖x − Dα‖
2
2) (23)

Second, the prior term can be expressed as

p(α|θ ) =
∏
i

p(αi|θi) =
∏
i

1
2θi

exp(−
|αi − µi|

θi
) (24)

Third, the noninformative prior is adopted for the scale
parameter θ

p(θ) =
∏
i

p(θi) =
∏
i

1
θi

(25)

At last, we might propose the distribution of the side infor-
mation to be subject to Gaussian distribution

p(s|α, θ) =
1√
2πσ 2

s

exp(−
1

2σ 2
s
‖s− Dα‖22) (26)

It is reasonable that the sparse representation Dα should be
close to the denoised result i.e. s produced by the BM3D
thresholding. Note that, the initial estimation of x in Eq. (23)
is the noisy input obtained via Eq. (11). It is helpful to
implement sparse decomposition using a denoised result
which can be regarded as side information besides using
the noisy input itself especially when the CS measurements
are seriously polluted by noise. Finally, we can translate the
MAP estimation problem in log domain into the following
optimization problem

(α, θ, µ) = arg min
α,θ,µ

‖x − Da‖22
2σ 2 +

‖s− Da‖22
2σ 2

s

+

∑
i

|αi − µi|

θi
+ 2

∑
i

log θi (27)
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This objective function is similar to the one in our previous
work [5], except for the second term which introduces an
extra reference for the data fitting. We further simplify the
objective function by translating it from (α, θ, µ) domain to
(β, θ, τ ) domain

(β, θ, τ ) = arg min
β,θ,τ

‖x − D3β‖22
2σ 2 +

‖s− D3β‖22
2σ 2

s
+‖β − τ‖1 + 2 log θ (28)

where 3 = diag(θi) is a diagonal matrix. Note that α = 3β
and µ = 3τ . For a collection of similar patches, their
corresponding sparse coefficients should be characterized
by the same prior, thus, this sparse coding problem is then
extended to a structured sparse coding problem

(B, θ,5) = arg min
B,θ,5

‖X − D3B‖2F
2σ 2 +

‖S − D3B‖22
2σ 2

s
+‖B−5‖1 + 2 log(θ + ε) (29)

where B = [β1, β2, . . . , βk ] ∈ Rk×k , 5 = [τ1, τ2, . . . , τk ] ∈
Rk×k . ε is a small positive number introduced for numerical
stability, because log θ is unstable as θ → 0.
To solve this problem, we can resort to the method of

alternating optimization. First, we compute 5 for a fixed
(B, θ). Given a collection of similar patches, the nonlocal
mean filter is adopted to estimate the location parameter of
LSM model µ

µ =
∑

j
ωjαj (30)

where the weight ωj = exp(−
∥∥h− hj∥∥22 /δ). Once we have

the location parameter µ, τ related to 5 is computed by

τ = 3−1µ (31)

To obtain the initial estimation of sparse coefficient α(0) and
scale parameter θ0, we compute the principal component
analysis (PCA) basis Di for each similar image patches Xi
which is set equal to the noisy input in the beginning i.e.,
x = q + (σ 2

/
σ 2
s )s, and then have the initial estimation

of sparse coefficients by α(0) = D−1i Xi. The initial esti-
mation of scale parameter is computed with one-sample
maximum-likelihood (ML) estimation

θ0 =

√
max((α0i )

2
/
k − σ 2, 0) (32)

Second, for a fixed (B,5), one can update θ by solving

θ = argmin
θ

‖X − D3B‖2F
2σ 2 +

‖S − D3B‖22
2σ 2

s
+ 2 log(θ + ε)

(33)

Since the dictionary D is orthogonal, this can be rewritten as

θ = argmin
θ

∥∥∥∥∥ X̂ + (σ 2
/
σ 2
s )Ŝ

1+ (σ 2
/
σ 2
s )
−3B

∥∥∥∥∥
2

F

+ 4σ 2 log(θ + ε)

(34)

where X = DX̂ and S = DŜ. The above minimization
problem can be further reduced to a set of scalar minimization
problems, one of which denoted by l(θi) is

θi = argmin
θi
aiθ2i + biθi + c log(θi + ε) (35)

where ai = ‖φi‖22, bi = −2φi(ϕi)
T and c = 4σ 2. φi and

ϕi are the i-th row of B and C = (1 + (σ 2
/
σ 2
s ))
−1(X̂ +

(σ 2
/
σ 2
s )Ŝ) respectively. The superscript T denotes the trans-

position operation. The solution to this quadratic equation is

θi =


0, if b2i

/
(16a2i )− c

/
(2ai) < 0

min{l(0), l(θi,1), l(θi,2)},
otherwise

(36)

where θi,1 = −
bi
4ai
+

√
b2i
16 −

c
2ai
, θi,2 = −

bi
4ai
−

√
b2i
16 −

c
2ai

.
The discussions of this result are similar to the ones in our
previous work (please refer to ref. [5]), however,C is changed
which is caused by introducing reference information. At last,
we compute B for a fixed (θ,5). The subproblem simply
becomes

B = argmin
B
‖X − D3B‖2F +

∥∥∥(σ 2
/
σ 2
s )(S − D3B)

∥∥∥2
2

+ 2σ 2
‖B−5‖1 (37)

This problem has a closed-form solution via soft thresholding

Bi=
diag(θ−1i,j )

1+ (σ 2
/
σ 2
s )

(�γi (D
T
i Xi + (σ 2

/
σ 2
s )D

T
i Si − µi)+ µi)

(38)

where �(·) denotes the soft-thresholding operator with a
threshold γi = (2σ 2)

/
θ2i . The variance of noise σ 2 can be

obtained by maximum likelihood estimation

(σ (t))2 =
∥∥∥q(t) − x(t)∥∥∥2

2

/
m (39)

Finally, we have our side information-aided Laplacian-
scaled thresholding operator i.e. Eq. (38). The final output of
the structured sparse coding for a given similar patches group
is Di3iBi. Then the denoised MR image can be recovered by
averaging all reconstructed patches at the same location.

It is unnecessary to determine the specific values of two
regularization parameters ρ and λ in Eq. (15), which are
intrinsically connected with the thresholds of denoising, and
have been integrated into the thresholds of our BM3D and
Laplacian-scaled thresholding operators. The thresholds are
0.8σ 2 and 2.5 × (2σ 2)

/
θ2i respectively in our experimental

setting. Furthermore, the constants c(0), c(1), . . . , c(t−1) can
be set according to the values simulated by the method of
Monte Carlo (MC) [24] through a pre-training procedure.
In our simulations, the constants c(0), c(1), . . . , c(t−1) are
equal to the value at the stable stage of iterations obtained
by MC with pre-training. At last, we want to determine the
value of σ 2

s in the side information-aided term. According to
Eq. (27), a smaller value of σ 2

s means a greater weight of the
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item of side information. We have observed that a wide range
of values can help improve the reconstruction performance
in the presence of external noise, while the item of side infor-
mation has little usefulness when there is no external noise.
For the sake of simplicity, we set σ 2

s = (5
/
3)σ 2 when using

noisy measurements, and remove the side information-aided
termwhen using noiseless measurements. In general, the pro-
posed algorithm is summarized in Algorithm 1 named as
CS via enhanced Laplacian-scaled thresholding (ELT-CS).
Exploring the power of complementary regularizers and
assisting with side information as two kinds of enhanced
strategy have been implemented in our method for robust MR
image reconstruction.

Algorithm 1 CS via Enhanced Laplacian-Scaled
Thresholding

Input: y, A, T , ω1, ω2, x0 = 0, z0 = y.
For t = 1 to T do
(1) Obtain the temporary noisy image q(t) with Eq. (11).
(2) Estimate the noise variance (σ (t))2 =∥∥q(t) − x(t)∥∥22/m.
(3) Perform the denoising operator x(t+1) = `(q(t)) as

follows:
(I) Perform the BM3D thresholding on q(t) to get the

reconstructed image x(t+1)1 .
(II) Perform the side information-aided

Laplacian-scaled thresholding on q(t) to get
the reconstructed image x(t+1)2 as follows:
(a) Construct the matrix of similar patches with

the image q(t) + (σ 2
/
σ 2
s )x

(t+1)
1 and compute

the PCA basis Di.
(b) Estimate the location parameter of LSMµ and

then obtain 5 with Eq. (31).
(c) Estimate the scale parameter of LSM θ with

Eq. (36).
(d) Estimate the sparse coefficient matrix B with

Eq. (38).
(e) Obtain all the denoised matrix Di3iBi and

recover the whole MR image x(t+1)2 .

(4) Obtain x(t+1) by linear combination of x(t+1)1 and x(t+1)2
i.e. x(t+1) = ω1x

(t+1)
1 + ω2x

(t+1)
2 .

(5) Perform the acceleration steps:
u(t+1) = (1+

√
1+ 4(u(t))2)

/
2,

x(t+1) = x(t+1) + ( u
(t)
−1

u(t+1)
)(x(t+1) − x(t)).

IV. EXPERIMENTS
In order to verify the excellent robustness of the pro-
posed ELT-CS for MR image reconstruction in the pres-
ence of external noise, we compare it with nine CS
algorithms, including two deep learning-based algorithms
ADMM-Net [32] and TGDOF [44] and seven nonlocal
sparsity-based algorithms PANO [21], BM3D-IT [25],

BM3D-AMP-MRI [26], NLR-CS [22], D-AMP [24],
CS via BM3D thresholding (BM3DT-CS) and CS via
Laplacian-scaled thresholding (LT-CS) where BM3DT-CS
and LT-CS are derived from our ELT-CS method by only
using the BM3D thresholding and the Laplacian-scaled
thresholding respectively. Through the comparisons between
ELT-CS and BM3D-CS, LT-CS, one can validate the benefit
of complementary regularizers and side information. For
fair comparisons, we download codes from their websites
and adopt the default experiment settings except for NLR-
CS. To make NLR-CS more robust to noise, its parameter
par.nSig which is set empirically is tuned to par.nSig = par.
nSig+σ due to the external noise. As shown in Figure 1, eight
standard test MR images with the same size of 256× 256 are
employed as the experimental images. Both 2D random sam-
pling and pseudo radial sampling schemes are adopted in our
algorithms. The sampling masks are shown in Figure 2 and
Figure 3 respectively. In the 2D random sampling scheme,

FIGURE 1. Test images used for compressive sensing experiments:
(a) Chest; (b) Shoulder; (c) Brain1; (d) Brain2; (e) Brain3; (f) Head;
(g) Brain4; (h) Brain5.

FIGURE 2. 2D random sampling masks used in the experiments: (a) 10%
sampling; (b) 12% sampling; (c) 16% sampling.
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FIGURE 3. Pseudo radial sampling masks used in the experiments:
(a) 20 lines; (b) 30 lines; (c) 40 lines.

three sampling rates including 10%, 12% and 16% are chosen
for comparisons as we always interesting in low sampling
rates because lower sampling ratio needs less MR scanning
time to acquire. In the pseudo radial sampling scheme, the
numbers of sampling lines directly related to sampling rates
on the masks are 20, 30 and 40 respectively. We present the
experimental results including objective quality, subjective
quality and runtime. The peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) are used to quantitatively
evaluate the qualities of the reconstruction results. We gener-
ate the CS measurements by randomly sampling the Fourier
transform coefficients of test images, and then reconstruct
MR images by eight comparison algorithms. For the 2D
random sampling scheme, we follow the sampling strategy
of previous works [17], [42], which randomly choose more
Fourier coefficients from low frequency and less on high
frequency. For the pseudo radial sampling scheme, we refer
directly to the sampling method in the literature [27].

The main parameters of the proposed ELT-CS algorithm
are the weights of the linear combination ω1 and ω2 in
Eq. (19). ω1 = 0.2 and ω2 = 0.8 are chosen empirically
when using noiseless measurements, which implies that the
method with Laplacian-scaled thresholding is generally bet-
ter than the one with BM3D. ω1 = 0.1 and ω2 = 0.9
or ω1 = −0.2 and ω2 = 1.2 can be chosen when using
noisy measurements. The reconstructed image produced by
BM3D thresholding has been employed as side information
in the subsequent Laplacian-scaled thresholding, thus, its
weight can be reduced in the step of the linear combination.
We have observed that the later set of parameters are a little
better in most situations. We follow the method of previous
work [22] to construct the matrix of similar patches. 64 most
similar patches with size of 8× 8 are chosen for each exem-
plar patch with size, meanwhile, exemplar image patches in
every 5 pixels along both horizontal and vertical directions
are extracted. We first present the experimental results for
noisy CS measurements because we emphasize the strong
robustness of ELT-CS and then report the ones using noiseless
CS measurements.

A. EXPERIMENTS ON NOISY MEASUREMENTS
Numerous experiments have been conducted to show the
superiority of the proposed CS-MRI recovery method
ELT-CS in dealing with the issues of noise corruption by
comparing with seven existing reconstruction algorithms

ADMM-Net [32], TGDOF [44], PANO [21], BM3D-IT [25],
BM3D-AMP-MRI [26], NLR-CS [22], D-AMP [24] and
two simplified versions of our ELT-CS i.e. BM3DT-CS and
LT-CS.We generate noisy CSmeasurements by adding Gaus-
sian noise with the variance to the under-sampled Fourier
transform coefficients of input images. The noise standard
deviation (denoted by sigma or σ ) is respectively selected
as 10, 20, 30 and 40 for both pseudo radial sampling and
2D random sampling scheme. Complete comparisons are
present in Table 1, Table 2, Table 3 and Table 4. Table 1 and
Table 3 show the PSNR and SSIM results of these methods
recovering eight test images under the sampling scheme of
pseudo-radial respectively, while Table 2 and Table 4 present
the ones with 2D random sampling scheme.

Firstly, we compare ELT-CS with BM3DT-CS and LT-CS.
From Table 1, Table 2, Table 3 and Table 4, we can see that
ELT-CS always performs better than the other two methods
except for very few cases, in which ELT-CS also acquires
close results to the second-best method LT-CS. These results
demonstrate the benefit of introducing complementary reg-
ularizers and side information in enhancing the capability
anti-noise. Besides, ELT-CS outperforms than BM3DT-CS
in most cases implying that Laplacian-scaled thresholding is
generally more suitable for MR image reconstruction than
BM3D thresholding due to the better spatial adaptation. The
shortcoming of Laplacian-scaled thresholding is that it uses
the nonlocal mean method to estimate the location param-
eter of LSM model which has validated that it has a worse
performance than the method of BM3D. Motivated by this,
we explore the use of complementary regularizers and side
information to achieve an enhance performance.

Secondly, ELT-CS is compared with seven existing recon-
struction algorithms. From Table 1, Table 2, Table 3 and
Table 4, we can conclude that 1) the quality of the images
reconstructed by all CS-MRI methods degrades seriously
as the amount of measurement noise increases; 2) the pro-
posed method ELT-CS always achieve the highest PSNR
and SSIM values when compared with these seven meth-
ods, which has demonstrated the superiority of the proposed
method in robustness; 3) two deep learning-based recon-
struction methods ADMM-Net and TGDOF do not have the
superiority when the CS measurements is contaminated by
external noise despite the new trends brought by them due
to the fast speed. The average PSNR improvements over
ADMM-Net, TGDOF, PANO, BM3D-IT, BM3D-AMP-
MRI, NLR-CS, D-AMP are about 3.80 dB, 5.55 dB, 5.36 dB,
1.34 dB, 0.84 dB, 2.91 dB and 0.73 dB when using pseudo-
radial sampling, 5.52 dB, 7.21 dB, 4.57 dB, 3.04 dB, 1.43 dB,
3.12 dB and 1.03 dB when using 2D random sampling
respectively.

At last, by comparing BM3DT-CS with D-AMP which
employs the full steps of the BM3D denoising method and
the standard AMP method, we can see the performance of
our AMP-like iterative method. As we can see from these
tables, BM3DT-CS performs a little worse than D-AMP for
most cases caused by the rough approximation of the Onsager
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TABLE 1. The PSNR (dB) results of different methods with pseudo radial subsampling scheme with varying amounts of additive white gaussian
measurement noise.
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TABLE 1. (Continued.) The PSNR (dB) results of different methods with pseudo radial subsampling scheme with varying amounts of additive white
gaussian measurement noise.

correction term. However, BM3DT-CS is faster than D-AMP
as we will see in the experiments of visual comparisons. Note
that, our method can be transformed to the standard AMP

method by computing the parameters c(0), c(1), . . . , c(t−1)in
Eq. (11) with the method of MC [24] and removing the
acceleration steps.
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TABLE 2. The PSNR (dB) results of different methods with 2D random subsampling scheme with varying amounts of additive white gaussian
measurement noise.
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TABLE 2. (Continued.) The PSNR (dB) results of different methods with 2D random subsampling scheme with varying amounts of additive white gaussian
measurement noise.

Visual comparisons between the reconstructions by
different methods with measurement noises are provided
in Figure 4, Figure 6, Figure 8 and Figure 10, while the

corresponding iteration number vs. PSNR curves and CPU
time vs. PSNR curves are presented in Figure 5 and
Figure 7, Figure 9 and Figure 11 respectively. Figure 4 and
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TABLE 3. The average SSIM results of different CS recovery methods with pseudo radial subsampling scheme.

TABLE 4. The average SSIM results of different CS recovery methods with 2D random subsampling scheme.

Figure 8 show the performance comparisons of competing
methods with the standard deviation of noise i.e. sigma=10
and sigma=20 representing the lower-power noise environ-
ment, while Figure 6 and Figure 10 show the ones with
sigma=30 and sigma=40 representing the higher-power
noise environment. From these figures, we can clearly see
that the proposed algorithm ELT-CS performs better than
others, which enjoys great advantages in producing clearer
images, e.g. in the edges of the organ and blood-vessels.
Generally, the reconstructed images of ELT-CS deliver excel-
lent image contrast and clear details due to its capability of
achieving a better spatial adaptation using complementary
regularizers and side information. On contrast, reconstructed
images by ADMM-Net, TGDOF, PANO and NLR-CS all
suffer from noticeable noise spots, meaning that they are

sensitive to noise. BM3D-IT, BM3D-AMP-MRI, D-AMP,
BM3DT-CS and LT-CS have a certain anti-noise ability, how-
ever, the images reconstructed by the former four methods are
over-smoothed when compared to the one by ELT-CS, result-
ing in a lack of image details, while the one reconstructed
by LT-CS has poor image contrast and visual artifacts. These
results verify again that the combination of Laplacian-scaled
thresholding and BM3D thresholding is reasonable.

The CPU time and PSNR are traced in each iteration
for each of reconstruction methods. The simulations were
executed in Matlab on a computer with an Intel i7 CPU
at 2.6GHz, 16GB memory and 64-bit operating system.
None of comparison algorithms uses parallelization or GPU.
Figure 5 (a), 7 (a), 9 (a), 11 (a) and Figure 5 (b), 7 (b),
9 (b), 11 (b) present the iteration number vs. PSNR curves
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FIGURE 4. Visual comparisons on Chest image using 30 sampling lines (pseudo radial) with measurement noise with standard deviation 10
(i.e. SNR: 25.41 dB): (a) Original; (b) Zero-filling (c) ADMM-Net (PSNR: 23.45 dB, SSIM: 0.5951); (d) TGDOF (PSNR: 25.00 dB, SSIM: 0.6578);
(e) PANO (PSNR: 23.41 dB, SSIM: 0.5782) (f) BM3D-IT (PSNR: 23.17 dB, SSIM: 0.5831) (g) BM3D-AMP-MRI (PSNR: 24.59 dB, SSIM: 0.6513)
(h) NLR-CS (PSNR: 24.80 dB, SSIM: 0.6318); (i) D-AMP (PSNR: 24.89 dB, SSIM: 0.6561); (j) BM3DT-CS (PSNR: 24.77 dB, SSIM: 0.6478); (k) LT-CS
(PSNR: 24.91 dB, SSIM: 0.6718), (l) ELT-CS (PSNR: 25.46 dB, SSIM: 0.6864).

FIGURE 5. Iterative curves on Chest image using 30 sampling lines (pseudo radial) with measurement noise with standard
deviation 10 (i.e. SNR: 25.41 dB): (a) Average PSNR to iterations; (b) Average PSNR to CPU time.

and CPU time vs. PSNR curves respectively. Because the
codes of some algorithms used for comparison including the
ones of PANO, BM3D-IT and BM3D-AMP-MRI have been

encapsulated, meanwhile, deep learning-based methods have
no iterations, we only present the results of D-AMP,
BM3DT-CS, LT-CS and ELT-CS. ELT-CS achieves the best
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FIGURE 6. Visual comparisons on Head image using 40 sampling lines (pseudo radial) with measurement noise with standard deviation 30
(i.e. SNR: 14.70 dB): (a) Original; (b) Zero-filling (c) ADMM-Net (PSNR: 22.95 dB, SSIM: 0.4648); (d) TGDOF (PSNR: 20.20 dB, SSIM: 0.4667);
(e) PANO (PSNR: 21.84 dB, SSIM: 0.4515) (f) BM3D-IT (PSNR: 25.71 dB, SSIM: 0.6793) (g) BM3D-AMP-MRI (PSNR: 25.74 dB, SSIM: 0.6784)
(h) NLR-CS (PSNR: 23.80 dB, SSIM: 0.4773); (i) D-AMP (PSNR: 25.78 dB, SSIM: 0.6889); (j) BM3DT-CS (PSNR: 25.63 dB, SSIM: 0.6741); (k) LT-CS
(PSNR: 26.24 dB, SSIM: 0.7008), (l) ELT-CS (PSNR: 26.33 dB, SSIM: 0.7099).

FIGURE 7. Iterative curves on Head image using 40 sampling lines (pseudo radial) with measurement noise with standard
deviation 30 (i.e. SNR: 14.70 dB): (a) Average PSNR to iterations; (b) Average PSNR to CPU time.

performance in terms of PSNR and CPU time after about
30 iterations in Figure 5 (a) and after about 200 seconds
in Figure 5 (b). These curves validate that the proposed

method ELT-CS can converge to a good reconstructed result
in a reasonable amount of time. The average CPU time
to reconstruct a MR image with size of 256 × 256 by

VOLUME 8, 2020 177035



Z.-H. Xie et al.: Iterative Method With Enhanced Laplacian-Scaled Thresholding

FIGURE 8. Visual comparisons on Brain2 image at 10% sampling ratio (2D random) with measurement noise with standard deviation 20
(i.e. SNR: 12.09 dB): (a) Original; (b) Zero-filling (c) ADMM-Net (PSNR: 23.73 dB, SSIM: 0.4131); (d) TGDOF (PSNR: 22.29 dB, SSIM: 0.4369);
(e) PANO (PSNR: 25.08 dB, SSIM: 0.4821) (f) BM3D-IT (PSNR: 25.74 dB, SSIM: 0.6530) (g) BM3D-AMP-MRI (PSNR: 27.78 dB, SSIM: 0.7239)
(h) NLR-CS (PSNR: 26.72 dB, SSIM: 0.6127); (i) D-AMP (PSNR: 27.92 dB, SSIM: 0.7831); (j) BM3DT-CS (PSNR: 27.70 dB, SSIM: 0.7482);
(k) LT-CS (PSNR: 28.35 dB, SSIM: 0.7175), (l) ELT-CS (PSNR: 29.02 dB, SSIM: 0.7909).

FIGURE 9. Iterative curves on Brain2 image at 10% sampling ratio (2D random) with measurement noise with standard deviation
20 (i.e. SNR: 12.09 dB): (a) Average PSNR to iterations; (b) Average PSNR to CPU time.

ADMM-Net, TGDOF, PANO, BM3D-IT, BM3D-AMP-
MRI, NLR-CS, D-AMP, BM3DT-CS, LT-CS and ELT-CS are
about 3.41 s, 89.91 s, 151.54 s, 8.14 s, 14.89 s, 761.60 s,

27.73 s, 13.85 s, 461.32 s and 474.34 s, respectively. Note
that, the last three methods can converge with 13.85 s,
461.32 s and 474.34 s (i.e. with about 50 iterations) in
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FIGURE 10. Visual comparisons on Shoulder image at 16% sampling ratio (2D random) with measurement noise with standard deviation 40
(i.e. SNR: 4.15 dB): (a) Original; (b) Zero-filling (c) ADMM-Net (PSNR: 19.95 dB, SSIM: 0.1661); (d) TGDOF (PSNR: 15.89 dB, SSIM: 0.1064);
(e) PANO (PSNR: 19.96 dB, SSIM: 0.2922) (f) BM3D-IT (PSNR: 28.90 dB, SSIM: 0.6710) (g) BM3D-AMP-MRI (PSNR: 29.12 dB, SSIM: 0.6732)
(h) NLR-CS (PSNR: 22.88 dB, SSIM: 0.2929); (i) D-AMP (PSNR: 30.76 dB, SSIM: 0.7869); (j) BM3DT-CS (PSNR: 30.77 dB, SSIM: 0.7879);
(k) LT-CS (PSNR: 30.75 dB, SSIM: 0.7416), (l) ELT-CS (PSNR: 31.19 dB, SSIM: 0.7973).

FIGURE 11. Iterative curves on Shoulder image at 16% sampling ratio (2D random) with measurement noise with standard
deviation 40 (i.e. SNR: 4.15 dB): (a) Average PSNR to iterations; (b) Average PSNR to CPU time.

lower-power noise environment and with 5.96 s, 178.68 s,
183.13 s (i.e. with about 20 iterations) in the higher one,
respectively. The deep learning method ADMM-Net is fast,

which takes only several seconds to reconstruct an image, but
it spends a lot of time to train a deep learning network, mean-
while they are sensitive to noise.Most of comparisonmethods
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TABLE 5. The PSNR (dB) results of different methods with noiseless measurements.

are based on BM3D denoiser which is written in C language,
thus have a faster speed than the methods including NLR-CS,

LT-CS and ELT-CS that use pure MATLAB implementa-
tion without a C-coded optimization. Our ELT-CS method
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converges reasonably fast among the ones with pure
MATLAB implementation due to the acceleration steps
derived from FISTA.

B. EXPERIMENTS ON NOISELESS MEASUREMENTS
Although we focus on the problem of robustness to noise in
this work, we still conduct the reconstruction experiments
by all comparison algorithms with noiseless measurements.
Because of space limitations, we only present the PSNR
results of these methods with different sampling masks, sam-
pling rates and test images which are shown in Table 5.
From Table 5, one can clearly see that our method ELT-CS
still achieves the best PSNR results on average, while the
deep learning-based method TGDOF is sometimes better
than ELT-CS. Deep learning-based methods ADMM-Net and
TGDOF perform much better in the noiseless environment.
Furthermore, the differences of performance of algorithms
are reduced when compared to the ones with noisy measure-
ments. These results demonstrate that the proposed method
ELT-CS has the superiority in reconstructing MR images
when there exists no external noise.

V. CONCLUSION
We have proposed an effective iterative algorithm with
enhanced Laplacian-scaled thresholding for noise-robust
CS-MRI. Our work has the following contributions. First,
guided by information and structural sparsity theories,
we introduce the use of complementary regularizers and
side information to Laplacian-scaled model in CS-MRI, and
provide a plug-and-play prior method to formulate compos-
ite sparse problem combining with the nonlocal sparsity in
spatial and frequency domain. It can substantially enhance
the robustness to noise for CS-MRI. Second, an efficient
AMP-like algorithm with excellent reconstruction quality
and fast convergence performance is proposed in this paper
to solve this model. These properties make the CS-MRI
much more reliable than before. Finally, our simulations and
experiments on MR images demonstrate the superiority of
the proposed algorithm in robustness to the state-of-the-art
nonlocal sparsity-based CS-MRI algorithms and two deep
learning-based algorithms in CS-MRI. While this work has
designed a flexible iterative method for using composite
sparse models in CS image reconstruction, and demonstrated
the promise of combining two nonlocal sparsity, we plan to
systematically study the combination of deep learning-based
priors and nonlocal regularizers in inverse problems in future
work. Furthermore, in order to enable our model to be used in
practical MRI systems, we plan to define the complex-valued
Laplacian-scaled thresholding operator in the frame of the
complex version of AMP.
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