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ABSTRACT Granular computing has the advantage of discovering complex data knowledge, and manifold
alignment has proven of great value in a lot of areas of machine learning. We propose a novel algorithm
of fuzzy granule manifold alignment (FGMA), where we define some new operations, measurements, and
local topology of fuzzy granular vectors in fuzzy granular space. Furthermore, the algorithm is very different
from Semi-supervised and Procrustes algorithm because predetermining correspondence is not necessary.
A projection is learned that can map instances described by two types of features to a low-dimensional
space. Meanwhile, the local topology of the fuzzy granular vector induced by the instance is also preserved
andmatched within each set in lower dimensional space. This approachmakes it possible to directly compare
between data instances in different spaces. We convert an alignment problem of data in feature space into
fuzzy granular manifold alignment problem of granular space. Specifically, we first define fuzzy granule,
fuzzy granular vector, operations, and measurements in fuzzy granular space and gave proofs of theorems
and deductions. Next, the local topology around the fuzzy granular vector is introduced and the optimal
local topology matching can be achieved by minimizing their Frobenius norm. Finally, two manifolds are
connected and the optimalmapping can be calculated to obtain dimensionality reduction of the joint structure.
Thus, the corresponding relationship between two data instances can be got. We verified this algorithm in
Oxford image and Alzheimer’s disease voice dataset. Theoretical analysis and experiments demonstrate the
algorithm proposed is robust and effective.

INDEX TERMS Granular computing, fuzzy sets, manifold learning, alignment, local topology.

I. INTRODUCTION
The term manifold learning was first proposed by Bregler
and Omohundro in 1995 [1], [2]. It refers to restoring the
underlying low-dimensional manifold structure on the basis
of high-dimensional data, while building a low-dimensional
description of data. This low-dimensional description reflects
intrinsic variables that control the changes in the distribution
of manifold data, that is, the minimum independent variables
require to describe and perceive the changes in the distribu-
tion of data points on the manifold. In a broad sense, as long
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as it is based on the manifold distribution assumption of
the dataset, any feature learning method for the purpose of
learning the internal rules and structural characteristics of the
dataset can be regarded as the category of manifold learning.
The difference between various manifold learning methods
is limited to their different ways of collecting neighborhood
information and the structural characteristics of the neigh-
borhood. Manifold learning can be classified into global and
local methods [3]. The global method is to maintain the
distance relationship of all data instance points at various
scales from the perspective of the global geometry of the
distribution structure of the dataset. That is, when construct-
ing a low-dimensional embedded representation, we need to
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project points on manifold that are close to the distribution to
neighboring points in lower dimensional space. Meanwhile,
data points that are distributed farther are mapped into lower
dimensional space, and their distribution relationship at a
long distance is also maintained. Representative algorithms
include ISOMAP and Maximum Variance Unfolding (MVU)
and DiffusionMaps (DM). This idea based on global geomet-
ric structure is simple and easy to understand, and can give
an accurate description of the global distribution structure of
data. However, this type of method generally requires the sub-
set of low-dimensional space to be convex, otherwise the geo-
metric distance between the data points cannot be accurately
described. In addition, because the distance between any pair
of data needs to be calculated, the calculation of the algorithm
is expensive. The local method is very different from the
global one. It uses the perspective of local geometry to assure
data points that are close within local neighborhood obtain
similar projection positions on the low-dimensional space.
This type ofmethod constructs a low-dimensional description
by maintaining the change of the distribution structure of
the manifold data in the local neighborhood. Although it is
impossible to accurately describe the overall structure of the
data, its calculation cost is low. And for complex manifold
structures, there is no correct priori knowledge as the guid-
ance, so the calculation of the distance between distant points
is often not guaranteed to be precision. Therefore, local meth-
ods are more widely employed in practice. Representative
algorithms involve local tangent space alignment (LTSA),
Laplacian eigenmaps (LE), local linear embedding (LLE) etc.

II. RELATED WORK
Three papers published in Science in 2000 brought mani-
fold learning to a new stage of research [4]–[6]. In these
three papers, not only was the biological basis of the exis-
tence of perceptual manifolds demonstrated, but also the
isometric feature mapping algorithm and the local linear
embedding algorithm were proposed, and good results were
obtained. The method ISOMAP maintains the geodesic dis-
tance between data points and is successfully used in biomed-
ical data visualization [7], [8]. In the LLE method, data
points can be denoted by a linear combination of their neigh-
bors, so local properties of data are maintained in dimen-
sionality reduction, and they are successfully applied to
non-convex manifolds, but the artificial biomedical database
cannot be visualized [9]. Another Laplacian Eigenmaps
(LE) algorithm that has attracted attention considers the
distance between neighbors, and obtains a low-dimensional
data representation by maintaining the local properties on
the manifold [9], [10]. Although the algorithms mentioned
above have excellent performance in dimensionality reduc-
tion, they do not get an explicit mapping. When new data
is input, it cannot extract features fast and effectively.
To obtain solution of this problem, Locality Preserving Pro-
jections (LPP) algorithm [11]–[13], Neighborhood Preserv-
ing Embedding (NPE) algorithm [14], [15] and Orthogonal
Neighborhood Preserving Projections (ONPP) algorithm [16]

were successively proposed. These algorithms have similar
ideas. First, they establish a neighbor graph for the instance
points of the original dataset and construct a suitable relation-
ship matrix to characterize the similarity of the pair of points
inside the neighbor graph. Then these algorithms retain the
neighbor relationship of the original dataset when reducing
the dimension. And finally the linear embedding map of
the explicit form through the optimization criterion can be
obtained. This type of method can map new points directly
into a lower dimensional space by linear embeddingmapping.
Whereas the methods do not adopt the category informa-
tion in the dataset. The separability between the projected
categories is not prominent. Hence the methods are unfit
for classification and recognition of data, but suitable for
dimensionality reduction or clustering [17]. Peng and his
colleagues proposed a novel subspace clustering approach
by introducing a new deep model-Structured AutoEncoder
(StructAE) to handle realistic data without the linear subspace
structure in 2018 [18]. Next, they proposed a novel objective
function to project raw data into one space in which the
projection embraces the geometric consistency (GC) and the
cluster assignment consistency (CAC) [19]. Furthermore,
they proposed a novel clustering method by minimizing the
discrepancy between pairwise instance assignments for each
data point [20]. These researches were very important to align
instances.

Granular computing has the superiority of discovering
complex data knowledge. If manifold alignment is combined
with granular computing, a new algorithm can be designed to
enhance the performance. The idea of Granular computing
is derived from concept of fuzzy information granulation
proposed by Zadeh [21]. He thought that there are three
main characteristics of human cognition, namely, granula-
tion (breaking wholes into parts), organization (combining
parts into wholes), and causation [22]. Hobbs presented the
concept of Granularity in 1985 [23]. Then, Lin presented
the concept of granular computing on the basis of binary
relations in 1998 [24]. Yager et al. also talked over importance
of granular computing in intelligent engineering in the same
year [25]. In 2000, Yao gave the construction and calculation
of granules in granular computing in detail [26]. In 2002, he
studied the problem of information granulation and concept
approximate structure in the rough set theory [27]. After that,
Yao concentrated on basic concept of granular computing
and gave a granular computing model via region division
using set theory [28]; analyzed the past, present and future
development of granular computing and presented triadic
theory [29]; deeply discussed connection between cognitive
science and granular computing and constructed a granular
computing framework for cognitive concept learning [30].
The rough outline of the granular computing gradually forms.
Pedrycz et al. published the book ‘‘Handbook of granular
computing’’, which aims to provide guidance and assistance
in granular computing related to computing intelligence, and
so on [31]. Ling Zhang and Bo Zhang published the book
on problem solution of quotient space, which elaborated a
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mathematical model of hierarchical multi-granule comput-
ing based on quotient space [32]. Duoqian Miao, Deyi Li,
Yiyu Yao et al. introduced the process of research on the
uncertainty of granular computing and the cross-over study
in [33].

Wang and his colleagues analyzed and summarized the
uncertainty problems on granular computing models [34].
Liang et al. combined concept of information granule with
entropy theory, and established the complementary relation-
ship between them [35]. Yao et al. gave a new way of
thinking about prospects and challenges of future granular
computing in [36]. Wu et al. established a rough approx-
imation model of the order granular structure in the order
information system of multi-granularity marking [37]. For
the three core issues of information granulation, information
granularity and granular operation under granular computing,
Qian et al. established a unified representation framework for
granular computing based on sets [38]. Hu et al. realized the
attribute reduction of mixed data by constructing a new infor-
mation granulation method on fuzzy rough sets [39]. Xu et al.
established a formal conceptual system describing human
cognitive processes, and gave definitions and algorithms for
granular transformation of related information [40]. Herbert
and Yao regard the growth and absorption of neurons as the
construction and decomposition of granules, and then pro-
posed a hierarchical self-organizing mapping granular com-
puting framework for neural networks [41]. Jankowski et al.
used the interactive operation between complex information
granules in rough set model to present an approach to deal
with uncertain problems in complex systems [42]. Dubois
and Henri discussed the common features between extended
fuzzy sets from two aspects of similarity relationship and
formal concept [43]. Peters and Weber summarized and pro-
posed a unified framework for existing dynamic granule
clustering algorithms [44]. Li et al. proposed formal con-
cept learning method on the basis of granular computing
from angle of cognitive computing [45]. Xu et al. presented
a granular computing method that uses information gran-
ules to describe machine learning for fuzzy datasets [46].
Chiaselotti et al. connected the automorphism of graphs with
the indistinguishable relationship, and introduced the rela-
tionship between simple graphs based on adjacency matri-
ces and granular computing [47]. Salehi et al. conducted
a systematic classification study on granular computing
related research from four perspectives of key areas, contri-
bution types, research types and research frameworks. They
found that the research on clustering analysis for informa-
tion granules was rare, and compared the effect of informa-
tion granulation of five common clustering algorithms [48].
Al-Hmouz et al. introduced a granular computing framework
on the basis of time series description and prediction [49].
Wang and his colleagues surveyed existing research of
granular computing from optimization and conversion of
granularity and multi-granularity joint problem solving, and
presented graph for relationship among three primary modes
of granular computing [50]. Xu and his colleagues presented a

local-density-based optimal granulationmodel [51]. Granular
computing has achieved lots of results in theory, methods
and applications, but there are still many key problems to
be solved in the analysis and processing of big data, such
as the abstract description of multi-level granular space and
knowledge acquisition technology, the establishment and
optimization of multi-granularity model, the interpretation
and construction of the multi-level granularity spatial struc-
ture, the conversion mechanism and method between the
granular layer and the granularity, etc. And three-way deci-
sion proposed by Yiyu Yao is one of good methods to find
these solutions. In addition, Li et al. presented a fastest
robust path optimization algorithm to form the best routing
by combining the effect of traffic events [52]. Li and his
colleagues adopted granular computing to design boosted k
nearest neighbor classifiers [53] and search voice encrypted
scheme [54]. Mencar and Pedrycz proposed the definition of
granular counting, which realized in the presence of uncertain
data modeled through possibility distributions [55] and this is
also a new angle to study uncertain data.

III. CONTRIBUTIONS
Our contributions are as follows:

• We convert an alignment problem of instance in feature
space into fuzzy granule manifold alignment problem in
fuzzy granular space to solve. This method incorporates
the idea of granular computing and solves problems
from different levels. This method can observe and pro-
cess data sets hierarchically from different granularity,
which reduces the complexity of alignment problem.

• We propose the term fuzzy granular vector by defining
new operations and metrics and design the algorithm
of fuzzy granule manifold alignment based on them.
Moreover, this algorithm can align instances without
predetermining correspondence, which is required for
Semi-supervised and Procrustes algorithm.

IV. THE PROBLEM
As defined in Table 1, let P be a set of instances sampled
from manifold P , and let Q be a set of instances collected
frommanifoldQ. Learning mappings α and β to a new space
Z is our aim. Also, we need to preserve the neighborhood
relationships inside of P and those of Q in new space Z
respectively. Suppose that local topology of pi ∈ P and qj ∈ Q
can be well matched in the original spaces, then pi and qj
will also be matched in the new space Z . Our goal is to align
the instances in the datasets P and Q. Since the instances
in these two datasets are represented by features of different
dimensionality, it is very difficult to directly compare pi ∈ P
and qj ∈ Q. In order to establish the relationship between
them, we use fuzzy granular vector constructed by pi and
fuzzy granular vectors induced by its neighbors to jointly
characterize the local topology of pi. Similarly, the local
topology of qj is also expressed via this method. pi and qj
may be directly compared by local topology denoted relations
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TABLE 1. Notation.

FIGURE 1. Illustration of the main algorithm.

instead of features. But pi might be similar to many instances
in Q. Therefore, to find which instance in Q is true similar is
very difficult. As matter of fact, there are often lots of true
match for adhibitions. Interestingly, discovering true match
may be more difficult than solving the coupled problem of
the original problem. The reason lies in preserving structures
of two manifolds during matching process. So it can help
us filter out some false positive matches. In the method,
we firstly establish all likely matches for every instance based
on local topology mentioned above. After that instance align-
ment problem is transformed into an embedding problem
with constraint conditions, which can be found solution using
generalized eigenvalue decomposition.

The algorithm flow is shown in Figure 1. pi ∈ P and
qj ∈ Q come from varied manifolds, so they are not to
be indirectly compared. The algorithm proposed learns the
mappings α and β which can map the instances from P and
Q, respectively, to a new same space. In this way, samples
from varied manifolds with similar local topology can be
projected to similar locations and manifold structure can also
be kept. In this process, first, each instance inP andQ is fuzzy
granulated to construct a fuzzy granular vector. After that we
need to analyze local topology of each fuzzy granular vector,
put the fuzzy granular vectors and their local topology from P
andQ into the joint structure, and find the best local topology
match, so as to get the mapping α and β. Thus, αT pi and
βT qj are in the same space and have the same dimensionality,
which can be directly compared and be as the evaluation of
the similarity between pi and qj.

V. THE MAIN ALGORITHM
Given two instance sets {P,R}, {Q,E}, where P =

{p1, p2, . . . , pm}, its attribute set R = {r1, r2, . . . , rt } and
Q = {q1, q2, . . . , qn}, its attribute set E = {e1, e2, . . . , es}.
Let pi ∈ P be a point defined in t-dimensional mani-
fold P . Its feature vector is (fr1 (pi), . . . , frt (pi))

T , and P
is a t × m matrix. Similarly, qj is a point defined in
a s-dimensional manifold Q, its s-dimensional feature is
(fe1 (qj), . . . , fes (qj))

T , and Q is a s × n matrix. The aim is
to discover the match point pair between P and Q. We first
fuzzily granulate each point in P and Q. Then we can match
the points according to the local topology of fuzzy granular
vectors induced by them in the fuzzy granular space. Further
these points from P and Q can be aligned or these matching
point pairs can be found.

A. CONVERTING DATA INTO FUZZY GRANULES
In general, it is fuzzy that the granularity of human reasoning
and concept building. Fuzzy information granulation is gen-
erally achieved by fuzzy binary relationship defined in fuzzy
granular space. Atomic attribute is fuzzy granulated and then
we can construct fuzzy granular vectors. For ∀pi, pj ∈ P and
∀r ∈ R, the distance on attribute r between pi and pj can be
denoted as:

sr (pi, pj) =
∣∣fr (pi)− fr (pj)∣∣ (1)

where sr (pi, pj) ∈ [0, 1]. fr (pi) and fr (pj) express normalized
value of pi and pj on the attribute r , respectively. According
to distance definition, fuzzy granule can be constructed. For
∀pi ∈ P,∀r ∈ R, fuzzy granule of instance pi on attribute r
can be denoted as:

Nr (pi) =
sr (pi, p1)

p1
+
sr (pi, p2)

p2
+ . . .+

sr (pi, pm)
pm

=

m∑
j=1

sr (pi, pj)
pj

(2)

Here Nr (pi) is the fuzzy granule induced by pi (also seen
as fuzzy neighborhoods of pi). ‘‘+’’ represents the union
operator, and ‘‘−’’ denotes separator. This fuzzy granule can
also be seen as a set composed of the distance pairs between
instances. By accumulating the elements inside fuzzy gran-
ule, the cardinal of fuzzy granule is denoted as:

|Nr (p)| =
∑
v∈P

sr (p, v) (3)

We have 0 ≤ |Nr (p)| ≤ |P|. Here |P| represents the number
of instance set P. Since an attribute can induce one fuzzy
granule of one instance, one attribute set can induce one
fuzzy granular vector of one instance. In other words, a fuzzy
granular vector consists of many fuzzy granules. We can
define it as follows: for ∀p ∈ P, ∀A ⊆ R, namely A =
{r1, r2, . . . , rk}, (k ≤ |R|), then the fuzzy granular vector of
p on the attribute subset A is

N̂A(p) =
Nr1 (p)
r1
+
Nr2 (p)
r2
+ . . .+

Nrk (p)
rk
=

k∑
j=1

Nrj (p)

rj

(4)
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Similarly, here ‘‘+’’ denotes union operator and ‘‘-’’ repre-
sents separator. Furthermore, the module of fuzzy granular
vector induced by p on attribute subset A can be denoted as:

|N̂A(p)| =
∑
r∈A

|Nr (p)| (5)

Given these definitions mentioned above, operators and met-
rics between fuzzy granules can also be denoted as follows.
Let Nr (p) and Nr (v) be fuzzy granules of instances p and v on
attribute r respectively, four operators ∩,∪,∼,and ⊕ can be
defined as follows:

Nr (p) ∩ Nr (v) =
m∑
j=1

sr (pj,p)+sr (pj,v)
1+sr (pj,p)sr (pj,v)

pj
(6)

Nr (p) ∪ Nr (v) =
m∑
j=1

sr (pj,p)sr (pj,v)
1+(1−sr (pj,p))(1−sr (pj,v))

pj
(7)

∼ Nr (p) =
m∑
j=1

1− sr (pj, p)
pj

(8)

Nr (s)⊕ Nr (t)

=

m∑
j=1

max{Nr (pj) ∪ Nr (p),Nr (pj) ∪ Nr (v)}
pj

−

m∑
j=1

min{Nr (pj) ∩ Nr (p),Nr (pj) ∩ Nr (v)}
pj

(9)

Next, operators and metrics of fuzzy granular vector can
be designed on the basis of them. For ∀p, v ∈ P, consider

two fuzzy granular vectors N̂A(p) =
∑k

j=1
Nrj (p)
rj

,N̂A(v) =∑k
j=1

Nrj (v)
rj

on A ⊆ R, ri ∈ A, i = 1, 2, . . . , k. Operators
and metrics between fuzzy granular vectors can be defined
as:

N̂A(p) ∩ N̂A(v) =
k∑
j=1

Nrj (p) ∩ Nrj (v)

rj
(10)

N̂A(p) ∪ N̂A(v) =
k∑
j=1

Nrj (p) ∪ Nrj (v)

rj
(11)

∼ N̂A(p) =
k∑
j=1

∼ Nrj (p)

rj
(12)

N̂A(p)⊕ N̂A(v) =
k∑
j=1

Nrj (p)⊕ Nrj (v)

rj
(13)

Here, ‘‘+’’ represents union; ‘‘−’’denotes separator. Based on
these definitions, the distance between fuzzy granular vectors
can be described as

ŝA(N̂A(p), N̂A(v)) =
1

|A| ∗ |P|

∑
r∈A

|Nr (p)⊕ Nr (v)|
|Nr (p) ∪ Nr (v)|

(14)

Below we give two theorems about the distance and the
monotony of fuzzy granular vectors.

TABLE 2. Fuzzy Granulation instance Set.

Theorem 1: For ∀p, v ∈ P, the distance of fuzzy granular
vector satisfies to the following property:

0 ≤ ŝ(N̂R(p), N̂R(v)) ≤ 1 (15)

Proof: Equation (2) illustrates Nr (p) =
∑t

i=1
sr (p,pi)
pi

,

Nr (v) =
∑t

i=1
sr (v,pi)
pi

, and Equation (1) demonstrates
sr (p, pi), sr (v, pi) ∈ [0, 1]. Therefore, |Nr (p)| =∑

u∈P sr (p, u) ∈ [0, |P|] is given by Equation (3).

We have N̂R(p) =
∑t

j=1
Nrj (p)
rj(p)

and N̂R(v) =
∑t

j=1
Nrj (v)
rj(v)

by Equation (4). Further, ∀r ∈ R, 0 ≤ |Nr (p)⊕Nr (v)|
|Nr (p)∪Nr (v)|

≤ |P|

can be given by Equation (5), (7) and (9). So Equation 0 ≤∑
r∈R
|Nr (p)⊕Nr (v)|
|Nr (p)∪Nr (v)|

≤ |R| ∗ |P| is established. Divide both

sides of the inequality by |R| ∗ |P| to get ŝ(N̂R(p), N̂R(v)) =
1

|R|∗|P|

∑
r∈R
|Nr (p)⊕Nr (v)|
|Nr (p)∪Nr (v)|

, that is, 0 ≤ ŝ(N̂R(p), N̂R(v)) ≤ 1 is
established. �
Theorem 2 (Monotony): For ∀p ∈ P, the attribute subset

A and F satisfy A ⊆ F ⊆ R, and let N̂A(p) and N̂F (p) be
fuzzy granular vectors of p on A and F respectively. Then
|N̂A(p)| ≤ |N̂F (p)| is established.

Proof: Equation (4) gives N̂A(p) =
∑k

j=1
Nrj (p)
rj

and

N̂F (p) =
∑g

j=1
Nrj (p)
rj

, where g ≤ k . For ∀r ∈ A, its fuzzy
granule is Nr (p). Since A ⊆ F , r ∈ F . Its fuzzy granule
satisfies Nr (p) ∈ N̂F (p),|A| ≤ |F |. So

∑
r∈A |Nr (p)| ≤∑

r∈F |Nr (p)|, that is, |N̂A(p)| ≤ |N̂F (p)| is established. �
The distance of fuzzy granular vector is regarded as the

metric of similarity between fuzzy granular vectors. The
smaller distance, the more similar fuzzy granular vectors are.
Otherwise, the bigger distance, the less similar fuzzy granular
vectors are. We have now give an example.
Example 1: As shown in Table 2, given a instance set

P = {p1, p2, p3, p4} and an attribute set R = {r1, r2, r3},
granulation process is as follows.

We take the instance p1 as the example. If fuzzy granulation
is performed according to the attribute r1, the fuzzy granule
of p1 can be calculated as follows: sr1 (p1, p1) = |0.5 −
0.5| = 0, sr1 (p1, p2) = |0.5 − 0.1| = 0.4, sr1 (p1, p3) =
|0.5 − 0.1| = 0.4, sr1 (p1, p4) = |0.5 − 0.3| = 0.2, since
Nr1 (p1) = sr1 (p1, p1)/p1 + sr1 (p1, p2)/p2 + sr1 (p1, p3)/p3 +
sr1 (p1, p4)/p4, the fuzzy granule of p1 on r1 is Nr1 (p1) =
0/p1 + 0.4/p2 + 0.4/p3 + 0.2/p4. Its cardinal is |Nr1 (p1)| =
0 + 0.4 + 0.4 + 0.2 = 1. Similarly, the fuzzy granule of p1
on r2 is Nr2 (p1) = 0/p1 + 0.1/p2 + 0/p3 + 0.1/p4, of which
cardinal is |Nr2 (p1)| = 0.2. The fuzzy granule of p1 on r3
is denoted as Nr3 (p1) = 0/p1 + 0.1/p2 + 0.2/p3 + 0.1/p4
and its cardinal is represented as |Nr3 (p1)| = 0.4. After
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that, the fuzzy granular vector of p1 on R can be defined as

N̂R(p1) =
∑3

j=1
Nrj (p1)
rj

and its module can be calculated as

|N̂R(p1)| = |Nr1 (p1)|+|Nr2 (p1)|+|Nr3 (p1)| = 1+0.2+0.4 =
1.6. Other instances listed in Table 2 are also granulated by
the similar calculation.

B. LOCAL TOPOLOGY OF FUZZY GRANULAR VECTOR
Let Lpi be a (k + 1)× (k + 1) matrix denoting local topology
of fuzzy granular vector induced by pi. For example, one ele-
ment of Lpi , Lpi (a, b) = ŝR(N̂R(xa), N̂R(xb)) denotes the dis-
tance between fuzzy granular vector of xa and fuzzy granular
vector of xb on attribute R, where x1 = pi, {x2, x3, . . . , xk+1}
are pi’s k nearest neighbors of fuzzy granular vectors. Sim-
ilarly, Lqj is also a (k + 1) × (k + 1) matrix denoting local
topology of fuzzy granular vector induced by qj. Let M be
a m × n matrix, where M ij is the distance between Lpi and
Lqj . As we know, there are k! permutations in the k nearest
neighbors of the fuzzy granular vector from pi. In other
words, there are k! variants in Lpi . Let {Lpi}h represent its
hth variant. Similarly, Lqj has also k! variants and {Lqj}h
denotes its hth variant. For ∀M ij

∈ Mm×n, the calculation of
M ij is equivalent to calculating the distance between Lpi and
Lqj , dist(Lpi ,Lqj ), which can be given according to Equa-
tion M ij

= exp(−dist(Lpi ,Lqj )/σ
2). Here, dist(Lpi ,Lqj ) =

min1≤h≤k!{min(dis1(h), dis2(h))}. In this Equation, dis1(h) =
||{Lqj}h − π1Lpi ||F , and dis2(h) = ||Lpi − π2{Lqj}h||F , where
π1 = trace(LTpi{Lqj}h)/trace(L

T
piLpi ),

π2 = trace({Lqj}
T
h Lpi )/trace({Lqj}

T
h {Lqj}h) (|| · ||F represents

Frobenius norm). We give the theorem and proof as follows.
Theorem 3: Given two (k + 1) × (k + 1) distance matri-

ces L1 and L2, π2 = trace(LT2 L1)/trace(L
T
2 L

T
2 ) can be

got by minimizing ||L1 − π2L2||F . Symmetrically, π1 =
trace(LT1 L2)/trace(L

T
1 L

T
1 ) can also be got by minimizing

||L2 − π1L1||F .
Proof: The aim is to find π2 to minimize ||L1 −

π2L2||F . Here || · ||F expresses Frobenius norm. This is
equivalent to solving π2 = argminπ2 ||L1 − π2L2||F . It is
easy to verify ||L1 − π2L2||F = trace(LT1 L1) − 2π2trace

(LT2 L1)+π
2
2 trace(L

T
2 L2) according to Frobenius norm. Since

trace(LT1 L1) is constant, the problem is equivalent to find-
ing the solution on π2 = argminπ2{π

2
2 trace(L

T
2 L2) −

2π2trace(LT2 L1)}. Differentiating with respect to π2, this
Equation implies 2π2trace(LT2 L2) = 2trace(LT2 L1). Further,

it implies π2 = trace(LT2 L1)/trace(L
T
2 L2). Similarly, we can

also find π1 = trace(LT1 L2)/trace(L
T
1 L

T
1 ). �

To calculate matrix M , the comparison of all matrices
L need to be calculated. When computing Lpi and Lqj ,
we assume that pi and qj are matched. However, it is unknown
that k nearest neighbors of fuzzy granular vector of pimatches
that of qj. To find the optimum matching, k! permutations
need to be considered. It is easy to do, because local pattern
and k are very small positive integer. As demonstrated in
Theorem 3, we describe how to rescale optimally to match
each other. In other words, we need to consider all possible

matching between two local patterns. That is to compute
dist(Lpi ,Lqj ) and return the distance calculated from the best
possible match.

C. MANIFOLD ALIGNMENT WITHOUT PREDETERMINING
CORRESPONDENCE
In this section, to find the best matching between P and Q,
a loss function LS(α, β) is constructed by fusing their local
topology. By solving the LS(α, β), the best mappings, α, β,
can be found. This computing process can be equal to solving
the problem of generalized eigenvalue. We first give some
notions as follows.

LetDp be a diagonal matrix, whereDiip =
∑

jM
ij
p andVp =

Dp − Mp. M
ij
q denotes the distance between qi and qj, and

Dq is also a diagonal matrix, where Diiq =
∑

jM
ij
q , Vq =

Dq − Mq. Let Z =
(
P 0
0 Q

)
and D =

(
Dp 0
0 Dq

)
. We use

matrix multiplication to map the vector pi into a scalar, that is
αT pi (α is a t×1 matrix). Similarly, we have βT qj to obtain a
scalar (β is a s× 1 matrix). Let ξ = (αT , βT )T . LS(α, β) is a
loss function, whereµ0 is weight of the first term of LS(α, β).
91 is a m × m diagonal matrix. Here 9 ii

1 =
∑

jM
ij. 92 is a

m× n matrix, where 9 ij
2 = M ij. 93 is a n×m matrix, where

9
ij
3 = M ji.94 is a n×nmatrix. Here9 ii

4 =
∑

jM
ji. We have

V =
(
Vp + µ91 −µ92
−µ93 Vq + µ94

)
. The aim is to minimize the

loss function

LS(α, β) = µ
∑
i,j

(αT pi − βT qj)2M ij

+µ1

∑
i,j

(αT pi − αT pj)2M ij
p

+µ2

∑
i,j

(βT qi − βT qj)2M ij
q

Here weights satisfy to µ1 + µ2 = 1. The first term of
LS(α, β) is to penalize the difference between P and Q on
the matched local topology in fuzzy granular space. If M ij

is small, it can be inferred that Lpi and Lqj are close in the
new space. Otherwise, if M ij is big, we may conclude Lpi is
far distant from Lqj in the new space. The second and third
terms imply similarity of local topology inside P and Q. The
optimal solution of this loss function LS(α, β) is provided in
Theorem 4.
Theorem 4: Solving the loss function LS(α, β) is equivalent

to calculating the minimum eigenvectors of the generalized
eigenvalue decomposition ZVZT ξ = λZDZT ξ , which can
optimal mappings to align P and Q.

Proof: The aim is to assure LS(α, β) = ξTZVZT ξ
is established. Two manifolds can be aligned and their
embedding structure can be discovered by joining two
graphs using matrix V . To eliminate arbitrary proportionality
scaling in the embedding, αTPDpPTα + βTQDqQTβ =
ξTZDZT ξ = 1 need to be as an constraint condition
to be added. The matrices Dp and Dq give a measure on
the vertices of the graph, where vertices can be seen as
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TABLE 3. FGMA algorithm.

instances. If the value Diip or Diiq is small, it implies pi or qi
is less essential. If there were not the constraint condition,
all instances projected into new space might be indistin-
guishable. Finally, the optimum problem can be converted
into solving the Equation argminξ :ξT ZDZT ξ=1{LS(α, β)} =
argminξ :ξT ZDZT ξ=1{ξ

TZVZT ξ}. Build Lagrange equation
Lg(ξ, λ) = ξTZVZT ξ − λ(ξTZDZT ξ − 1), then we have the
partial derivative of the function Lg(ξ, λ) on ξ and can obtain
ZVZT ξ = λZDZT ξ . The solution of the Equation LS(α, β)
is equal to solving the minimum eigenvectors of the general-
ized eigenvalue regarding ZVZT ξ = λZDZT ξ . Suppose that
ξ1, ξ2, . . . , ξd are the minimum eigenvectors with respect to
the d lowest eigenvalues of the Equation ZVZT ξ = λZDZT ξ
and α consists of the top t rows of matrix [ξ1, ξ2, . . . , ξd ] and
β is composed of the next s rows of matrix [ξ1, ξ2, . . . , ξd ].
Then, αT pi and βT qj have the same dimensionality and can
be compared directly. �

The algorithm is mainly divided into three phase, instance
granulation, local topology construction, and eigenvector
solving, which are shown in Table 3.

VI. EXPERIMENTAL ANALYSIS
In this section, we adopted recall and precision to evalu-
ate the performance of algorithm. Here recall = TP

TP+FN ,
precision = TP

TP+FP , where TP represents true positive, FN
denotes false negative, and FP is false positive.
We employed Oxford 5K image dataset and Alzheimer’s

disease voice dataset to verify performance of the algo-
rithm. Oxford 5K is a widely used in Oxford public stan-
dard dataset. It consists of 5062 landmark building images
collected from Flicker. There are 11 categories, and each
category has 5 query images, and total is 55 query images.
The dataset contains many types of image changes, such as
translation, rotation, and perspective transformation. For all
datasets we adopted the standard evaluation protocols and
reported Average Precision and Average Recall. we follow
standard practice and resize the images tomultiple and extract
crops of 256 × 256 pixels. In this paper, we used Histogram
of Oriented Gradients (HOG) [56] and Speeded Up Robust

Features (SURF) [57] as image features. In image processing
cases, P and Q represent image. We need to match point
pairs in P and Q. pi and qj are point in P and Q respectively.
R, A, and E denote feature (attribute) set. ri, aj, and ek
express feature (attribute) value respectively.We can describe
HOG feature via computing and counting gradient direction
histogram from local area inside image. Since the shape and
appearance of local area can be well embodied via gradient
direction, we adopted HOG feature descriptor to characterize
Local details around the point of image. The image was
split into several blocks. The center of each block with the
size of 16 × 16 was the focus point. Then each block was
evenly divided into 4 cells and amplitudes and directions
of these cells were computed. The gradient direction was
divided into 8 directions on average, and then accumulate
the gradient amplitude of the pixels in each cell in the same
gradient direction value range to obtain an 8-dimensional
cell feature vector. Connected them together to construct a
32-dimensional vector, which is used as the descriptor of the
focus point.

The SURF is widely used target feature extraction and
matching algorithm. It has efficient and stable characteris-
tics and can be employed in scenes that require real-time
operations such as target recognition and tracking locking.
The basic idea of the SURF algorithm is derived from the
scale-invariant feature transform (SIFT) algorithm [58], but
it adopts a fast approximation method in specific search,
neighbor feature description, and descriptor matching, which
makes the execution efficiency and stability better than the
SIFT algorithm. For example, in terms of feature point search,
the SURF algorithm uses a square filter instead of the Gaus-
sian filter adopted in the SIFT algorithm, and with the help
of the concept of integral image, the convolution operation
of image and the Gaussian differential template are converted
into addition and subtraction operations on the integral image.
Therefore, its computing speed is improved. HAAR features
and integrated images are used to decrease computational
complexity. SURF is similar to SIFT. Here, 64-dimensional
feature vector was obtained by calculating horizontal and
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FIGURE 2. Results of Image Fuzzy Granule Manifold Alignment.

vertical HAAR wavelet features in a certain area of fea-
ture points. Figure 2 compares the performance of FGMA,
semi-supervised manifold alignment (SSMA) [59], manifold
alignment using Procrustes analysis (MAPA) [60], semi-
supervised manifold alignment with multi-graph embedding
(SSMAME) [61], and only considering local geometric align-
ment (OCLGA) methods. The performance refers to average
precision and average recall in the experiments.

As shown in the left side of Figure 2, the average preci-
sion is shown. Its abscissa represents the number of local
neighbor of fuzzy granular vector, and the ordinate denotes
the average precision. When k = 17, FGMA reached a
peak of 0.912, and SSMAME, SSMA, MAPA, and OCLGA
achieved 0.903, 0.881, 0.880, and 0.868 respectively. Average
precision increased by 1.00%, 3.52%, 3.64%, and 5.07%
respectively. The average precision curve of the three meth-
ods shows a shape with a high middle and low sides. This
shows that the performance is better when the number of
local neighbor of fuzzy granular vector is between 10 to 20.
Whether k is too large or too small, it may lead to be on the
decline for performance. Overall, FGMA outperforms other
four methods. The graph on the right of Figure 2 shows the
average recall rate. From the curve shape, FGMA envelopes
OCLGA, and OCLGA envelopes SSMA. This illustrated that
in terms of average recall rate, FGMA performed OCLGA
and OCLGA was superior to SSMA. From the peak of the
curve, when k = 17, FGMAgot themaximumvalue of 0.916.
SSMAME, SSMA, MAPA, and OCLGA reached their max-
imum values of 0.896, 0.883, 0.878, and 0.869 respectively
(i.e., 2.23%, 3.74%, 4.33%, and 5.41% improvement respec-
tively). Similarly, the curve of average recall also demon-
strates a shape with a high middle and low sides. Whether k is
too large or too small, performance may decline. If parameter
k is too large, much more noise will be imported so that per-
formance may also fall; otherwise, if parameter k is too small,

local topology will be not embedded in matching process as
constraint condition. Figure 3 shows the result of using the
fuzzy granule manifold alignment, where HOG and SURF
were employed to extract raw features of images.

Besides the image dataset, we also adopted voice data
to verify performance of the algorithm. The Alzheimer’s
disease dataset came from the University of Pittsburgh, and
the data was stored in form of speech and text from par-
ticipants including elderly controls, people with possible
Alzheimer’s Disease, and people with other dementia diag-
noses. There are 1263 instances in the corpus. Here, P and
Q represent two voices. Point pairs in P and Q need to
be compared. pi and qj denote point in P and Q respec-
tively. R, A, and E denote feature (MFCC and GFCC) set.
ri, aj, and ek are feature value respectively. We know that
Mel Cepstral Coefficients (MFCC) and Gammatone Cepstral
Coefficients (GFCC) are highly robust, and the two meth-
ods are used as features to extract speech. First, the voice
instances were down-converted to 22050 Hz and normal-
ized. A window with a frame length of 512 (about 23ms)
and a frame shift of 256 were adopted to divide the sound
instance into multiple frames. Next, extract MFCC feature
and GFCC feature for each voice frame separately. For
MFCC, we selected the first 15 dimensions, its first-order
difference, and its second-order difference, which were con-
catenated to obtain 42-dimensional features. For the GFCC,
we selected the first 12-dimensional features, its first-order
difference, and second-order difference, which were con-
nected to get 33-dimensional features. Deleted blank frames
and scrambled the dataset. As shown in Table 4, when the
number of neighbors k = 7, the precision of FGMA reached
maximum of 0.921, while SSMAME, SSMA, MAPA, and
OCLGA got 0.905, 0.887, 0.879, and 0.868 (i.e., improve-
ment by 1.77%, 3.83%, 4.78%, and 6.11% respectively).
Next, we gave commutaion time because improvement of
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FIGURE 3. Alignment of key points between images using different algorithms.

TABLE 4. Alignment of voice collection manifolds.

efficiency is also depended on running time. As demonstrated
in Table 4, compared with the four algorithms, FGMA is bet-
ter than SSMAME (i.e., improvement by 3.37%); OCLGA,
MAPA, and SSMA outperformed FGMA and improved by
7.75%, 3.49%, 2.33%, respectively. In terms of recall rate,
compared with SSMAME, SSMA, MAPA, and OCLGA,
FGMA increased by 2.30%, 6.14%, 6.87%, and 7.12%
respectively. In addition, Figure 2 also illustrated how average
precision and average recall changed with the number of
neighbors in the image dataset.

In summary, whether dataset is image or voice, FGMA
is slightly superior to SSMAME, and SSMAME performs
better than SSMA, MAPA, and OCLGA. The reasons are
as follows: on the one hand, FGMA considers the global
characteristics from the perspective of fuzzy granule; on the
other hand, it not only considers the local topology of fuzzy
granular vector induced by instance point, but also establishes
an objective function to obtain an optimal solution.

VII. DISSCUSSION
In the paper, we propose a novel fuzzy granule manifold
alignment method without predetermining correspondence.
The approach can find correspondence between different
fuzzy granular spaces, making it possible to align between
instance points denoted via different features. In addition to

giving a theoretical analysis, we also apply it to the real
world of image feature point alignment and Alzheimer’s
speech instance matching. In future work, we will consider
local and distributed granulation to further enhance algorithm
efficiency.
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