IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 7, 2020, accepted September 20, 2020, date of publication September 28, 2020,

date of current version October 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3027357

SPADE 3: Supporting the New Generation

of Multi-Agent Systems

JAVIER PALANCA“, ANDRES TERRASA, VICENTE JULIAN, AND CARLOS CARRASCOSA

Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politecnica de Valencia, 46022 Valencia, Spain

Corresponding author: Javier Palanca (jpalanca@dsic.upv.es)

This work was supported in part by the Spanish Government, under Project RT12018-095390-B-C31-AR.

ABSTRACT Although intelligent agent-based systems have existed for several years, the progression in
terms of real applications or their integration in the industry have not yet reached the expected levels. During
the last two decades, many agent platforms have appeared with the aim of simplifying the development of
multi-agent systems. Some of these platforms have been designed for general purposes, while others have
been oriented towards specific domains. However, the lack of standards and the complexity associated with
supporting such systems, among other difficulties, have hampered their generalised use. This article looks
in depth at the current situation of existing agent platforms, trying to analyse their current shortcomings and
their expected needs in the near future. The goal of the paper is to identify possible lines of work and some
of the most crucial aspects to be considered in order to popularize the application of agent technology as a
dynamic and flexible solution to current problems. Moreover, the paper presents SPADE 3, a new version of
the SPADE middleware, which has been totally redesigned in order to conform to the identified challenges.
Finally, a case study is proposed to illustrate how SPADE 3 is able to fulfill these challenges.

INDEX TERMS Multi-agent systems, intelligent agents, middleware.

I. INTRODUCTION
Multi-agent systems (MAS) technology allows for the devel-
opment of autonomous software entities (intelligent agents)
which are naturally designed to communicate with each other.
This communication enables the formation of complex inter-
action spaces, from which higher-level social activities such
as cooperation or collaboration may emerge. In order to facil-
itate the actual development of this type of systems, several
frameworks have been proposed in recent years. Such frame-
works, normally known as MAS platforms, usually offer cer-
tain facilities at the communication layer, the internal agent
architecture, the set of development tools, etc. The initial
trend where a multitude of MAS platforms were created and
coexisted for some time has moved nowadays to a situation
in which many of them are either no longer supported or have
been adapted to new requirements and/or functionalities.
Current requirements in the area of multi-agent systems not
only include that intelligent agents are able to interact with
each other in an open context, but also that the supporting
infrastructure provides them facilities to effectively build this
context. In addition, the recent appearance of new areas such

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan Bu

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

as Internet of Things, Ambient Intelligence, Cyber-Physical
Systems, etc., has resulted in the emergence of new agent-
based software specific to the needs of systems in such areas.
However, most of these requirements are still not covered by
the existing agent platforms. This gap has weakened many of
the existing proposals, and so it is imperative that the require-
ments and functionalities of agent infrastructures be revised
and reformulated, in order to support the implementation of
current, and future, MAS applications.

In this sense, this article deepens into the current state of
agent platforms, trying to analyze the existing trends, as well
as their possible weaknesses, in order to propose an adequate
support to the requirements of the next generation of multi-
agent systems. As a result of this analysis, the paper intends
to contribute with a set of open issues that may establish the
foundations for current and future supporting infrastructures
for agent-based solutions.

Following this idea, the paper also includes the proposal
of a new version of the SPADE! software [1], a middleware
for developing and executing multi-agent systems, written in
Python. In particular, this article introduces SPADE 3, which
has been completely redesigned and rewritten from scratch

1 https://pypi.org/project/spade/

182537

https://orcid.org/0000-0002-6209-9603
https://orcid.org/0000-0002-7582-8203

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

by the authors of this article, eliminating the functionalities
that are no longer useful for modern multi-agent systems,
and focusing on the incorporation of a careful selection of
concepts and modern technologies which may cover some of
the current open issues identified in the paper.

According to this, the paper presents three main contribu-
tions: the first one is a study of the current situation of agent
platforms; the second one is an analysis of some relevant open
issues for the development of modern and future multi-agent
systems; and the third one is the presentation of SPADE 3,
acompletely redesigned multi-agent systems middleware that
tries to cover the needs and shortcomings detected in this
analysis. In particular, when compared with other proposals
discussed in the paper, SPADE features a fully open, scal-
able and extensible development and execution environment
which makes full use of a standard, well-known communica-
tion protocol; transparent integration of humans and agents;
a modern and full-featured programming language such as
Python, which is nowadays leading the rankings of use in
most domains, and specifically in the Artificial Intelligence
arena?; and a set of development mechanisms which facilitate
the implementation of MAS applications.

The rest of the paper is structured as follows: Section II
presents a view of the current situation of existing plat-
forms for multi-agent systems development; Section III anal-
yses some relevant open issues related to this development
or support; Section IV introduces the SPADE 3 proposal,
by comparing its functionalities with previously detected
open issues; Section V describes a case of study which has
been implemented in SPADE 3, with the aim of illustrating its
main features regarding these open issues; finally, Section VI
presents the conclusions of the paper.

Il. STATE OF THE ART

Over the last few years, multi-agent systems (MAS) have
greatly evolved in several facets by following different
research lines, but this evolution has not yet achieved their
full consolidation. One key aspect in this consolidation is
the support given by MAS platforms, which are the pieces
of software (or middleware) upon which MAS are built and
executed. In several ways, the architecture, services, tools,
etc., provided by a particular platform conditions the abilities
of the MAS which can be developed and run on that platform
and, in turn, this affects the types of problems which those
MAS can solve.

In the research field of MAS platforms, some of the latest
significant developments include, on the one hand, the evolu-
tion of some classic, well-known, general-purpose platforms.
On the other hand, several new platforms have been proposed,
many of which are oriented towards developing MAS in spe-
cific areas of interest which have become popular lately, such
as the Internet of things (IoT), Ambient Intelligence (Aml),
Cyber-Physical Systems (CPS) or Agent-Based Simulations

2https://spectrum.ieee.org/c0mputing/software/the—top—programming—
languages-2019

182538

(ABS). The reminder of the section will focus on revising
these two types of recent results in MAS platforms, with the
objective of identifying some important aspects which they
have not yet solved or even tackled.

Among the general-purpose platforms, probably the most
popular and established one is JADE?3 (JAVA Agent DEvelop-
ment Framework) [2], which last version is from 2017. JADE
has probably been the most widely used tool to develop multi-
agent systems in the last two decades [3]. JADE implements
a fully-compliant FIPA* platform [4] as a series of intercon-
nected Java Virtual Machines called containers. Some of the
most relevant late developments related to JADE are WADE
and JADEL, which are now described. WADE? (Workflows
and Agents Development Environment) [5] is an extension
of JADE which adds the workflow abstraction to the agent
concept, by means of a workflow engine. So, the MAS is
designed from the viewpoint of a workflow, and the workflow
tasks are assigned to the agents. JADEL [6] (JADE Language)
is an initiative which aims to provide the MAS developer with
a new, friendly-syntax language for JADE agent program-
ming. However, as a language for programming agents, it is
a limited proposal, and it is so linked to JADE that it does not
cover all the functionalities of the platform; as a result, some
actions (such as the instantiation of agents, for example) need
to be carried out by directly using the facilities of the JADE
platform.

Other popular proposals aimed to support MAS in general
are platforms which have JavaBeans as their main underlying
technology. This is for example the case of IBM’s ABLE
or MadKit. ABLE (Agent Building and Learning Environ-
ment) [7] was designed as a lightweight Java-based agent
framework, and for some time it was widely used in several
different domains, such as automotive diagnostics, system
health monitoring, agent-based modeling and simulation,
etc., but nowadays it seems not to be available anymore. Mad-
Kit® (Multi-agent development Kit) [8] on the other hand,
is focused on providing support for agent organizations, but
without imposing a predefined agent model. The platform is
formed by a micro-kernel which supports the agents life-cycle
managing, agent messaging, group managing, etc., and a set
of system agents in charge of the platform services.

The last two items in this list of general-purpose platforms
are JANUS and JaCaMo, and they are relevant to this review
because of their recent advances and proposals. JANUS” [9]
is a Java-based platform that includes not only organiza-
tional concepts but also holons (in the idea of a holon as a
sub-structure composed itself of holons). Its main and most
novel feature is its ability to natively manage the concepts
of recursive agents and holons. The JaCaMo+ [10] platform
is founded on supporting the concept of agent organization.
It integrates the Jason language [11] (a BDI agent language

3 http://jade.tilab.com
4http://www.fipa.org

5 https://jade.tilab.com/wadeproject/
f’http://www.madkit.net
7http://WWW.janusproject.io

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

based on the AgentSpeak specification), CArtAgO [12] as a
platform for implementing artifacts to define the environment
of the agents, and MOISE [13] as the organizational model to
structure the agents in the multi-agent system.

As stated above, there have also been recent developments
in MAS platforms which have been designed to support appli-
cations in specific domains. In this group, there are platforms
oriented to domains such as Internet of Things (IoT), Ambient
Intelligence (Aml), Cyber-Physical Systems (CPS), Human-
Agent Interaction (HAI) or Agent-Based Simulations (ABS).
Some of these specific-domain platforms are now discussed.

In the Aml area, some relevant work can be found in
[14], [15], which propose multi-agent solutions that facilitate
the development of context-aware and dynamic applications
in smart environments that take into consideration device
heterogeneity. Since such proposals are ad-hoc developments
to each particular application, the supporting platforms are
hardly applicable to other domains or applications.

The field of IoT presents several MAS platform proposals.
For example, [16] addresses the problem of applying Edge
Computing (EC) to an IoT system, by proposing a multia-
gent EC platform as a flexible and scalable solution, where
each platform component is controlled by a set of software
agents. In another proposal, [17] introduces an agent plat-
form for IoT systems oriented to tackling the limitations of
current agent platforms in this domain area. Such limitations
include, among others, how to support the heterogeneity of
IoT environments, the lack of explicit support for the dis-
semination of data to a specific group of IoT nodes, or the
fact of each solution being implemented and deployed for
a specific agent platform with a particular communication
protocol. The third platform in this list is the one presented in
[18]. Here, the authors propose an agent platform to facilitate
grid-interactive building operation with IoT devices. This
platform is called BEMOSS (Building Energy Management
Open Source Software) and it has been developed to improve
sensing and control of equipment in small and medium-sized
commercial buildings. BEMOSS aims to optimize electricity
usage in order to reduce energy consumption and to facilitate
the implementation of demand response (DR) programs in
commercial buildings.

The work presented in [19] provides a MAS platform
for Cyber-Physical Systems with specific features that allow
cyber-agents to access and control real physical devices with
ease. This platform supports rapid development and deploy-
ment of agents with mobility, as well as multi-threading
programming, and it can be used in conjunction with some
embedded devices. Another particularity of this platform
is that it has been written in Prolog, whilst the major-
ity of platforms discussed in this section have been coded
in Java.

Finally, there are proposals focused on other areas.
In Human-Agent Interaction, [20] presents an agent platform
oriented to designing human-aware agents for negotiation
processes. In Agent-Based Simulations, there are also some

VOLUME 8, 2020

examples, such as GAMAS [21], a platform for agent-based
simulations with special attention to the spatial dimension;
Anylogic,” a well-known simulation tool that provides a com-
bination of different modeling techniques including agent-
based techniques; and MATSim,'” a platform for agent-based
simulations focused on large-scale transport scenarios.

Ill. OPEN ISSUES IN CURRENT AGENT PLATFORMS

The review presented in the previous section confirms that
research in multi-agent platforms has been active over the last
years, either on general-purpose platforms, or on specialized
platforms oriented towards specific domain areas, where the
provided support is normally tailored to the intended domain
or particular application. However, despite all these advances,
there are still unsolved or open issues in the area of multi-
agent platforms, and this section tries to identify the most
relevant ones.

The analysis of the solutions presented in the previous
section reveals that, in general, multi-agent platforms have
been traditionally conceived as closed environments designed
to support the development and execution of MAS in a
particular way. This has been clearly the case for the con-
crete, ad hoc platforms implemented to support applications
in specific domains, but also for the more generic support
provided by general-purpose platforms. In this latter case,
platforms have normally been built on top of some general
concepts such as the agent model and certain key services as
the Agent Management Service, the Directory Facilitator, etc.
Depending on the particular platform, MAS designers may
have available a different set of tools, but the development
and execution middleware is normally conceived as a fixed
and, in many cases, proprietary framework.

This kind of proprietary support is not adequate for the
next generation of MAS, which are likely to be open and
massive, to require a great variety of very different services,
and to incorporate agents developed by several developing
teams under different approaches or requirements and exe-
cuted from separate (even distant) locations. This flexible,
massive, and social development of MAS requires a different
kind of supporting middleware (platform), centered on some
relevant aspects which are not considered by the solutions
described in the previous section (at least, none of these
solutions takes into account all the aspects). In the authors’
opinion, there are four key issues among these aspects, which
are now discussed.

In the first place, one of the foremost objectives of an agent
platform is to offer the MAS with a simple and effective
communication channel, which ideally should be as well-
known and standardized as possible. Many of the existing
proposals make use of closed or local communication proto-
cols that hinder their interoperability. Conversely, the use of a

8https ://gama-platform.github.io
9https://Www.anylogic.corn
10https://matsim.org

182539

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

standard, sound and widespread communication protocol
would effectively allow the multi-agent system to commu-
nicate not only with other MAS, but also with other types of
computing elements (devices, software components, etc.) or
even with humans. In this way, the use of an instant messaging
protocol as the basis of communication in an agent platform
would be a very good choice. Instant messaging protocols are
nowadays used by millions of users on a daily basis, and they
support almost any type of interaction between humans or
between humans and computers.

The second crucial aspect when considering open and
massive MAS is the elastic and scalable allocation of com-
munication resources, in the same way that modern cloud
computing systems are characterized by their ability to adjust
the provided resources in order to dynamically meet the
varying demands of users. Multi-agent platforms should offer
elasticity in the communication process and in the resources
related to that process, so that agents cannot be affected by
an unexpected, significant growth in the number of messages
or in the amount of entities interacting with the system at any
particular moment. The platform should be able to allocate
the required resources to cope with the increased workload
without jeopardizing the integrity of the system, and in a way
which is completely transparent to the application design and
to the actual agents which may be running at that particular
moment.

The third important open issue which is becoming more
relevant nowadays is related to one of the specific domain
areas mentioned in the previous section; in particular, the AmI
area. The integration of humans and computation elements in
the same system is going to be one key challenge in the next
generation of intelligent systems, and specifically, in MAS.
Multi-agent systems should allow for the development of
applications where agents and humans can jointly provide
services to other humans or agents, in an environment of full
integration. This kind of Human-Agent Societies [22] will
need to be supported at the communication and development
levels by future agent platforms. Additionally, the ability
to transparently communicate humans with agents will be
key in the development of fully open systems where entities
(humans, agents or third-party elements) can dynamically
enter or exit the system in a way which is totally transpar-
ent for the system developer. This open system feature has
traditionally been difficult to implement for real problems,
but it will definitely be required in the near future. Again,
the availability of an appropriate communication protocol and
infrastructure may be decisive to tackle this feature.

The fourth and final issue is related to the interoperability
of the system with IoT devices, which are now one of the
most growing device markets in the world, and which are
expected to be used in almost every human activity in the
near future. In this context, interoperability means the ability
of the system to interact with different types of low-powered,
non-standard devices, but also the ability of agents to connect
to the system independently of the device where they are
running while preserving their identities. This, in turn, relies

182540

on the capacity of the system to support agents which may run
not only on traditional computers but also on such devices,
a feature which may be complicated depending on the size
and complexity of the platform’s middleware. An additional
characteristic related to the execution of agents in different
devices would be the ability of agents to migrate their execu-
tion from one device to another without restarting the system.
This characteristic would be very useful not only in IoT, but
also for many types of MAS, but it is difficult to achieve in
the general case.

To sum up, the next generation of multi-agent platforms
will probably need to provide a standard and effective com-
munication protocol, elasticity in communication, full and
transparent integration of humans and agents, support for
open systems, and the ability of agents to connect to the
system independently of their running device. By incorpo-
rating valid solutions to such open issues, platforms not only
will provide an appropriate environment to build the type of
MAS applications and domain areas mentioned above, but
they will also be able to provide improved support to solve
classic problems in the MAS area. Such problems include
team formation [23], [24], task/resource allocation [25], [26],
crowds dynamics [27], [28], MAS planning [29], or conflict
resolution [30], [31], to mention a few of the most relevant
ones at the moment.

IV. SPADE 3

SPADE 3 is a middleware for multi-agent systems that rep-
resents an evolution of the traditional multi-agent system
platforms by means of incorporating a careful selection of
concepts and modern technologies in the areas of distributed
systems, instant messaging, asynchronous systems and open
systems. SPADE 3 has been completely redesigned and its
code rewritten from scratch, by focusing in the new function-
alities and open issues pointed out in the previous section.
For the sake of simplicity, the rest of this section will refer to
this version as SPADE. The principal founding concepts and
technologies of SPADE are now briefly discussed.

One of the most relevant concepts of any MAS middleware
is its agent model. In the case of SPADE, its agent model is
similar of those used in other platforms (such as Jade). The
model is internally based on some simple abstractions and
mechanisms, now described. The first one is the connection
mechanism, by which each agent registers in SPADE by using
a unique identifier (which format is “‘username@server’’)
and a password. After registering, the agents may create one
or several behaviors, which are independent tasks that execute
the agent’s actions. Behaviors can be of several types, with
each type producing a particular execution pattern designed to
support a typical execution requirement of agents in a multi-
agent system. In particular SPADE supports five behavior
types: Cyclic, One-Shot, Periodic, Time-Out and Finite State
Machine. The third main mechanism is the message dis-
patcher which SPADE associates with each registered agent.
This component acts as a mailman, redirecting any incoming
message for the agent to the particular behavior(s) that may be

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

expecting the message, and relaying the outgoing messages
from any behavior to the SPADE’s communication system.

Among the technologies, SPADE relies on the selection of
a particular communication protocol as a paramount com-
ponent of the multi-agent system, since it can bring very
valuable features to intelligent, autonomous, social entities
such as agents. In particular, SPADE incorporates XMPP [32]
(eXtensible Messaging and Presence Protocol), which is an
open protocol for instant messaging and presence notifica-
tion. XMPP is a protocol based on XML that allows entities
to exchange messages (with these entities being humans,
agents, artifacts, etc.) and which also provides a presence
notification mechanism by which any entity may have a list of
other entities as contacts, and be notified when any of such
contacts changes its state (e.g. when a contact is connected
or disconnected, when it is busy, etc.). Furthermore, XMPP
is defined as an extensible protocol, meaning that many of its
features are proposed as extensions (called XEPs); it currently
offers plenty of extensions for different purposes, and it is
open to proposals from the community in order to make the
protocol more flexible and useful. Because of this, XMPP
is considered as the universal standard protocol for instant
messaging by entities such as the IETF or the W3C, and
it has a widespread use in the industry. Whatsapp, Google
Talk, Facebook Messenger or Apple’s iMessage are some
examples of applications that use XMPP, or some variant of
this protocol.

As a software project, SPADE has been publicly available
for more than a decade. Recently, its complete redesign and
re-implementation in order to create SPADE 3 has regained
a growing interest from the community. According to the
statistics available in the PyPI repository site,!! SPADE
3 has been downloaded 369 times in June 2020 from a total
of 1,635 times (from at least 9 different countries) in the first
half of 2020, as it can be observed in Table 1. This community
of SPADE users is using it to develop different applications,
such as SimFleer'? [33], [34] or pygomas,13 or even to extend
its functionalities as, for example, the spade_bdi14 module
which incorporates BDI-based behaviors to SPADE agents.

The next subsections present the key concepts on which
SPADE is founded, many of them based on the XMPP stan-
dard. In each case, the section will stress how SPADE makes
use of the related concept in order to provide an appropriate
support to multi-agent systems.

A. AN OPEN, DECENTRALIZED, FEDERATED PROTOCOL

XMPP provides a federated, open server architecture
(depicted in Figure 1), by which any XMPP server can com-
municate with any other running XMPP server in the Internet
(in the same way than SMTP mail servers). By connecting
to such federation of servers, SPADE enables any agent to

1 http://pypi.stats
12https://pypi.org/project/simfleet/
13 https://pypi.org/project/pygomas/
14https://pypi.org/project/spade-bdi/

VOLUME 8, 2020

TABLE 1. Overview of SPADE’s success in terms of downloads. Downloads
are shown by country and total at June 2020 and the first half of 2020.

June 2020 1st half 2020
Country | Downloads Country | Downloads
UsS 169 || ES 663
ES 92 || US 385
CH 20 || None 131
None 18 CH 101
HR 18 || CN 84
RO 13 || PL 73
PL 12 || IN 69
IN 11 HR 58
AU 9 || FR 43
RU 7 || IT 28

[Total [369 || Total [1,635]

FIGURE 1. A representation of how federated XMPP servers interconnect
with each other and with clients, by using server-to-server (dotted lines)
and client-to-server (solid lines) mechanisms. In a federation of XMPP
servers, messages are routed from any client to its destination client
regardless of which servers such clients are connected to.

communicate with any other agent, artifact or human in the
world, pushing the concept of an open multi-agent system to
a new level. In particular, the support that SPADE requires
from a XMPP server may be broadly configured in three
different ways, depending on the application requirements.
First, a multi-agent system application running in SPADE
may be configured to deploy its own public XMPP server
(there are several open-source implementations of XMPP
server software). This configuration makes the application
self-sufficient while allowing its agents to communicate with
other entities (agents or otherwise) connected to any other
XMPP server over the Internet. A second, simpler config-
uration may be using any of the existing public XMPP
servers which are freely available in the Internet. In this case,
SPADE agents would directly register in this public server
and then run naturally without any further infrastructure.
Finally, a third possible configuration is to deploy a private
XMPP server, without server-to-server connections, along
with the SPADE application. In this case, the application
would run privately, with no possible connections from out-
side entities.

Using this type of architecture to support multi-agent sys-
tems renders several advantages. Probably the most important

182541

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

one is flexibility: with the same architecture, SPADE can
support from very large multi-agent systems with several
interconnected servers able to distribute the messaging load,
to much smaller, ad-hoc multi-agent systems where a single,
tailored server can be deployed to provide the minimum
required functionality. In addition, while the architecture is
by nature distributed, hence providing the related advantages
of load distribution, fault tolerance, etc., it can also provide
some typical benefits from centralized systems, such as pres-
ence notification, persisting storage on the server side, strong
authentication mechanisms, etc. This flexibility of supporting
large or small, centralized or decentralized, open or private
systems makes SPADE able to support multi-agent systems
that are better adapted to the open issues commented in the
previous section. Among other considerations, this architec-
ture allows the multi-agent system to become elastic, since
it can increase or decrease its size by adding new servers or
removing them on demand, while running.

Finally, an additional advantage derived from this decen-
tralized architecture is that SPADE provides agents with the
ability of being independent from their physical location, that
is, from the address of the computer where they are running.
In many multi-agent platforms, the physical (IP) address of
the computer where an agent is running must be known by
the rest of agents in order to successfully deliver the messages
they send to that agent. This is typically solved by including
the address of the computer where the agent is running in the
agent’s name or identifier. But then, if the same agent wants
to execute in a different computer, it needs a new identifier,
which must also be broadcast to all its possible partners in
order to be accessible again. This is tackled in SPADE in
a much more convenient way, since agents are identified
by means of the XMPP server where they are registered,
not by the computer where they are running. So, as long as
the XMPP server does not change its address, agents can
migrate from running in one computer to another one, in a
totally transparent way. This is similar, for example, to email
addresses, which enable people to receiving messages regard-
less of the computer where they read their email. This location
independence is a very interesting feature in big scale, open
multi-agent systems, where it is common that each time a
multi-agent application is executed, its agents may run in a
different computer.

B. PRESENCE NOTIFICATION MECHANISM

Another important feature of XMPP which SPADE uses in its
advantage is the presence notification mechanism provided
by the protocol. By means of this feature, SPADE offers
agents with the ability of managing their own presence status,
including an automatic notification to their respective con-
tacts when such status is changed. The concept of presence
notification is straightforward and widely used nowadays in
instant messaging applications, where users can check in
real time whether their (human) contacts are online or not.
In SPADE, this simple but powerful mechanism of XMPP
is not limited to informing agents’ contacts of their current

182542

Worker agents set their presence
as “ready” and notify their
contacts. The manager agent
receives all presence messages
from workers.

smith2
smith0 @ readyl
@ waiting 9
smith3
@ ready! E

smith4

@ ready!
smith1
© working

Once the manager agent confirms

that all worker agents are ready it \ smith2
sets its presence status to “start”, smitho @ working
which will be notified in real-time Qstart!
to their worker contacts to start e
9 smith3
© working

the work.
smith4

© working

FIGURE 2. An example of how the XMPP presence notification
mechanism can be used to coordinate the actions of a set of agents,

by implementing a so-called synchronization barrier. The figure shows the
two relevant steps in this particular scenario where the manager agent
(Smitho0) coordinates the execution of the other four agents (Smith1 to
Smith4) to start working on a common task.

connection status (online or offline), but it can be easily
configured for an agent to broadcast any type of particu-
lar, relevant information to its contacts. In addition, SPADE
uses this mechanism for other purposes, such as reporting
changes in the internal status of an agent, which is use-
ful for example when the logic of the agent is internally
built a finite-state machine; or synchronizing the execution
of agents by creating synchronization barriers. This latter
is illustrated by an example, depicted in Figure 2, which
shows how to use this mechanism in order to coordinate
a group of agents which need to work in a common task.
The top part of the picture shows the initial situation, where
an agent called SmithO is waiting until a group of other
agents which are its contacts (Smithl to Smith4) are ready
to start working in the common task. Once SmithO checks in
its contact list that all such contacts are ready, it opens the
barrier by changing its status to start!/, which in turn confirm
them to start working. Then, each of the contact agents also
changes its status to working (until it completes the task),
allowing SmithO to check who is still working and who
has finished the task (this is depicted in the bottom side of
the picture).

Related to this presence notification mechanism, each
SPADE agent is provided with a subscription process by
which it can manage its own contact list. Agents can request
to be subscribed to the list of any particular agent, and
such requests can be accepted or refused at the discretion
of that agent. However, for simpler scenarios where this
acceptance procedure is not required, SPADE also offers an
automatic acceptance mechanism of contact requests, which
frees agents from this task.

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

C. A MODERN AND COMMUNICATION-ORIENTED
LANGUAGE
Providing a powerful and easy-to-use language, in accor-
dance with the most recent technologies, is an important
factor in the development of any type of software, and par-
ticularly, of multi-agent systems. According to this, SPADE
has been developed in Python, and thus provides its natural
API for implementing multi-agent systems in this language,
which is one of the most widely used programming languages
for Artificial Intelligence (AI) applications today [35]. As a
result, developers of SPADE applications are provided with a
programming language with a steep learning curve, supported
by a large and active community which provides consistent
help, and with many publicly available third-party libraries
and add-ons, especially in the field of Al

In addition, SPADE proposes the asynchronous program-
ming paradigm to internally implement the code of the
agents. This programming model is especially effective for
applications with coexisting running entities which execute
input/output operations often, and it is well defined in the
Python ecosystem by means of a library known as AsynclO
(from Asynchronous I/O). In particular, applications imple-
mented under this paradigm can optimize the waiting for
input/output, improve resource management and leave more
processor capacity for the computation tasks. This is espe-
cially convenient for multi-agent system applications, where
the reasoning process of agents is normally driven by the mes-
sages they send or receive, and hence they naturally distribute
their time between computation and communication tasks.
As aresult, SPADE applications can be internally designed to
make an efficient use of the available computation resources
(compared with other traditional multi-agent system plat-
forms), hence allowing for running larger systems in the same
hardware.

D. A SECURE ENVIRONMENT

Security is another important feature which is increasingly
being expected for multi-agent system platforms nowadays.
This is especially relevant for open multi-agent systems
which need to run in the real world, where securing the appli-
cation and its communications is essential. SPADE provides
security at different levels, by making use of particular mech-
anisms available in the XMPP protocol. For example, XMPP
provides certificates and encryption in client-to-server and
in server-to-server communications, which SPADE uses for
securing communications between entities (agents, humans,
etc.). XMPP supports well-proven protocols as TLS [36] to
encrypt communications and to sign messages in order to
ensure that they are sent and received by reliable endpoints.
Some of these supported standards are OMEMO [37] (XEP-
0384) and OpenPGP [38] (XEP-0373 and XEP-0374). For
this reason, SPADE enforces agents to initially log into a
XMPP server by using a private identifier and a password.
However, as most of the features of SPADE, this default con-
figuration can be changed. If the SPADE application deploys

VOLUME 8, 2020

its own XMPP server, the server can be configured to admit
anonymous logins which do not require credentials, and to
deactivate encryption if that level of security is not required.

E. AN EXTENSIBLE PROTOCOL

The growth, diversification and complexity that Al applica-
tions are experiencing, and are expected to do in the future,
makes completely impossible to predict which features will
be required for next generations of multi-agent systems.
In this context, the best possible support for these systems
will be one which can be extended as required without hav-
ing to completely reconsider their design or implementa-
tion. SPADE can provide such feature, based on the natural
extensibility of the XMPP protocol. As explained above,
XMPP was defined to be extensible, in the sense that there
is a standard procedure by which new functionality can be
added to the protocol as extensions which are known as
XEPs (XMPP Extension Proposal). There is a procedure by
which the community can propose new XEPs to be officially
added to the standard, after revision by the XMPP Standards
Foundation.' In fact, XMPP already incorporates numerous
extensions which are well-suited for multi-agent systems,
such as multi-user chats, file transfer, user activity, HTTP
gateways, etc. But, since this is an open protocol, developers
can also implement new extensions in order to use them
privately in their applications.

In many cases, new extensions only require the modifi-
cation of the XML being sent (normally, by defining a new
namespace). If, for example, a SPADE application required
the FIPA [39] standard communication model in order to be
able to interact with other multi-agent system platforms, this
could be solved by adding a new message tag using the FIPA
standard to XMPP. In other cases, new components need to be
added to the XMPP server, but this is also well supported by
the protocol, since there is an standardized procedure to do so,
and XMPP includes a discovery service by which clients can
ask which extensions are available on a particular server. All
this, in turn, gives SPADE high adaptation capabilities for
future demands of support by multi-agent systems.

F. INCLUDING HUMANS IN THE LOOP

The XMPP communication protocol, employed by SPADE as
explained above, also gives support to many instant messag-
ing applications for people-to-people communication. This
puts SPADE agents and humans together in the same com-
munication environment in a completely natural way, hence
enabling a seamless integration of both types of communica-
tion entities. After connecting to a public (or private) XMPP
server, SPADE agents can start communicating with other
agents, as well as with humans or even many third-party
applications (such as Telegram, SMS, email, etc.), which are

I5The full list of extensions (including the ones currently
proposed, accepted, deprecated, etc.) can be consulted in the URL
https://xmpp.org/extensions/.

182543

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

SPADE o () your_jid

RN your_jid

Onine

Dashboard

Home > Dashboard

Dashboard

Behaviours

] CyclicBehaviour/DummyBehav

® PeriodicBehaviour/DummyPeriodBehav

[] TimeoutBehaviour/DummyTimeoutBehav

[] FSMBehaviour/DummyFSMBehav

Contacts

0 55 7
'
4 ¥ v ¥
S =4 vl
se. s se..

@ ONLINE AWAY DND @ ONLINE

j - =
L >
agent3@fake_se... agent5@fake_se...
@ OFFLINE @ OFFLINE

Copyright © 2018 SPADE. Version 3.0.0

FIGURE 3. Example of a SPADE Web Interface Dashboard of an agent.
It shows the list of behaviors of the agent and its list of contacts, along
with their presence statuses. This dashboard can be used at any time to
inspect the status of the agent.

accessible from XMPP servers by means of the so-called
bridges or gateways.

Putting agents and humans in the same loop greatly sim-
plifies the design of interfaces (e.g., interacting with SPADE
agents can be as simple as chatting with them, in the same
way people chat with their friends) as well as the creation
of applications where humans and agents cooperate, as chat
bots for example. Chat bots are a currently widespread tech-
nology that requires human interaction but also some degree
of reasoning, or, at least, a reactive behavior of some kind
(they are commonly used, for example, as shop assistants
in e-commerce websites, or as help-desk bots). The SPADE
architecture directly supports this type of applications, since
the underlying communication support is not specific to
agents, but open to any entity which can participate in the
XMPP environment. However, it is worth noting that SPADE
also supports multi-agent system applications which are as
restricted to certain entities as required, by deploying a tai-
lored, on-premise private server.

Another feature of SPADE which favors the human-agent
interaction is a graphical interface which SPADE produces by
default for each agent, if needed. This interface is available
via web under the /spade path. By means of this interface,
the agent may visualize any relevant internal data which may
be useful to know by a human counterpart in an application;
and it also allows the human to interact with the agent,
if necessary. Figure 3 shows an example of this interface,
available by default for each agent in SPADE. This interface
displays the general view of an agent’s internals (a typical
dashboard) including the agent’s behaviors and its current
contacts with their respective statuses.

182544

£ O rousa

FSMBehaviour/DummyFSMBehav

,,,,,,,,,,,,,,,

SER it tomagonst
T Thisis along

FIGURE 4. Example of a behavior view in the SPADE Web Interface. This is
a more detailed view of each property of an agent’s behaviour. It shows
properties such as the mailbox size, the template that filters messages to
the behaviour (if set), whether the behaviour has finished or not, and
properties which are particular of the type of behaviour (in this case,

the behavior's state machine and the current state). It also shows the list
of exchanged messages as a chat interface.

Figure 4 shows a more detailed view of a running agent,
in this case, of one of its behaviors. In this view (web page),
some important data of the execution status of the behavior
is shown, such as its mailbox or the internal details of its
execution (in this case, this is a finite-state-machine behavior,
and the page shows both its structure and its current state).
The view also allows the human inspecting the agent to check
all the messages that have been sent to, and received by,
the behavior, by means of the chat box.

In addition to this basic, standard interface by which
SPADE provides inspection of (and interaction with) agents,
it is also possible for each agent to incorporate new, alter-
native web interfaces. Such interfaces can be used by the
agent to present visualization or interaction displays adapted
to the needs of the application (e.g., input forms in a mobile
interface, graphs of the results the agent is calculating, etc.).
In order to do this, SPADE offers a straightforward program-
ming scheme based on the Model View Controller (MVC)
design paradigm, where the model is the agent’s knowledge,
the view is a HTML template (following the Jinja'® syntax),
and the controller is an asynchronous function implemented
within the agent’s code. Thus, the agent developer may easily
create interfaces, adapted to the particular type of human-
agent interaction required by the application, which access
the internal information of agents by means of the controllers
and display this information by means of the templates.

V. CASE STUDY: VOLUNTARY DISTRIBUTION

OF ESSENTIAL GOODS

In the first half of 2020, many countries have faced confine-
ment situations produced by the COVID-19 disease. In sit-
uations like these, the efficient and effective distribution of
essential goods and medicines for the elderly or vulnerable

16https://p::llletsprojects.com/p/jinja/

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

people has become one of the crucial aspects in the disease
management.

From a logistics point of view, this issue can be seen
as a distribution problem similar to the so-called Last Mile
Delivery (LMD) problem. The LMD problem can be defined
as the last movement of goods from a transportation center
to the final destination of the delivery. The main objective
of last-mile logistics is to make the delivery of the goods
as fast and efficient as possible. In this context, this section
presents an application of the LMD problem to tackle the
distribution of necessity goods to vulnerable people by a
group of volunteers, implemented in SPADE. The aim of this
section is to show how SPADE can provide an appropriate
support for a large-scale, distributed, intelligent application
designed for an open environment.

In this proposed solution, the goods to be transported are
necessity goods (food, medicines, etc.), the transporters are
volunteer workers who offer themselves to distribute the
goods, and the customers are people which cannot leave their
homes because of being vulnerable to the virus. In this situa-
tion, the volunteers (transporters), even though they may not
know each other, need to collectively organize themselves in
order to efficiently manage the distribution process. In cases
like this, an intelligent management and planning solution
of the distribution problem can significantly help volunteers
to analyze and improve their delivery routes as well as to
optimize their personal strategies. On the other hand, the cus-
tomers may be anxious to receive their orders due to the
situation, and they may become frustrated as they wait for
their goods. In this case, the use of an intelligent last-mile
tracking system would allow them to see the current location
of their respective packages in real time, and even be notified
of their estimated arrival times, which would contribute to
relieve their anxiety. Overall, the use of multi-agent system
technology in order to develop such a distributed, intelligent
planning and tracking application of last mile delivery is more
than adequate.

In [40], a new approach to the LMD problem which con-
siders a crowdsourcing solution was presented. This solution
is based on an open fleet of temporary transporters who do
not take a specific route to deliver each package from the
customer’s pickup point to the final destination, but on the
contrary, they make use of their usual routes in order to
carry a package, either to its final destination or to a point
where another transporter can pick it up and continue with
the delivery process. This crowdsourcing approach can be
also applied to this case of distributing essential goods for
vulnerable customers by means of a virtual fleet consisting
of a group of volunteers.

In particular, the proposed approach is presented as a
mobile service (or app) to the two types of users: volunteers
which offer themselves to occasionally deliver some kind of
essential goods, and vulnerable customers which need these
goods but are confined in their homes, typically in an urban
area. Once the users register in the application by using their
mobile devices, the system will be able to locate them in real

VOLUME 8, 2020

Customer

g &

Volunteer 1

g

Volunteer 3

& Volunteer 4

Volunteer 2

FIGURE 5. General view of the Last Mile Delivery case study where a set
of volunteers (represented by blue suitcases) transport goods to
vulnerable customers (people icons) by following their respective
habitual routes through the city. In particular, the figure shows a
volunteer (Volunteer 1) that makes a direct delivery to a customer (yellow
path) and also a group of two volunteers who coordinate to serve another
delivery request: Volunteer 2 first takes the goods to Volunteer 3 (blue
path), who then delivers them to the customer (red path). The figure also
depicts the current availability status of each volunteer as a green or red
light (e.g., Volunteer 4 has decided not to be available for transporting
goods at this moment, as indicated by its red light).

time, and to share their current location to other users when
necessary. From that moment on, whenever a customer issues
a delivery request, a dynamic network analysis (explained
in [40]) uses the fleet of geo-localized volunteers in order
to calculate a particular path for delivering the goods to the
customer’s location. It is important to note that, in order to
optimize each delivery, the system builds the complete deliv-
ery path as a chain of collaborative deliverers (the volunteers)
in which each volunteer carries the package over some part of
the path (a sub-path) and then passes it to the next volunteer.
Figure 5 presents a general view of the proposed approach.

In order to develop and test a prototype of this system,
a fleet simulator on an urban area called SimFleet, which
was already implemented on SPADE, has been used. This
tool simulates the environment (typically, a city) where the
users may be geo-located and the delivery paths are depicted.
It is worth noting that, although the current prototype of the
system described below does use this simulation framework
as a front-end, the system has been designed in order to be run
in the real world once this prototype version is fully tested.

The following subsections explain the internal design of
this prototype and some preliminary empirical results which
have been obtained in several executions of the system over
the simulation environment.

A. SYSTEM ARCHITECTURE

In essence, the system keeps track of a pool of pending
deliveries, which have been issued by the vulnerable cus-
tomers and have to be assigned to the volunteer transporters
which may be currently available, in the most efficient way

182545

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

Customer
Agents Agents

Get Route

Fleet Manager

Agent
X
IS

&7

a 2 Get Route
o
Y
=] - .

Planner Router

Agent Agent

) SPADE

Presen Registration
esence Pub-Sub SoiStation)
Notification 3 Deregistration
Service .
Service Service

FIGURE 6. Internal architecture of the proposed system. This figure shows
how each type of agent in the case study interacts with each other to
solve the delivery problem. At the bottom, it also shows the most relevant
SPADE services that the agents use to do their job.

possible. In the implementation of this system on SPADE,
the following main types of agents have been defined (they
are also depicted in Figure 6):

« Volunteer agent: it represents a potential volunteer in the
system. Its interface with the human volunteer is a web
app by which it is possible to enter or exit the system at
any time, change the volunteer’s availability through the
presence notification mechanism, and accept deliveries
by means of a subscription protocol.

« Customer agent: it represents a vulnerable person who
needs some essential goods to be delivered. Its interface
is also a web app by which the customer may issue
the request of goods as well as to monitor the ongoing
request in real time.

o Planner agent: this agent is in charge of computing
optimized delivery paths, given the pending deliveries
and the volunteers’ habitual routes, and then proposing
such paths to the volunteers. In order to do so, this agent
uses the crowdsourcing algorithm proposed in [40].
As an example, in Figure 5, the Planner has produced
two delivery paths: one path for Volunteer 1 to directly
deliver the goods to its customer, and another one with
two sub-paths, where Volunteer 2 first transports the
goods up to a point and then passes them to Volunteer 3,
who finally delivers them to the customer.

« Router agent: its main goal is the calculation and recon-
figuration of routes within the city, taking into account
different transport forms (such as bicycle, car, bus, etc.).

« Fleet Manager agents: these agents allow for the feder-
alization of the system. Fleet Manager agents may be

182546

used to create and manage different groups of trans-
porters (volunteers) according to different criteria. For
example, it could be used to subdivide the city in differ-
ent areas, each managed by a fleet agent, hence turning
the global delivery process into a federated system.

In the proposed solution, these agent types make use of
some services of SPADE. The most important of such ser-
vices, also depicted in Figure 6, are now discussed. The
first one is the Presence Notification service, which is used
by volunteer agents to set their availability state and let
their contacts know about it without explicitly sending any
messages. The possible states are: inactive (not available),
active (available to be assigned deliveries), and on_route
(following a route to deliver some assigned goods). This way,
the planner agent and the fleet manager agent may know in
real time which volunteers are available to be assigned to each
delivery.

Another service that is used by the application is the Pub-
Sub service, which is a standard extension of XMPP that
implements the Publish-Subscribe protocol.!” By using this
service, agents in SPADE can subscribe to a type of event and
get automatic notifications whenever any other agent pub-
lishes an event which belong to that type. In this application,
this service is used to issue delivery requests. In particular,
customer agents publish an event of this type whenever they
need to request a new delivery, effectively communicating
this request to the appropriate agents, which are subscribed
to it (i.e., the Planner agent, or the Fleet agent corresponding
to this customer). This is an example of how SPADE can be
extended by introducing protocol extensions (XEPs) that are
standard and publicly available.

The last two main services used by the application are
the Registration/Deregistration service and the Security ser-
vice. Both are basic services which are part of the core
of SPADE. The registration is mandatory, since every user
must be authenticated in the system with a previous registra-
tion. Regarding security, this application uses some standard
encryption protocols in order to ensure that all communica-
tions preserve the privacy of customer’s health-related data
(in particular, SSL for encrypting communications and SASL
for securing authentication).

Finally, each agent in the system, as a SPADE agent, has
its own web server, as explained in the previous section. This
web server may visualize several pieces of data, for example,
information related to the messages sent to the agent. In this
sense, this web server may be used as the user interface for
the agent, which can be accessible through any kind of device
with internet connection.

B. EVALUATION

As explained above, the current version of the system has
been implemented and tested in SPADE 3 as a prototype
integrated into a fleet simulator on urban areas (in particular,
using the city of Valencia, Spain). Extending the system to

l7https://xmpp.org/extensions/xep-OOéO.html

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

FIGURE 7. A snapshot of the simulation environment while running one
of the tests in the experiment. The snapshot displays the current
geo-location of each volunteer and customer agents on the city map,

as well as the delivery paths taken by volunteers to pick up and hand
over the goods (blue lines).

other bordering cities would be as easy as including additional
planner agents in charge of computing the delivery routes on
these cities and then accepting volunteers and customers geo-
located on these areas. Such city planners could be federated
or not, and all these agents could be connected to a single
or several distributed XMPP servers, depending on the total
number of agents involved, the geographic distribution of
users, and certain security and performance criteria.

A series of experiments (simulations) have been designed
and executed, with the objective of demonstrating the capabil-
ities of SPADE 3 and the usefulness of the proposed system.
For example, a particular experiment was carried out in order
to analyze the number of volunteers that would be required
in order to guarantee a given quality of service, in terms
of average delivery time to customers. In the experiment,
the number of customers was set to 50, each one issuing a
single delivery request. A Poisson distribution was used in
order to randomly setting the arrival times of the requests
during the simulation. With this, several tests were configured
with an increasing number of volunteers, from 5 to 50 in steps
of 5. In particular, for each number of volunteers, 10 tests
with randomly-generated geo-locations for customers and
volunteers were executed, with two metrics computed for
each test: the number of deliveries each volunteer had to
perform during the test (in order for the system to serve all
50 requests), and the average delivery time of all 50 deliveries
(from the time the customer issued the request to the time
when the goods were delivered). As a sample of how the
system works, Figure 7 shows a snapshot of the simulation
environment while running one test of this experiment. In the
snapshot, the current location of each volunteer and customer
is positioned on the city map and blue lines mark the delivery
routes made by volunteers in order to pick up and hand over
the goods. The simulation shows all the registered volunteers
(whether being currently available or not) but it only displays
the customers who presently have pending requests.

VOLUME 8, 2020

Average number of assignments and average total
service time against the number of volunteers

12,00 30,00

10,00 .l 25,00

@
2
a8
™

2
=
S

Assignments
g
3
Time (in seconds)

\
NN

10

Volunteers

DAvg. Assignments Avg. Total Time

FIGURE 8. Graph with the simulation results of the experiment

of 50 randomly distributed delivery requests and varying number of
available volunteers (each combination presents the average values

of 10 single tests). For each combination, the graph shows the average
number of assignments that each volunteer carried out (in green bars)
and the average total delivery time needed for serving all the 50 requests
(in an orange line with dots).

Figure 8 presents a graph which summarizes the results of
the experiment. In the graph, the x-axis represents the number
of volunteers in the tests, while the two y-axis represent the
average values of the two metrics computed for each test,
in all the tests with the same number of volunteers. The graph
clearly shows that, for this number of customers and their
expected distribution of requests, there is a very small gain
in service time from 15 volunteers up. On the other hand,
another way of analyzing the results is from the perspective
of the volunteers, who are not usual transporters in the sense
that they do not perform the deliveries for money. From this
perspective, it is possible to establish the number of volun-
teers which should be available in order to avoid overloading
them with more than N deliveries per day. The graph shows
that the number of available volunteers should be increased
at least to 20 in order to assign most of them a maximum of 2
deliveries per day.

It is worth noting that the utility of simulations as the one
presented above is to study the viability and usefulness of a
particular approach before implementing a fully operational
application. In this case, the experiment shows that the final
application, working with real data about customer requests
and volunteers, could be used in order to establish, in a
very simple way, an estimate of the number of volunteers a
city may need in order to offer a balance between a certain
quality of service and a reasonable use of volunteers in the
distribution of essential goods. The simulation would also
be useful in testing some typical delivery scenarios in order
to set some parameters that would work better in the final
application, such as different ways of grouping volunteers or
alternative matching (or negotiation) algorithms for assigning
requests to volunteers, for example.

VI. CONCLUSION
This article has presented an analysis of the current state of
agent platforms, by which it has been possible to identify a

182547

IEEE Access

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

set of challenges or open issues that platforms experience
when facing some relevant problems and domains of interest,
nowadays and also expected in the near future. In short, these
challenges can be summarized as follows: to be able to offer
a simple and effective communication channel, as extensible
and standardized as possible; to possess a high degree of
elasticity in communication (in the sense of being unaffected
by unexpected growths in the number of messages or entities
participating in the communication); to incorporate effective
mechanisms which allow humans to be ““in the loop”; to
enable the system to be fully open; and to provide support
independently of the running device of each agent.

Moreover, the paper has also introduced SPADE 3, the new
re-envisioning of the SPADE middleware based on those
open issues. SPADE agents were conceived from the per-
spective of integrating them in a communication environment
initially designed for humans only, as it is the XMPP proto-
col. This protocol is one of the cornerstones of SPADE. Not
only it provides a natural human-in-the-loop integration, but
also an open, decentralized, federated protocol that is exten-
sible and offers some interesting utilities (e.g., the presence
notification mechanism). SPADE makes full use of all these
features in order to provide its support.

Lastly, the paper has presented a case of study where these
features have been applied for developing a system to manage
the distribution of essential goods to vulnerable people by
volunteers, which may be useful in the current pandemic
situation. This system has applied a crowdsourcing approach
of the last mile delivery problem in order to dynamically allo-
cate volunteers which may deliver the essential goods while
making their own habitual trips through the city. A prototype
of the system running inside a urban fleet simulator has also
been proposed, as a prototype and test bed for the real-world
system, which will be developed in the near future.

Using SPADE in this scenario has provided several advan-
tages. First, the use of an extensible platform allows the
system to be easily adapted to a sudden growth in the num-
ber of users. Second, the possibility of federalization when
managing different groups of volunteers (or “fleets” in the
implemented prototype) permits an elastic scaling of the sys-
tem in the case of running large experiments in the simulator
(or running the real system in big cities). Third, the dynamic
registration and deregistration mechanism provided by the
system ensures a completely open system, which is essential
in a fully collaborative scenario as the one proposed here.
Fourth, this case required a straightforward yet consistent
synchronization technique in order to determine the avail-
ability of volunteers, which has been efficiently achieved
by means of the presence notification mechanism. Fifth,
the possibility of extending the communication protocol with
standard add-ons allowed the system to easily incorporate
new support, such as the publish-subscribe protocol which
was used to receive the delivery requests by customers. And
finally, it is also worth noting that by using a protocol that
allows for the integration of people-to-people and people-
to-agent communication, moving this application from the

182548

simulator to a real environment is quite simple. In this case,
the communication protocol with the agents will be main-
tained, and only an app (maybe as simple as a chat app) will
be needed for the humans to communicate with the agents.
In scenarios like this one, where humans are an important
component of the system, the integration of people-to-people
communication in SPADE enables the incorporation of sit-
uations where communication between humans and agents,
or even exclusively between humans, is required.

REFERENCES

[1] M. E. Gregori, J. P. Camara, and G. A. Bada, ‘A jabber-based multi-agent
system platform,” in Proc. 5th Int. Joint Conf. Auto. Agents Multiagent
Syst. AAMAS, 2006, pp. 1282-1284.

[2] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE—A FIPA-compliant

agent framework,” in Proc. PAAM, London, U.K., vol. 99, nos.97-108,

1999, p. 33.

F. Bergenti, G. Caire, S. Monica, and A. Poggi, “The first twenty years of

agent-based software development with JADE,” Auto. Agents Multi-Agent

Syst., vol. 34, no. 2, Oct. 2020.

S. Poslad, P. Buckle, and R. Hadingham, “The fipa-os agent platform:

Open source for open standards,” in Proc. 5th Int. Conf. Exhib. Practical

Appl. Intell. Agents Multi-Agents, vol. 355, 2000, p. 368.

G. Caire, D. Gotta, and M. Banzi, “WADE: A software platform to develop

mission critical applications exploiting agents and workflows,”” in Proc. 7th

Int. Joint Conf. Auto. Agents Multiagent Syst., Ind. Track, 2008, pp. 29-36.

[6] F. Bergenti, “An introduction to the JADEL programming language,”

in Proc. IEEE 26th Int. Conf. Tools With Artif. Intell., Nov. 2014,

pp. 974-978.

J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao,

“ABLE: A toolkit for building multiagent autonomic systems,” /BM Syst.

J., vol. 41, no. 3, pp. 350-371, 2002.

O. Gutknecht and J. Ferber, “The madkit agent platform architecture,”

in Proc. Workshop Infrastruct. Scalable Multi-Agent Syst. Int. Conf. Auto.

Agents. Berlin, Germany: Springer, 2000, pp. 48-55.

S. Galland, N. Gaud, S. Rodriguez, and V. Hilaire, “JANUS: Another yet

general-purpose multiagent platform,” in Proc. 7th AOSE Tech. Forum,

Paris, France, 2010, pp. 2-55.

[10] M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio, “Commitment-
based agent interaction in JaCaMo+,” Fundamenta Informaticae, vol. 21,
pp. 1001-1030, Jan. 2016.

[11] R. H. Bordini and J. F. Hiibner, “Bdi agent programming in agentspeak
using Jason,” in Proc. Int. Workshop Comput. Log. Multi-Agent Syst.
Berlin, Germany: Springer, 2005, pp. 143-164.

[12] A.Ricci, M. Viroli, and A. Omicini, “Cartago: A framework for prototyp-
ing artifact-based environments in mas,” in Proc. Int. Workshop Environ.
Multi-Agent Syst. Berlin, Germany: Springer, 2006, pp. 67-86.

[13] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, “Moise: An
organizational model for multi-agent systems,” in Advances in Artificial
Intelligence. Berlin, Germany: Springer, 2000, pp. 156—165.

[14] F. Piette, C. Caval, C. Dinont, A. E. F. Seghrouchni, and P. Tailliert,
“A multi-agent solution for the deployment of distributed applications in
ambient systems,” in Proc. Int. Workshop Eng. Multi-Agent Syst. Berlin,
Germany: Springer, 2016, pp. 156-175.

[15] A.E. Fallah-Seghrouchni, F. Piette, C. Caval, and P. Taillibert, “A multi-
agent platform for the deployment of ambient systems,” Int. J. Agent-
Oriented Softw. Eng., vol. 6, nos. 3—4, pp. 369—401, 2018.

[16] T. Suganuma, T. Oide, S. Kitagami, K. Sugawara, and N. Shiratori,
“Multiagent-based flexible edge computing architecture for IoT,” IEEE
Netw., vol. 32, no. 1, pp. 16-23, Jan. 2018.

[17] 1. Ayala, M. Amor, and L. Fuentes, “The sol agent platform: Enabling
group communication and interoperability of self-configuring agents in
the Internet of Things,” J. Ambient Intell. Smart Environ., vol. 7, no. 2,
pp. 243-269, 2015.

[18] M. Pipattanasomporn, M. Kuzlu, W. Khamphanchai, A. Saha,
K. Rathinavel, and S. Rahman, “BEMOSS: An agent platform to
facilitate grid-interactive building operation with IoT devices,” in Proc.
IEEE Innov. Smart Grid Technol. Asia (ISGT ASIA), Nov. 2015, pp. 1-6.

3

—

[4

=

[5

—

[7

—

8

—

[9

—

VOLUME 8, 2020

J. Palanca et al.: SPADE 3: Supporting the New Generation of MAS

IEEE Access

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Semwal, S. Nikhil, S. S. Jha, and S. B. Nair, “Tartarus: A multi-agent
platform for bridging the gap between cyber and physical systems,” in
Proc. Int. Conf. Auto. Agents & Multiagent Syst., 2016, pp. 1493-1495.

J. Mell and J. Gratch, “Grumpy & pinocchio: Answering human-agent
negotiation questions through realistic agent design,” in Proc. 16th Conf.
Auto. Agents Multiagent Syst., 2017, pp. 401-409.

P. Taillandier, B. Gaudou, A. Grignard, Q.-N. Huynh, N. Marilleau,
P. Caillou, D. Philippon, and A. Drogoul, “Building, composing and exper-
imenting complex spatial models with the GAMA platform,” Geolnfor-
matica, vol. 23, no. 2, pp. 299-322, Apr. 2019.

A. Sanchis, V. Julidn, J. M. Corchado, H. Billhardt, and C. Carrascosa,
“Using Natural Interfaces for Human-Agent Immersion,” in Highlights
of Practical Applications of Heterogeneous Multi-Agent Systems. Cham,
Switzerland: Springer, 2014, pp. 358-367.

M. E. Gaston and M. desJardins, “Agent-organized networks for dynamic
team formation,” in Proc. 4th Int. Joint Conf. Auto. Agents Multiagent Syst.
AAMAS, 2005, pp. 230-237.

P. R. Cohen, H. J. Levesque, and I. Smith, “On team formation,” in Con-
temporary Action Theory, vol. 2, G. Holmstrom-Hintikka and R. Tuomela,
Eds. Dordrecht, The Netherlands: Kluwer, 1997, pp. 87-114.

Y. Jiang and J. Jiang, ““‘Contextual resource negotiation-based task allo-
cation and load balancing in complex software systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 5, pp. 641-653, May 2009.

Y. Jiang, Y. Zhou, and W. Wang, “Task allocation for undependable mul-
tiagent systems in social networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 8, pp. 1671-1681, Aug. 2013.

B. Ulicny and D. Thalmann, “Crowd simulation for interactive virtual
environments and vr training systems,” in Comput. Animation Simulation.
Berlin, Germany: Springer, 2001, pp. 163—170.

J. E. Almeida, R. J. F. Rosseti, and A. Leca Coelho, “Crowd sim-
ulation modeling applied to emergency and evacuation simulations
using multi-agent systems,” 2013, arXiv:1303.4692. [Online]. Available:
http://arxiv.org/abs/1303.4692

M. Georgeff, “Communication and interaction in multi-agent planning,”
in Readings in Distributed Artificial Intelligence. Amsterdam, The Nether-
lands: Elsevier, 1988, pp. 200-204.

S. Resmerita and M. Heymann, “Conflict resolution in multi-agent
systems,” in Proc. 42nd IEEE Int. Conf. Decis. Control, Dec. 2003,
pp. 2537-2542.

R. Aydogan, V. Sanchez, V. Julian, J. Broekens, and C. Jonker, ‘“Computa-
tional approaches for conflict resolution in decision making: New advances
and developments,” Cybern. Syst., vol. 45, no. 3, pp. 217-221, Apr. 2014.
P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP):
Core, document RFC 6120, Internet Requests for Comments, RFC Editor,
Mar. 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6120.txt
J. Palanca, A. Terrasa, C. Carrascosa, and V. Julidn, “SimFleet: A new
transport fleet simulator based on MAS,” in Highlights of Practical
Applications of Survivable Agents and Multi-Agent Systems. The PAAMS
Collection. Berlin, Germany: Springer, 2019, pp. 257-264.

J. Palanca, A. Terrasa, C. Carrascosa, and V. Julidn, “Improving the
programming skills of students in multiagent systems master courses,”
Comput. Appl. Eng. Edu., vol. 27, no. 4, pp. 836845, Jul. 2019.

TIOBE Software. (Jun. 2020). TIOBE Programming Community Index.
TIOBE Software. Accessed: Jun. 18, 2020. [Online]. Available: http://
www.tiobe.com/index.php/content/paperinfo/tpci/index.html

T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Pro-
tocol Version 1.2, document RFC 5246, Internet Requests for Com-
ments, RFC Editor, Aug. 2008. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5246.txt

A. Straub, D. Gultsch, T. Henkes, K. Herberth, P. Schaub, and M. WiBfeld,
XEP-0384: OMEMO Encryption, document XEP 0384, XMPP Extension
Protocol, Jun. 2009. [Online]. Available: https://xmpp.org/extensions/xep-
0384.html

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, OpenPGP
Message Format, document RFC 4880, Internet Requests for Com-
ments, RFC Editor, Nov. 2007. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc4880.txt

VOLUME 8, 2020

[39] P. D. O’Brien and R. C. Nicol, “FIPA—Towards a standard for software
agents,” BT Technol. J., vol. 16, no. 3, pp. 51-59, 1998.

[40] A. Giret, C. Carrascosa, V. Julian, M. Rebollo, and V. Botti, “A crowd-
sourcing approach for sustainable last mile delivery,” Sustainability,
vol. 10, no. 12, p. 4563, Dec. 2018.

JAVIER PALANCA received the Ph.D. degree
from the Universitat Politecnica de Valencia
(UPV), in 2012. He is currently a Senior
Researcher with UPV. He has participated in
several research projects related to multi-agent
systems, artificial intelligence, recommender sys-
tems, smart cities, and social network analysis.

ANDRES TERRASA received the B.S. and Ph.D.
degrees in computer science from the Universitat
Politecnica de Valencia (UPV), Spain, in 1995 and
2001, respectively. He is currently working as
an Associate Professor with the Department of
Information Systems and Computation (DSIC),
UPV. He is also a member of the Group
of Information Technology/Artificial Intelligence
(GTI/IA) Research Group. His research inter-
ests include real-time systems, realtime artificial
intelligence, and multi-agent systems.

VICENTE JULIAN received the Ph.D. degree in
computer science from the Valencia University
of Technology, Spain, in 2002. He is currently a
Full Professor with the Departament de Sistemes
Informatics i Computacid, Universitat Politecnica
de Valéncia and a Researcher with the GTI-
IA Research Group, Universitat Politécnica de
Valencia. His research interests include multiagent
systems, agent architectures, agent organizations,
multiagent system methodologies, and real-time
agents. He is the coauthor of over 200 book chapters, journal articles,
technical reports, and so on about these topics.

CARLOS CARRASCOSA was born in Valencia,
Spain. He received the M.S. degree in computer
science from the Universitat Politécnica de Valén-
cia (UPV), in 1995, and the Ph.D. degree from the
Departamento de Sistemas Informaticos y Com-
putacién, UPV. He is currently a Lecturer involved
in teaching several Al-related subjects at UPV.
His research interests include MAS, social emo-
tions, consensus in MAS, intelligent virtual envi-
ronments, learning, serious games, information
retrieval, and real-time systems.

182549

