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ABSTRACT Single-cell RNA sequencing (scRNA-seq) provides the expression profiles of individual cells,
and it is expected to provide higher cellular differential resolution than traditional bulk RNA sequencing.
In scRNA-seq analysis, clustering is crucial for identifying cell types, and can be potentially exploited
to understand high-level biological processes. Recently, autoencoder has been successfully applied in
scRNA-seq clustering problem and achieved promising results. Most existing works focus on characterizing
the sparsity of data, and directly utilize the bottleneck feature of the autoencoder for clustering might
not be optimal. In this paper, a novel framework named Adversarial AutoEncoder ScRNA-seq Clustering
(AAE-SC) is proposed to bring an additional constraint on the bottleneck feature. Specifically, AAE-SC
adds an AAE module on top of the bottleneck layer, and constrains the bottleneck feature distribution to be
aligned with a consistent distribution. Also, the AAE and the reconstructed modules are jointly optimized to
generate a highly discriminative and consistent feature, which is further proceeded for clustering. We find
that by using AAE-SC to impose certain constraints on the features of the hidden layer, the performance of
clustering can be improved. Experimental results on three real-world datasets demonstrate that the proposed
AAE-SC framework outperformed state-of-the-art methods by 2% at least and 5% at most. And AAE-SC
shows more robustness than the baseline model for downsampled and unbalanced cluster size datasets.

INDEX TERMS Single-cell RNA-seq data, adversarial autoencoder, clustering analysis, unsupervised
learning.

I. INTRODUCTION
Technological advances in single-cell RNA sequencing
(scRNA-seq) [1]–[5] have revolutionized transcriptomic
studies by providing higher resolution of individual cellular
differences of transcriptomes than commonly used bulk RNA
sequencing. They allow researchers to systematically study
the cellular heterogeneity, cellular developmental trajectories
and classification of tumor sub-population across a large
number of cells [6]. Unsupervised clustering is an essential
step in the analysis of scRNA-seq to achieve the above tasks.
Only after clustering, the cell types can be identified, and
researchers can further depict the cellular functional states
and infer the potential cellular dynamics [7].

Although clustering is a traditional machine learning
research field [8]–[10] and there have been some rep-
resentative methods such as k-means [11] and spectral
clustering [12], clustering analysis on scRNA-seq data is
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still a challenge due to the dropout occurring in the raw
data [13]. The dropout refers to the fact that there are some
false-zero counts and gene count matrix may contain actu-
ally no reported data, which are caused by low sequenc-
ing depth and other technology limits. As shown in Fig. 1,
different heat map colors indicate different gene expression
levels (the value in the gene count matrix). It is obvious
that most genes in cells have very low expression level and
only a few genes express over 0. Therefore the dropout
makes the scRNA-seq data highly sparse, and traditional
clustering approaches fail to deal with this data. To alleviate
this problem, several specific clustering algorithms includ-
ing SNN-Clip [14], single-cell interpretation via multikernel
learning (SIMLR) [15] and MPSSC [16] for scRNA-seq data
have been proposed. However, their computational cost is
huge for large-scale datasets, and the clustering performance
is still inferior.

Recently, deep learning technology [17] has made sig-
nificant breakthroughs in computer vision, natural language
processing and other cross domains based on deep neural
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FIGURE 1. Explanation of scRNA-seq clustering task. Because dropout causes the gene expression level of the original data to be very low, the data is
highly sparse, and it brings difficulties to the subsequent clustering. Therefore, special clustering algorithms are required to process this type of data and
correctly assign different cell samples to different And identify the cell type. The heat map on the left of the figure is a visual representation of raw
scRNA-seq data, and the numbers in the heat map indicate the expression value of each gene in the cell sample. The color bars in the figure indicate the
level of gene expression.

networks (DNN) [18]. DNN can process high-dimensional
data and extract efficient and effective features, thus becomes
the dominant option for big data analysis. Among a vari-
ety of deep learning frameworks, the autoencoder [19] is
a classic unsupervised algorithm. It consists of two com-
ponents: an encoder and a decoder with symmetrical struc-
tures. The encoder first projects high-dimensional data to a
low-dimensional feature in the hidden layer (i.e. the bottle-
neck feature), then the decoder attempts to reconstruct the
original data from this bottleneck feature. If the bottleneck
feature can reconstruct the input data well, or is consid-
ered to contains the most informative components of the
original data, it is straightforward to be utilized for clus-
tering. Actually, there are several relevant attempts which
apply the autoencoder algorithm to scRNA-seq, including
scScope [20], scvis [21], deep count autoencoder (DCA)
[22] and single-cell-model-based deep embedded clustering
(scDeepCluster) [23]. These models improve the clustering
performance of scRNA-seq and significantly speed up cal-
culations, but most of them focus on addressing the spar-
sity problem, and directly utilize the bottleneck feature for
clustering. Without constraints on hidden code during feature
learning process, the latent features might be noisy and dis-
torted, which are not good for clustering.

In this paper, we propose a novel framework, named
Adversarial AutoEncoder ScRNA-seq Clustering (AAE-SC).
Our baseline model scDeepCluster lacks constraint on the
hidden feature and its performance on clustering is lim-
ited. Therefore, inspired by the generative model Adversarial
Autoencoder (AAE) [24] which can match the latent feature
to any prior distribution while processing the data recon-
struction stage, here we add an AAE module on the basis of
scDeepCluster to preserve the data structure in hidden layer
during the feature learning, forming the AAE-SC framework.

Specifically, AAE-SC first trains the additional discrimina-
tor network and data reconstruction module by the adver-
sarial loss and the zero-inflated negative binomial (ZINB)
loss. After acquiring the constrained initial features, AAE-SC
clusters the hidden features by jointly optimizing the recon-
struction loss and clustering loss from an improved deep
clustering layer. Finally, experiments on several real-world
datasets demonstrate that the proposed AAE-SC framework
can considerably outperform the state-of-the-art models on
three clustering evaluation metrics. Also, subsequent experi-
ments also show that AAE-SC achieves better robustness than
the baseline model. Our main contributions are as follows:
• We proposed AAE-SC framework which innovatively
utilizes the adversarial autoencoder component to con-
strain the low-dimensional feature and uses the con-
strained hidden feature for clustering.

• The proposed AAE-SC framework is evaluated on three
real-world scRNA-seq datasets and the clustering results
on the three clusteringmetrics are at least 2% and atmost
5% better than that of the state-of-the-art model.

• Furthermore, regarding experiments on datasets with
downsampled and unbalanced cluster size, our model
also shows better robustness compared to the baseline
model. And the effect of clustering coefficient on clus-
tering performance and the network structure selection
of AAE-SC is studied in detail.

The remaining parts of this paper are organized as follows:
The Section II mainly reviews the representative works of
scRNA-seq clustering. The Section III introduces the pro-
posed AAE-SC framework. The Section IV describes the
dataset information, the relevant implemental details of the
model and evaluation metrics of the experiment. The follow-
ing section is about the analysis and discussion of the exper-
imental results. Finally, we summarize the work of the paper
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TABLE 1. Abbreviations in this article.

and the look forward to the future work in the Section VI.
Table 1 provides the abbreviation-full name comparison table
of the full article.

II. RELATED WORK
In this section, we briefly reviewed and summarized the
representative works in scRNA-seq clustering analysis. And
we focused on these works from two aspects: traditional
clustering methods and deep learning-based methods.

A. TRADITIONAL METHODS
Early researchers applied the traditional clustering algorithms
to analyze the scRNA-seq data. The SNN-Clip [14] identified
groups of cells that are densely connected by graph-based
clique algorithm. It leveraged the concept of shared nearest
neighbor to calculate the cell similarity for finding all quasi-
cliques. Then several algorithms based on k-means have been
proposed. RaceID [25] utilized k-means to unravel the het-
erogeneity of rare intestinal cell types. SAIC [26] applied an
iterative k-means to identify the optimal subset of signature
genes that separate single cells into distinct clusters. Since
k-means is a greedy algorithm, these methods may fail to
find their global optimum. Besides, k-means is sensitive to
outliers since it tends to identify globular clusters, resulting
in the failures in detecting of rare cell types. To overcome
the above disadvantages, the RaceID2 [27] replaced k-means
with k-medoids clustering and later the improved version of
RaceID3 [28] added the random forest component to amelio-
rate the clustering accuracy. Some researchers have also tried
to add additional constraints to the feature extraction phase
before the clustering phase on scRNA-seq data begin. The
LAK [29] integrated Lasso penalty into clustering method
as the feature selection approaches, and then using k-means
algorithm based on the selected genes which have an actual
effect on clustering.

Some researchers also tried to determine the variety of
cell groups by spectral clustering method. The SIMLR [15]
used Gaussian Kernel and assisted spectral clustering to learn
a better distance metric to model the special data struc-
ture. In addition, SIMLR can process the large-scale datasets
with heavy noise. MPSSC [16] innovatively used L1 penalty
to characterize the sparsity of data with multi-kernel spec-
tral clustering. SinNLRR [30] was proposed to impose a

non-negative and a low rank structure on cell similaritymatrix
and then utilized spectral clustering to detect cell types.

Although these methods have improved clustering perfor-
mance on scRNA-seq (better performance on cluster met-
rics, see the Section V for details), they were usually not
very scalable and required huge computing resources and
storage when dealing with the large-scale dataset (for exam-
ple, researches [23] have shown that it is hard to run the
datasets which contain over 4000 cell samples with even
large memory such as 256GB by MPSSC and SIMLR, and
the clustering time of some spectral clustering methods on
2000 sample datasets is more than 10 times longer than other
algorithms [31]). Some scalable tools like Seurat [32] and
SCANPY [33] which utilized Louvain algorithm to detect
the community have low time complexity on large-scale
datasets, but they may not find small communities and there-
fore reduce the accuracy of clustering. Some researchers
also tried to use existing datasets as reference to identify
to cell types of scRNA-seq data. The single-cell Cluster-
based automatic Annotation Toolkit for Cellular Heterogene-
ity (scCATCH) [34] algorithm annotated cell types through
the tissue-specific cellular taxonomy reference database and
the evidence-based scoring protocol.

B. DEEP LEARNING METHODS
Recently, deep learning has made breakthroughs in many
areas of bioinformatics [9], [35], [36]. Among all the deep
learning techniques, autoencoder has been the most pop-
ular so far. There has been many autoencoder approaches
which aim to deal with scRNA-seq data more efficiently and
accurately. Lin et al. [37] tried to reduce the dimensions of
scRNA-seq data by neural networks with prior biological
knowledge. The scScope [20] used a stacked auto-encoder to
build a recurrent model and conducted batch effect removal,
dropout imputation and cell subpopulation identification.
Inspired by the recent success of autoencoders for sparse
matrix imputation in collaborative filtering for recommen-
dation system, Talwar et al. [38] proposed AutoImpute,
which was also based on autoencoder and aimed to handle
the dropout in scRNA-seq data. This model utilized over-
complete autoencoder to regenerate the imputed expression
matrix by focusing on the non-zero entries in the input
sparse matrix. Some works like deep variational autoen-
coder for scRNA-seq data (VASC) [39] and scvis [21] both
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utilized variational autoencoder (VAE) [40] to characterize
the data structure of scRNA-seq afterwards. VASC mod-
eled the dropout events and attempted to find the non-
linear hierarchical feature representation of original data,
while scvis inferred the approximate posterior distribution
of low-dimensional latent variables and accordingly learned
a parametric mapping from a high-dimensional space to a
low-dimensional embedding.

The imputation model DCA [22] adjusted the reconstruc-
tion loss of traditional auto-encoder into a special ZINB
model-based loss function, and the loss function is the
likelihood of the ZINB distribution. DCA constructed a
denoising autoencoder with three neuron nodes in the out-
put layer, which represented the mean of denoised data and
two parameters of ZINB distribution respectively. It mod-
eled special sparsity structure and inferenced dropout events
of scRNA-seq data. On the basis of DCA, the scDeep-
Cluster [23] added an extra clustering layer inspired by a
deep learning clustering method of improved deep clustering
(IDEC) [41], and it can iteratively update clustering assign-
ment after trained theDCA. The scDeepCluster outperformed
DCA in the performance of clustering task and became state-
of-the-art approach for scRNA-seq clustering.

C. SUMMARY OF EXISTING METHODS
In general, previous researchers have improved traditional
clustering algorithms or used deep learning algorithms
to implement clustering analysis on scRNA-seq data and
achieved better performances.

As for the algorithms using the k-means method,
the RaceID3 [28] and LAK [29] algorithms have effectively
improved the traditional k-means algorithm by using the ran-
dom forest components and the Lasso penalty respectively.
Also, they achieved better performance than other k-means
based algorithms. On the benchmark dataset 10X PBMC,
RaceID3 achieved about 69%, 70% and 55% on the three
evaluation metrics of Clustering Accuracy (ACC), Normal-
ized Mutual Information (NMI) and Adjusted Rand Index
(ARI), respectively. As for the LAK algorithm, the three met-
rics are improved to 78%, 75% and 68%. Regarding the three
spectral clustering based methods, including SIMLR [15],
MPSSC [16] and SinNLRR [30], the last algorithm com-
bined the advantages of the first two algorithms and used a
unique low rank structure on the cell similarity matrix, which
achieved about 77%, 74% and 66% on the above threemetrics
(The performance of the first two algorithms are: SIMLR:
62%, 72%, 52%, and MPSSC: 76%, 73%, 65%). For other
traditional methods, Seurat [32] and SCANPY [33] are more
used for scRNA-seq data preprocessing or coarse-grained
analysis. And the innovative use of reference database for cell
type identification of scCATCH [34] reached 83%, 76% and
73% on the ACC, NMI and ARI under 10X PBMC dataset,
which also shows competitive performance compared to the
k-means based and spectral clustering based algorithms.

The methods based on deep learning mainly use autoen-
coder as the core component. As a representative of the earlier

work, the performance of the AutoImpute [38] and IDEC [41]
algorithms on the 10X PBMC dataset reached about 72%,
71%, 61% and 70%, 70%, 55% on the three metrics respec-
tively. Afterwards, some work such as DCA [22], VASC [39]
and scvis [21] improved the previous algorithm from differ-
ent starting points, which made the clustering performance
improved. Among them, the scDeepCluster [23] method
combined the previous researchers’ modeling of the special
sparsity and dropout noise of scRNA-seq data. Also, scDeep-
Clsuter leveraged the deep embedded clustering method to
make the two processes of denoising and clustering can be
jointly trained and optimized, achieving the best performance
on the scRNA-seq data clustering task. It reached 82%, 77%
and 72% on the three metrics under 10X PBMC dataset,
and also reached better clustering performance under other
scRNA-seq datasets (all the numerical performances for each
algorithms are shown in Table 4).

Although the above methods have achieved certain clus-
tering performance, they still suffer from some shortcom-
ings [7], [13], [31], [42]. K-means based algorithms are
not good at directly determining the optimal value of the
number of clusters, and are not good at handling samples
with unbalanced data clusters [13], [42]. The computational
time complexity and computational space consumption of
algorithms based on spectral clustering are very huge, making
them not suitable for the current large-scale data analysis [7],
[31]. The accuracy of the scCATCH algorithm depends on the
selection of good reference datasets, while the scDeepCluster
algorithm lacks constraints on hidden layer features, which
may be unfavorable for the subsequent clustering.

III. PROPOSED FRAMEWORK
In this section, the baseline model scDeepCluster is intro-
duced first. Then, the proposed Adversarial AutoEncoder
ScRNAClustering (AAE-SC)model is described, alongside
the training and optimization process of our method.

As shown in Fig. 2, AAE-SC consists of an AAE module
with noise, three independent layers at the end of the decoder
of AAE to estimate ZINB loss and the improved deep clus-
tering layer.

A. ScDeepCluster METHOD
ScDeepCluster is proposed by Tian [23], which consists of a
denoised autoencoder (DAE) with a specific ZINB [22] loss
and an IDEC [41] layer.

To make the autoencoder more robust, the DAE incorpo-
rates an extra Gaussian noise into the input samples, and
attempts to reconstruct the original input from corrupted data.
In DAE, both the encoder and decoder are composed of fully
connected layers which are low-dimensional compared to the
raw data. By reconstructing the clean data, the hidden layer
learns effective low-dimensional feature representation.

Although common practice tends to employ the mean-
square error (MSE) loss to fulfill the reconstruction process
in traditional autoencoder and DAE, the scRNA-seq data is
too sparse that the MSE loss cannot rebuild the original data
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FIGURE 2. The architecture of our AAE-SC. Dis is the discriminator of AAE
and S stands for the random samples from the prior distribution. Mean,
Dispersion and Dropout are ZINB parameters.

well. Therefore scDeepCluster utilizes a specific loss func-
tion based on ZINB distribution from DCA. This distribution
has shown its effectiveness to model the highly sparse and
overdispersed data. ZINB can be estimated by the mean (µ)
and dispersion (θ) of the negative binomial distribution and
the additional coefficient (π ) which represents the probability
of dropout:

NB(X |µ, θ)=
0(X+θ )
X !0(θ )

(
θ

θ+µ

)θ (
µ

θ + µ

)X
, (1)

ZINB(X |π,µ, θ ) = πδ0(X )+ (1− π )NB(X |µ, θ), (2)

where X stands for the original data. The scDeepCluster uses
three independent fully connected layer at the end of decoder
to estimate the above parameters.

To better perform the clustering task, scDeepCluster also
employs the method of IDEC method in the latent space
features instead of using traditional clustering algorithm such
as k-means directly. After obtaining the latent space features
from the hidden layer of DAE, scDeepCluster uses the same
clustering approach with IDEC. The method first computes
the distribution Q of soft clustering labels in sample features,
and then defines an auxiliary target distribution P based onQ.
Finally the clustering loss is defined as Kullback-Leibler
(KL) divergence between P and Q, which is illustrated as
below:

qij =
(1+ ‖zi − µj‖2)−1∑
j′ (1+ ‖zi − µj‖2)−1

, (3)

pij =
q2ij/

∑
j qij∑

j′ (q
2
ij′/
∑

j′ qij′ )
, (4)

where qij is the soft label of embedded sample zi. This
variable is used to measure the similarity between sample zi
and cluster center µj by Student’s t-distribution. After that,
scDeepCluster iteratively uses the self-training strategy to
compute the auxiliary target distribution pij with previous qij.

B. AAE-SC FRAMEWORK
In addition to modeling and constraining the reconstructed
data output by the decoder with a special prior ZINB dis-
tribution, we also constrain the prior distribution of the bot-
tleneck feature of DAE to preserve the latent data structure
and generate more consistent feature. Recent researches use
variational inference like AAE [24] to match the aggregated
posterior of the latent features of the autoencoder with an
arbitrary prior distribution, and they have been proved to be
effective in many fields. Therefore we modify the DAE in
scDeepCluster to an AAE by adding a discriminator D on
top of the bottleneck layer, and use the original encoder as
a generator.

Based on the implementation of DAE in scDeepCluster,
the input data X input is corrupted by a zero-mean Gaussian
random noise ε and becomes Xnoise. We define the encoder
and decoder functions as Z = FWE (X

noise) and GWD (Z ),
where Z stands for the latent space feature in the bottleneck
layer. The weight WE and WD are learning parameters of
encoder and decoder respectively. In addition to the raw data,
we also add the zero-mean Gaussian random noise to each
layer of the encoder and make the model more robust.

Similar to the generative adversarial network (GAN) [43],
AAE uses an adversarial training procedure on the autoen-
coder and a discriminator to match the aggregated posterior
of the hidden vector with the prior distribution, which aims
to learn a better mapping function and hidden code. However,
the purpose of AAE and GAN are completely different. GAN
uses an adversarial training method to learn the data distribu-
tion of the original data, so the random noise can be converted
into new data similar to the raw data through a generator.
Whereas, AAE is trained to make the hidden layer feature
of the autoencoder conform to a prior distribution. So the
purpose of GAN is to generate new data, while the goal of
AAE is to restrict the data distribution of existing features.
In this article we adopted AAE to make constraint on the
hidden feature so that it can be clustering-friendly.

The additional discriminator of AAE is also composed of
fully connected layers. Meanwhile, the final layer’s output
dimension is set to be 1, which is to determine the authen-
ticity of input samples. The input of the discriminator are
the latent features from the bottleneck layer of DAE and the
random sampling data from the prior distribution with the
same dimensions as the former. The generated data from prior
distribution is true data and its label is set to 1, while the label
of latent feature is set to 0, which is regarded as fake data. The
discriminator network utilizes the binary cross entropy loss to
train and update parameters:

Ld =
1
n

n∑
i=1

[log(D(si)+ log(1− D(zi))], (5)

where si, zi and n stand for the generated samples from prior
distribution, the latent feature and the batch size respectively.
After updating the parameters of discriminator D, all weights
inside are frozen.
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Unlike the GAN structure, which has an independent gen-
erator, the adversarial autoencoder trains the encoder part as
a generator to confuse the discriminator D, and let D judge
whether the input samples generated by encoder are true
samples:

Lg =
1
n

n∑
i=1

logD(zi). (6)

Through the above adversarial training process, the hidden
features are aligned to the prior distribution and the whole
AAE framework learns a good mapping function from input
data to a low-dimensional feature which is suitable for the
downstream cluster analysis.

In addition to the variance inference by AAE, our method
also employs the ZINB loss as the reconstruction loss and
utilizes an IDEC layer. To estimate the three parameters
(π,µ, θ ) of ZINB distribution described above, the last layer
of the decoder is replaced with three independent fully con-
nected layers and their dimensions are the samewith the input
data. Thus the architecture of the decoder is given as below
(Z represents the output of bottleneck layer in AAE-SC):

De = GWD (Z ), (7)

M̄ = exp(WMDe)× diag(sf ), (8)

8 = sigmoid(WπDe), (9)

2 = exp(WθDe), (10)

where WM , Wπ and Wθ are the learning parameters in the
final three fully connected layers respectively. The size factor
sf is an independent biological variable that is calculated by
the library size and the median of cells. The reconstruction
loss function of the ZINB distribution is the negative log
transformation of the ZINB likelihood:

Lr = −log(ZINB(X |π,µ, θ )). (11)

AAE-SC also has an IDEC layer on top of the hidden layer
of AAE. Based on the above description, the clustering loss
is computed by KL-divergence between P and Q as below:

Lc = KL(P‖Q) =
∑
i

∑
j

pijlog
pij
qij
. (12)

C. TRAINING STRATEGY & OPTIMIZATION
In this paper, our model has two stages: 1) Combination
of the adversarial training and reconstruction stage, which
aims to constrain the prior distribution of the hidden layer
coding while reconstructing the noisy original data. 2) Jointly
optimizing the reconstruction loss and clustering loss on the
constrained features listed above to iteratively update the
clustering label assignment. The objective function of model
is defined as below:

L1 = Lr + Lg, (13)

L2 = Lr + αLc, (14)

where α is a clustering coefficient to adjust the clustering
loss to avoid the clustering space to be distorted. Loss in the

pre-training phase corresponding to L1, and L2 represents the
target function in clustering process.

As for the above loss function, the three types of param-
eters can be optimized and updated by Stochastic Gradient
Descent (SGD) and back propagation.

Specifically, as described in [41], [44], the gradient of Lc
with respect to the clustering center µj and latent feature
sample zi can be computed as below:

∂Lc
∂µj
= −2

∑
i

(1+ ‖zj − µi‖2)−1 × (pij − qij)(zi − µj),

(15)
∂Lc
∂zi
= 2

∑
j

(1+ ‖zj−µi‖2)−1 × (pij − qij)(zi−µj), (16)

And during the clustering process the clustering center µj
is updated by:

µj = µj −
l
n

n∑
i=1

∂Lc
∂µj

, (17)

where l is the learning rate and n is the value of mini batch.
The decoder weightsWD are updated by:

WD = WD −
l
n

n∑
i=1

∂Lr
∂WD

, (18)

In the stage 1 the encoder weightsWE are updated by:

WE = WE −
l
n

n∑
i=1

(
∂Lr
∂WE

+
∂Lg
∂WE

), (19)

And in the stage 2 the encoder weightsWE are updated by:

WE = WE −
l
n

n∑
i=1

(
∂Lr
∂WE

+ α
∂Lc
∂WE

). (20)

IV. EXPERIMENTS
In this section, we provide quantitative comparisons of the
proposed AAE-SCmodel to other state-of-the-art scRNA-seq
clustering methods in two categories: traditional clustering
models and deep learning models.

A. DATASETS
The proposed AAE-SC model is evaluated on three
real-world scRNA-seq datasets coming from different
sequencing platforms. All the datasets are publicly available.
The statistics of the datasets are summarized in Table 2 and
the detailed information is shown as follows:

TABLE 2. Datasets statistics.
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TABLE 3. Brief introduction of experimental methods.

• 10X PBMC [45]1: This dataset is downloaded from the
10X scRNA-seq platform. It measures the transcriptome
of the peripheral bloodmononuclear cells collected from
a healthy donor [45]. There are over 4,000 cells with
16,000 genes in the dataset and it has 8 different clusters.

• Mouse Bladder Cells [46]2: This dataset comes from
the Mouse Cell Atlas project by [46]. We select the
bladder tissue cell data from overall 400,000 single cells,
and they can be divided into 16 different groups.

• Worm Neuron Cells [47]3: It is a worm cell dataset
profiled by the sci-RNA sequencing platform. About
50,000 cells from the nematode Caenorhabditis elegans
at the L2 larval stage in the dataset have been measured
by previous researchers and the corresponding cell types
have been identified. Following the approach in [47],
we select the subset of these neural cells and remove
the unlabeled individuals. Therefore, the dataset we use
consists of 4,186 cells with over 10,000 genes and there
are 10 different categories in total.

B. EXPERIMENTAL METHODS
To evaluate the performance of our proposed AAE-SC,
we compare it with sixteen algorithms, which are the rep-
resentative and widely used works in scRNA-seq clustering.
The descriptions of these methods are summarized in Table 3.

C. EVALUATION METRICS
In our experiments, three metrics of ACC, NMI and ARI are
used to evaluate AAE-SC model, which are widely used in
unsupervised learning scenario. Introduction of these metrics
are as follows:
• ACC: The clustering accuracy (ACC) is used to measure
the matching level of the clustering labels assigned to
the samples and their true labels. Given the sample i,

1https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k

2https://figshare.com/s/865e694ad06d5857db4b
3http://atlas.gs.washington.edu/worm-rna/docs/

the assignment label pi and its groundtruth label ti,
the ACC is computed as:

ACC =

∑n
i=1 δ(ti,map(pi))

n
, (21)

δ(x, y) =

{
1, if x = y,
0, else,

(22)

where n is the number of sample points and map()
refers to best mapping between assigned labels and true
labels. It can be solved by the Hungarian algorithm with
polynomial time.

• NMI: The Normalized Mutual Information (NMI) mea-
sures the similarity of two clusters from the perspective
of information theory. It is defined as:

NMI =
I (T ,P)

max{H (T );H (P)}
, (23)

I (T ,P) =
∑
i

∑
j

|ti ∩ pj|
n

log
n|ti ∩ pj|
|ti||pj|

, (24)

H (P) = −
∑
j

|pj|
n
log
|pj|
n
, (25)

where I(T,P) represents the mutual information between
the ground truth label T and the model-predicted
assigned label P. H() denotes the entropy of the labels
and n is the batch size.

• ARI: The Adjusted Rand Index (ARI) evaluates the sim-
ilarity between two clustering results by computing the
pair relationship improved from the original RI (Rand
Index). Given ground truth label T and the predicted
clustering results assignment P, we first compute the
four mathematical quantities:
– a: the number of sample pairs which are divided into

the same cluster in both T and P.
– b: the number of sample pairs which are divided into

different clusters in T and P.
– c: the number of sample pairs which are divided into

the same cluster in P but different in T .

178968 VOLUME 8, 2020



Y. Wu et al.: AAE-SC Framework Based on Adversarial Autoencoder

TABLE 4. Experimental results on 10X PBMC, Mouse Bladder Cells and Worm Neuron Cells. Best results are shown in bold.

– d: the number of sample pairs which are divided into
different clusters in P but the same in T .

Base on the above quantities, the ARI is defined as:

ARI=

(n
2

)
(a+d)−[(a+ b)(a+ c)+ (d + b)(d + c)(n
2

)
− [(a+ b)(a+ c)+ (d + b)(d + c)]

.

(26)

The value range of ACC and NMI is both [0,1], and that of
ARI is [-1,1] of ARI. For all the three metrics, a larger score
indicates a more accurate clustering result.

D. IMPLEMENTATION DETAILS
In experiments, the proposed AAE-SC network architecture
is constructed with the same layers as that of the base-
line model, scDeepCluster. Meanwhile, the encoder network
dimensions is set to input – 128 – 64 – 32, where input stands
for the dimension of input data, and the decoder has a sym-
metric structure with the encoder. Besides, the discriminator
network is built with dimensions 32 – 128 – 64 – 32 – 1. The
reasons of setting the first layer and its symmetrical layer
to be 128 nodes will be discussed in the following section.
Furthermore, the activation function of the last layer of dis-
criminator is sigmoid, while other fully-connected layers are
all activated by ReLU. In the pretraining stage, we utilize the
optimizer Adam with learning rate 0.001 for all the datasets.
As for the clustering phase, the optimizer Adadelta is applied
with learning rate 1.0. We discussed the choice of initial
learning rate in subsequent experiments.

Here the standard normal distribution N (0, 1) is exploited
as the prior distribution to align the bottleneck feature. And
the corresponding group number is employed to be the num-
ber of clusters for the clustering layer as prior information on
each dataset. All weights in fully-connected layers of the pro-
posed AAE-SCmodel are initialized with the Glorot uniform.
The whole model is pretrained by 300 iterations first, then
the clustering stage start. Meanwhile, special experiments
are conducted to determine the more appropriate value of

parameter α in the following section. The rest hyperparam-
eters are set to be the same as scDeepCluster.

E. DATA PRE-PROCESSING
All scRNA-seq datawere pre-processed using SCANPY [33],
following the data pre-processing implementation of the
baseline scDeepCluster: For each dataset, genes with expres-
sion values less than 5 and cells with expression values less
than 1 were first filtered out. Then, the entire reading matrix
was normalized so that each cell has a total count equal to the
median of the gene counts of per cell before normalization.
After that, logarithmic transformation was applied on the
data, and it was scaled to unit variance and zero mean.

V. RESULTS AND DISCUSSION
A. QUANTITATIVE ANALYSIS
The clustering analysis results on three real-world scRNA-
seq datasets are listed in Table 4. All experimental data are
the average of 10 independent experimental results.

The proposed model is first compared with the three
traditional methods: PCA+k-means, SIMLR and MPSSC.
PCA+k-means is considered as a typical traditional method,
both the PCA and k-means are very commonly utilized in
clustering process. Compared to the PCA+k-means method,
AAE-SC demonstrates huge superiority, with an overall
increase of 17%-32% on all of the three datasets. Since
the PCA method only focuses on reducing the dimension
of the data rather than extract effective features for cluster-
ing, resulting in poor final clustering effect. By employing
spectral clustering, SIMLR and MPSSC achieve a remark-
able improvement over PCA+k-means method. Although
spectral clustering is better than the ordinary PCA+k-means
method, SIMLR cannot model the large amount of noise
and dropout events present in scRNA-seq data effectively.
The MPSSC adds an additional L1 penalty on the basic of
spectral clustering, so its performance is better than SIMLR.
However, this artificially designed constraint does not fully
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TABLE 5. Wilcoxon Signed-Rank Test results on 10X PBMC, Mouse Bladder Cells and Worm Neuron Cells. The suffix _TS in the header stands for test
significance for each metric. Each row in the table represents the test significance of the comparison algorithm and the original experimental data of
AAE-SC after the Wilcoxon Signed-Rank Test.

model the essential characteristics of scRNA-seq data. As a
result, their performance is inferior to the method proposed
in this paper. Meanwhile, our method is also superior to
other algorithms including the RaceID3, LAK, SinNLRR and
scCATCH, which are based on k-means algorithm, spectral
clustering algorithm and reference databases respectively.
It can be clearly seen that our algorithm is superior to these
algorithms on each dataset.

DEC and IDEC are the early deep learning methods which
used autoencoder for clustering. For IDEC, the decoder struc-
ture is retained for subsequent clustering on the basis of DEC,
and it is apparent that IDEC performs better than DEC on
all the three datasets. However, because the scRNA-seq data
is quite different from the traditional image data, and these
two algorithms are not specifically designed for the task of
scRNA-seq data clustering. Experimental results of the two
algorithms on this kind of data are even worse than traditional
MPSSC method, and this holds true for the AutoImpute
algorithm.On the other hand, althoughDCA, scvis andVASC
characterize the scRNA-seq data by a specific ZINB loss
and variance inference model VAE respectively, all of them
ignore taking the advantage of deep clustering. Therefore,
they only achieve the similar performance with traditional
spectral clustering algorithm, restraining the ability of deep
learning to process big data.

The baseline model, scDeepCluster, follows the method of
DEC and IDEC and adds an extra clustering layer connecting
the hidden layer of DCAmodel. In this way, the scDeepClus-
ter not only effectively models and describes scRNA-seq data
through ZINB distribution, but also strengthens the effect of
subsequent clustering tasks by the cLustering layer. In this
case, it outperforms the above methods and becomes the
previous state-of-the-art. Compared with scDeepCluster, our
improved model constrains the hidden layer data to prevent
distortion of the data structure during the learning and cluster-
ing process, thus showing remarkable improvement on 10X
PBMC and Mouse Bladder Cells dataset. Especially in the

experiment of 10X PBMC, our model exceeds the original
scDeepCluster by about 5% on both ACC and ARI metrics.
This confirms the importance of maintaining data structures
in hidden layer and the effect of AAE for improving the
clustering performance.

The GAN [43] model with a confrontation training process
similar to that of AAE is also compared, and it is found
that the GAN model plus k-means algorithm performs the
worst among all comparison algorithms. The reason is that
although the GAN model uses similar adversarial training
ideas, the essence of GAN is to generate data rather than
extract useful features, and this model is not suitable for
cluster analysis.

In addition, all of our original experimental performances
have been tested by Wilcoxon Signed-Rank Test with other
algorithms. The results are shown in Table 5. It is clear that
when the significance level is 0.05, the performance of our
algorithm on all metrics is significant different comparedwith
the above algorithms, which also proves statistically that our
algorithm is better.

B. QUALITATIVE ANALYSIS
As described above, the scDeepCluster is improved by adding
an extra clustering layer on DCA first, and AAE-SC impose
constraint on the hidden features of scDeepCluster by AAE.
To evaluate clustering effects and effectiveness of AAE-SC
versus the baseline methods more intuitively, we visualize the
hidden embedded representations of AAE-SC, scDeepClus-
ter and DCA on 10X PBMC dataset using TSNE [49].

In Fig. 3, it is obvious that the samples in the same cell
group distribute in a wide range and cannot be well clus-
tered in DCA. Taking advantage of the extra clustering layer,
the performance of scDeepCluster is significantly better than
DCA. Although similar cells are made compact and dense by
scDeepCluster, some different clusters cannot be separated
well (such as cluster 2&6 and cluster 4&5). Our AAE-SC
overcomes the above problems and clusters the cell samples
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FIGURE 3. Comparison of 3D visualization of hidden embedded representation on the 10X PBMC. From left to right in the picture: AAE-SC, scDeepCluster
and DCA. Different colors indicate different cell clusters.

well into different groups, which will be beneficial for the
subsequent biological analysis.

C. SELECTIONS OF THE NUMBER OF CLUSTERS
Since the k-means algorithm is utilized in the improved deep
embedding clustering (IDEC) method of AAE-SC, and the
k-means algorithm demands the number of clusters in the
data in advance. In order to determine the optimal number of
clusters, additional experiments on the above three datasets
were conducted.

For each dataset, the number of clusters used by the k-
means algorithm in the experiment was chosen within the
range of length 2 around the number of cell types in the
dataset. For the above three datasets of 10X PBMC, Mouse
Bladder Cells and Worm Neuron Cells, the selection range
of the number of clusters fall into [6, 10], [14, 18] and
[8, 12] respectively. The clustering performance on these
three datasets is shown in Fig. 4. It can be clearly seen that
on each dataset, the clustering performance is the best when
the number of clusters is equal to that of cell types in the
dataset.

We also utilize themetric Davies-Bouldin Index (DBI) [51]
to determine the optimal clustering effect when selecting the
number of clusters. Introduction of this metric is as follows:

DBI =
1
k

k∑
i=1

max
j6=i

(
avg(Ci)+ avg(Cj)

dcen(Ci,Cj)
). (27)

where avg() represents average distance between samples in
the cluster, and dcen() represents the distance between the
center points of two clusters. The smaller the value of DBI,
the better the clustering effect can be considered.

Fig. 5 shows the DBI value under different number of
clusters on three datasets. It can be obviously seen that on
each dataset, the DBI value is the best when the number of
clusters is equal to that of cell types in the dataset. This also
verifies the results of our above experiment. So, the num-
ber of cell types in each dataset is taken as the number
of clusters for the algorithm to reach the best clustering
performance.

D. THE ROBUSTNESS OF AAE-SC
Robustness of the AAE-SC model was also studied and
compared to that of the baseline model, scDeepCluster.
SCANPY [33] was exploited to downsample the above three
datasets, and limited the total gene counts of each cell sample
in the dataset to the range of [500, 1000, 1500], so that the
clustering performance of the two models under these noisy
data could be observed.

Fig. 6 shows the clustering performances of AAE-SC
and scDeepCluster on the downsampled datasets. AAE-SC
performs better than the baseline model on three different
down-sampled noise data in almost every dataset. Especially
when the downsampling reaches only 500 gene counts per
cell, the NMI metric of AAE-SC outperforms that of the
baseline model by about 10%, and the other two metrics by
5%. The superior performance indicates that the constrained
features extracted byAAE-SCmodel aremore robust than the
hidden layer features of the scDeepCluster baseline model in
case of high-noise data.

E. EXPERIMENTS ON UNBALANCED DATASETS
In addition, the ability of the AAE-SC model to handle
unbalanced datasets were studied. The unbalanced dataset
means that the number of samples of certain cell types (clus-
ters) in the dataset is much smaller than that of the
dataset. In this experiment, three representative unbalanced
single-cell datasets extracted from three mouse tissues in the
Tabula Muris project [50] have been selected and some rare
data clusters exist in these datasets. Relevant information of
the datasets is demonstrated in Table 6. Obviously, there are
clusters with very few samples in these datasets. The data
pre-processing method we use on these three data sets is the
same as the method above.

Fig. 7 exhibits the clustering performance of AAE-SC ver-
sus that of the baseline model on three unbalanced datasets.
It can be observed that the AAE-SC model performs at least
5% better than the baseline model scDeepCluster on all three
metrics. Especially on the Skin dataset, AAE-SC outperforms
the scDeepCluster model by at least 12% on each metric. The
above experimental results can show that the AAE-SC model
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FIGURE 4. Comparison of clustering performance under different numbers of data clusters on three datasets. From left to right in the picture: 10X PBMC,
Mouse Bladder Cells and Worm Neuron Cells. Different colors indicate different evaluation metrics.

FIGURE 5. Comparison of values of Davies-Bouldin Index under different numbers of data clusters on three datasets. From left to right in the picture: 10X
PBMC, Mouse Bladder Cells and Worm Neuron Cells.

TABLE 6. Unbalanced datasets statistics. Rare clusters refer to clusters that account for less than 5% of the dataset.

has better clustering performance than the baseline model in
case of the unbalanced datasets with scarce data clusters.

F. SELECTIONS OF THE INITIAL LEARNING RATE FOR TWO
OPTIMIZERS
The selections of the initial learning rate for the two optimiz-
ers in our AAE-SC model were also studied. In addition to
the learning rate used in the baseline model scDeepCluster
(0.001 for Adam and 1 for Adadelta), we also compared the
performance of the two optimizers with other learning rates.
The learning rate of Adam is set as 0.0001, 0.001, 0.01 and
0.1 successively, and which of Adadelta is set as 0.01, 0.1,
1 and 10 successively.

Fig. 8 exhibits the clustering performance of AAE-SC
under different learning rates for the two optimizers on 10X
PBMC dataset. It can be clearly seen that when the learning
rates of Adam and Adadelta are 0.001 and 1, respectively,
the clustering performance of the model is best. At the same

time, the above two learning rates are also the default learning
rates of the two optimizers in the baseline model scDeepClus-
ter, so in order to make a fair comparison and achieve the best
performance, we recommend using these two values as the
initial learning rate of the two optimizers.

G. HYPER-PARAMETER ANALYSIS
The effect of the clustering coefficient α on the clustering
performance is further investigated. In this study, we aim to
find a suitable value of α, so that the final clustering effect can
be improved. Meanwhile, we hope that the final model will
not be overly sensitive to the changes of coefficient α and the
performance of the model not fluctuates too much. Therefore,
the effect of different network widths on the model perfor-
mance was also studied, by changing the width of first layer
of the adversarial autoencoder network.

In order to make the optimization process more efficient
and to better explore the solution space, we chose to use
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FIGURE 6. Comparison of the clustering performance of AAE-SC and baseline model scDeepCluster on three scRNA-seq datasets which are
downsampled. From left to right in the picture are: ACC, NMI and ARI respectively. The solid line represents our model, while the dashed line represents
the baseline model scDeepCluster.

FIGURE 7. Comparison of the clustering performance of AAE-SC and baseline model scDeepCluster on three unbalanced scRNA-seq datasets. From left to
right in the picture are: ACC, NMI and ARI respectively.

FIGURE 8. CComparison of the clustering performance for 10X PBMC dataset of two optimizers Adam and Adadelta with different initial learning rates.
From left to right: ACC, NMI and ARI. The learning rate of Adam is set as 0.0001, 0.001, 0.01 and 0.1 successively, and the learning rate of Adadelta is set
as 0.01, 0.1, 1 and 10 successively.

Bayesian optimization to optimize these two parameters.
Specifically, we used the python package BayesianOpti-
mization to make the analysis. For clustering coefficient α
and the width of first layer in AAE-SC, we defined the
search space as [0.1, 10] and [64,512] respectively in
advance, and then performed experiments. The result of the

experiment is that the optimal parameters of the two under
Bayesian optimization are 1.50023 and 128.0076 respec-
tively, so we finally chose to set these two parameters to
1.5 and 128. It is worth mentioning that this setting can
make the width of the network narrower than the baseline
model.
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VI. CONCLUSION
In this paper, we propose AAE-SC, a single-cell RNA-seq
data clustering model. The model combines benefits of mod-
eling of specific biological noise modeling, variational infer-
ence and deep clustering. The AAE-SC model preserves the
data structure and utilizes the constraint bottleneck feature to
improve clustering analysis by an AAE module. Experimen-
tal results on three real-world scRNA-seq datasets show that
AAE-SC achieves considerable better clustering performance
than the state-of-the-art on three evaluation metrics.

Although the proposed model achieves superior perfor-
mance, we believe that it has some limitations, includ-
ing AAE may not be easy to train, and the training time
may be relatively long, etc., so our future work will also
focus on improving the above problems. Also, it is signif-
icant to explore the utilization of this model for process-
ing other single-cell data, such as single-cell Hi-C data and
scATAC-seq data. Besides, using XAI technology to improve
the interpretability of this model is worth to explore.
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