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ABSTRACT Surface electromyography (SEMG) provides an intuitive and non-invasive interface from which
to control machines. However, preserving the myoelectric control system’s performance over multiple days
is challenging, due to the transient nature of the signals obtained with this recording technique. In practice,
if the system is to remain usable, a time-consuming and periodic recalibration is necessary. In the case where
the SEMG interface is employed every few days, the user might need to do this recalibration before every
use. Thus, severely limiting the practicality of such a control method. Consequently, this paper proposes
tackling the especially challenging task of unsupervised adaptation of SEMG signals, when multiple days
have elapsed between each recording, by introducing Self-Calibrating Asynchronous Domain Adversarial
Neural Network (SCADANN). SCADANN is compared with two state-of-the-art self-calibrating algorithms
developed specifically for deep learning within the context of EMG-based gesture recognition and three
state-of-the-art domain adversarial algorithms. The comparison is made both on an offline and a dynamic
dataset (20 participants per dataset), using two different deep network architectures with two different input
modalities (temporal-spatial descriptors and spectrograms). Overall, SCADANN is shown to substantially
and systematically improves classification performances over no recalibration and obtains the highest
average accuracy for all tested cases across all methods.

INDEX TERMS EMG, myoelectric control, domain adaptation, self-calibration, domain adversarial, gesture
recognition.

I. INTRODUCTION

Robots have become increasingly prominent in the lives of
human beings. As a result, the way in which people interact
with machines is constantly evolving towards a better synergy
between human intention and machine action. The ease of
transcribing intention into commands is highly dependent on
the type of interface and its implementations [1]. Within this
context, muscle activity offers an attractive and intuitive way
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to perform gesture recognition as a guidance method [2], [3].
Such activity can be recorded from surface electromyography
(sEMG), a non-invasive technique widely adopted both for
prosthetic control and in research as a way to seamlessly
interact with machines [4], [5]. Artificial intelligence can then
be leveraged as the bridge between these biological signals
and a robot’s input guidance.

Current state-of-the-art algorithms in gesture recognition
routinely achieve accuracies above 95% for the classifica-
tion of offline, within-day datasets [6], [7]. However, many
practical issues still need to be solved before implementing
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these types of algorithms into functional applications [4], [8].
Electrode shift and the transient nature of the SEMG signals
are among the main obstacles to a robust and widespread
implementation of real-time sEMG-based gesture recogni-
tion [4]. In practice, this means that users of current myoelec-
tric systems need to perform periodic recalibration of their
device so as to retain their usability. To address the issue
of real-time myoelectric control, researchers have proposed
rejection-based methods where a gesture is predicted only
when a sufficient level of certainty is achieved [9], [10].
While this type of method have been shown to increase online
usability, they do not directly address the inherent decline in
performance of the classifier over time. One way to tackle this
challenge is to leverage transfer learning algorithms to peri-
odically recalibrate the system with less data than normally
required [11], [12]. Though this reduces the burden placed on
the user, said user will still need to periodically record new
labeled data.

This work focuses on the problem of across-day
SEMG-based gesture recognition both within an offline and
dynamic setting. In particular, this work considers the situa-
tion where several days have elapsed between each recording
session. Such a setting naturally arises when SEMG-based
gesture recognition is used for video games, artistic perfor-
mances or, simply, to control devices of sporadic use [2], [5],
[13]. In contrast to within-day or even day-to-day adaptation,
this work’s setting is especially challenging as the change in
the signal between two sessions is expected to be substantially
greater and no intermediary data is available to bridge this
gap. The goal is then for the classifier to be able to adapt over-
time using the unlabeled data obtained from the myoelectric
system. Such a problem can be framed within an unsuper-
vised domain adaptation setting [14] where there exists an
initial labeled dataset on which to train, but the classifier then
has to adapt to unlabeled data from a different, but similar
distribution.

An additional difficulty of the setting considered in this
work is that real-time myoelectric control imposes strict lim-
itations in relation to the amount of temporal data which can
be accumulated before each new prediction. The window’s
length requirement has a direct negative impact on the per-
formance of classifiers [10], [15]. This is due to the fact
that temporally neighboring segments most likely belong
to the same class [16], [17]. In other words, provided that
predictions can be deferred, it should be possible to generate
a classification algorithm with improved accuracy (compared
to the real-time classifier) by looking at a wider temporal
context of the data [10]. Consequently, one possibility to cope
with electrode shift and the non-stationary nature of EMG
signals for gesture recognition is for the classifier to self-
calibrate using pseudo-labels generated from this improved
classification scheme. The most natural way of performing
this relabeling is using a majority vote around each classifier’s
prediction. Xiaolong et al. [17] have shown that such a recali-
bration strategy significantly improves intra-day accuracy on
an offline dataset for both amputees and able-bodied subjects
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(tested on the NinaPro DB2 and DB3 datasets [18]). How-
ever for real-time control, such a majority vote strategy will
increase latency, as transitions between gestures inevitably
take longer to be detected. Additionally, as the domain diver-
gence, over multiple days, is expected to be substantially
greater than within a single day, ignoring this gap before
generating the pseudo-labels might negatively impact the
self-recalibrated classifier. Finally, trying to re-label every
segment, even when there is no clear gesture detected by
the classifier, will necessarily introduce undesirable noise in
the pseudo-labels. To address these issues, the main contri-
bution of this paper is the introduction of SCADANN (for
Self-Calibrating Asynchronous Domain Adversarial Neural
Network), a deep learning-based algorithm, which leverages
the domain adaptation setting and the unique properties of
real-time myoelectric control for inter-day self-recalibration.
This paper is organized as follows. An overview of the
related work is given in Section II. The datasets and the
deep network architecture employed in this work is provided
in Section III. Section IV presents the domain adaptation
algorithm considered in this work, while Section V thor-
oughly describes SCADANN alongside the two most popu-
lar SEMG-based unsupervised adaptation algorithms. Finally,
these three algorithms are compared alongside the domain
adaptation algorithms and the vanilla networks in Section VI
and their associated discussions are shown in Section VII.

Il. RELATED WORK

Mpyoelectric control systems naturally generate large amounts
of unlabeled data. However, over time, due to the electrode
shift and transient change in the signal, the data gener-
ated diverges from the one used for training the classifier.
Huang et al. [19] proposes using this setting to update a mod-
ified Support Vector Machine, by replacing some of the key
examples (referred to as representative particles (RP)) from
the training set, with new unlabeled examples when they are
sufficiently close (i.e. small distance within the feature space)
to the RP. Other authors [20] propose to periodically retrain a
Linear Discriminant Analysis (LDA), by updating the train-
ing dataset itself. The idea is to replace the oldest examples
with new, near ones. Such methods, however, are inherently
restricted to single-day use as they rely on smooth and small
signal drift to update the classifier. Additionally, these types
of methods do not leverage the potentially large quantity of
unlabeled data generated. In contrast, deep learning algo-
rithms are well suited to scale to large amounts of data and
were shown to be more robust to between-day signal drift than
LDA, especially as the amount of training data increases [21].
Within the field of image recognition, deep learning-based
unsupervised domain adaptation has been extensively stud-
ied. A popular approach to this problem is domain adversarial
training popularized by DANN [14], [22]. The idea behind
DANN is to learn a feature representation which favors
class separability of the labeled dataset, while simultaneously
hindering domain separability (i.e. differentiation between
the labeled and unlabeled examples). See Section IV for
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details. Building on DANN, the VADA (for Virtual Adver-
sarial Domain Adaptation) algorithm [23] proposes to also
minimize the cluster assumption violations on the unlabeled
dataset [24] (i.e. decision boundary should avoid area of
high data density). Another state-of-the-art algorithm, but this
time for non-conservative unsupervised domain adaptation
(i.e. the final model might not be good at classifying the
original data), is DIRT-T (for Decision-boundary Iterative
Refinement Training with a Teacher), which starting from
the output of VADA, removes the labeled data and itera-
tively tries to continue minimizing the cluster assumption.
A detailed explanation of DANN, VADA and DIRT-T is given
in Section IV. These three state-of-the-art domain adversarial
algorithms achieve a two-digit accuracy increase on several
difficult image recognition benchmarks [23] compared to the
non-adapted deep network. This work thus proposes to test
these algorithms on the challenging problem of multiple-day
SEMG-based gesture recognition both within an offline and
dynamic setting (see Section VI).

Ill. DATASETS AND NETWORK'’S ARCHITECTURE

This work employs the 3DC Dataset [25] for architecture
building and hyperparameter optimization and the Long-term
3DC Dataset [12] for training and testing the different algo-
rithms considered. Both datasets were recorded using the
3DC Armband [25]; a wireless, 10-channel, dry-electrode, 3D
printed sSEMG armband. The device samples data at 1000 Hz
per channel, allowing to take advantage of the full spectra of
SsEMG signals [26].

As stated in [12], [25], the data acquisition protocol of
the 3DC Dataset and Long-term 3DC Dataset were approved
by the Comités d’Ethique de la Recherche avec des étres
humains de 1’Université Laval (approval number: 2017-
0256 A-1/10-09-2018 and 2017-026 A2-R2/26-06-2019
respectively), and informed consent was obtained from all
participants.

A. LONG-TERM 3DC DATASET

The Long-term 3DC Dataset features 20 able-bodied partic-
ipants (5F/15M) aged between 18 and 34 years old (average
2644 years old) performing eleven gestures (shown in
Figure 1). Each participant performed three recording ses-
sions over a period of fourteen days (in seven-day incre-
ments). Each recording session is divided into a Training
Recording and two Evaluation Recordings. For each new
session, the participants were the ones placing the armband
on their forearm at the beginning of each session (introducing
small electrode shift between each session).

The Long-term 3DC Dataset was recorded within a virtual
reality environment in conjunction with the leap motion cam-
era. The usefulness of the VR environment was three fold.
First, it allowed to more intuitively communicate requested
gesture intensity and position to the participant. Second,
it allowed to replace the arm of the participant with a
virtual prosthetic, which provided direct and intuitive feed-
back (gesture held, intensity and position) to the participant.
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FIGURE 1. The eleven hand/wrist gestures recorded in the Long-term
3DC dataset and the 3DC Dataset. The gestures included within the
Reduced Long-term 3DC Dataset are encompassed within the green line
(7 gestures totals).

Pronation

Third, it allowed the gamification of the experimental proto-
col, which greatly facilitated both recruitment and participant
retention. During recording, the leap motion, in conjunc-
tion with an image-based convolutional network, served
as the real-time controller and as a way to provide feed-
back without biasing the dataset to a particular EMG-based
classifier.

The dataset is thoroughly described alongside a detailed
explanation of the VR system and the contributions of the
leap motion camera in [12]. A brief overview of the dataset
is provided in the following subsections. A video show-
ing the recording protocol in action is also available at
https://www.youtube.com/watch?v=BnDwcw80l6U the fol-
lowing link: https://www.youtube.com/watch?v=BnDwcw
80l6U.

1) TRAINING RECORDING

During the Training Recording, each participant was standing
and held their forearm, unsupported, parallel to the floor, with
their hand relaxed (neutral position). Starting from this neu-
tral position, each participant was asked to perform and hold
each gesture for a period of five seconds. This was referred to
as a cycle. Two more such cycles were recorded. In this work,
the first two cycles are used for training, while the last one is
used for testing (unless specified otherwise). Note that in the
original dataset, four cycles are recorded for each participant,
with the second one recording the participant performing
each gesture with maximal intensity. This second cycle was
removed for this work to reduce confounding factors. In other
words, cycle two and three in this work correspond to cycle
three and four in the original dataset.

In addition to the eleven gestures considered in the Long-
term 3DC Dataset, a reduced dataset from the original Long-
term Dataset containing seven gestures is also employed. This
Reduced Long-term 3DC Dataset is considered as it could
more realistically be implemented on a real-world system
given the current state of the art of EMG-based hand gesture
recognition. The following gestures form the reduced dataset:
neutral, open hand, power grip, radial/ulnar deviation and
wrist flexion/extension. These gestures were selected as they
were shown to be sufficient in conjunction with orienta-
tion data to control a 6 degree-of-freedom robotic arm in
real-time [2].
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2) EVALUATION RECORDING

During the Evaluation Recordings, the participants were
asked to perform a specific gesture at a specific intensity
(low, medium and high intensity based on their correspond-
ing maximal gesture intensity) and at a random position
(a point within reach of the participant’s extended arm at
a maximum angle of +45 and £70 degrees in pitch and
yaw respectively). A new gesture, intensity and position were
randomly asked every five seconds. Each Evaluation Record-
ing lasted three and a half minutes and two such record-
ings were performed by each participant for each recording
session (total of six Evaluation Recordings per participant).
The Evaluation Recordings provide a dynamic dataset which
includes the transitions between the different gestures and
the four main dynamic factors [4] (i.e. contraction intensity,
inter-day recording, electrode shifts and limb position) in
sEMG-based gesture recognition. Note that while the partic-
ipants received visual feedback within the VR environment
in relation to the held gesture, limb position and gesture
intensity, the performed gestures were classified using the
leap motion camera [27] in order to avoid bias in the dataset
towards a particular EMG-based classifier. In other words,
the controller used by the participants during the Evaluation
Recordings is distinct and independent from the SEMG-based
gesture recognition algorithms considered in this manuscript,
which is the main difference between the dynamic dataset
considered and a real-time dataset. In this work, the first
evaluation recording of a given session was employed as
the unlabeled training dataset for the algorithms presented in
Section IV and V, while the second evaluation recording was
used for testing.

3) DATA PRE-PROCESSING

This work aims at studying unsupervised recalibration of
myoelectric control systems. Consequently, the input latency
is a critical factor to consider. The optimal guidance latency
was found to be between 150 and 250 ms [15]. As such,
the data from each participant is segmented into 150 ms
frames with an overlap of 100 ms. Each segment thus contains
10 x 150 (channel x time) data points. The segmented data
is then band-pass filtered between 20-495 Hz using a fourth-
order butterworth filter.

Given a segment, the spectrogram for each sSEMG channel
are then computed using a 48 points Hann window with an
overlap of 14 yielding a matrix of 4 x 25 (time X frequency).
The first frequency band is then removed in an effort to
reduce baseline drift and motion artifacts. Finally, follow-
ing [28], the time and channel axis are swapped such that
an example is of the shape 4 x 10 x 24 (time x channel x
frequency). Spectrograms were selected as inputs for the
ConvNet presented in Section III-C, as they have been shown
to obtain competitive performance on a wide variety of
datasets [6], [17], [25] and in the control of a robotic arm
in real-time [2]. In addition, they are relatively inexpensive
to compute and allow for faster training of a ConvNet when
compared to the raw sEMG signal due to the relatively
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low dimensionality of the obtained input images from the
spectrograms.

B. 3DC DATASET

The 3DC Dataset features 22 able-bodied participants and
is employed for architecture building and hyperparameter
selection. This dataset, presented in [25], includes the same
eleven gestures as the Long-term 3DC Dataset. Its recording
protocol closely matches the Training Recording descrip-
tion (Section III-A), with the difference being that two
such recordings were taken for each participant (within the
same day). This dataset was preprocessed as described in
Section III-A3.

C. CONVOLUTIONAL NETWORK'S ARCHITECTURE

A small and simple ConvNet’s architecture inspired from [29]
and presented in Figure 2 was selected to reduce potential
confounding factors. The ConvNet’s architecture contains
four blocks followed by a global average pooling and two
heads. The first head is used to predict the gesture held by the
participant. The second head is only activated when employ-
ing domain adversarial algorithms (see Section IV and V for
details). Each block encapsulates a convolutional layer [30],
followed by batch normalization [31], leaky ReLU [32] and
dropout (set to p=0.5) [33].

ADAM [34] is employed for the ConvNet’s optimization
with batch size of 512. The learning rate (Ir=0.001316) was
selected with the 3DC Dataset by random search [35] using a
uniform random distribution on a logarithmic scale between
107> and 10! and 100 candidates (each candidate was eval-
uated 5 times). Early stopping, with a patience of 10 epochs,
is also applied by using 10% of the training dataset as a
validation set. Additionally, learning rate annealing, with a
factor of five and a patience of five, was also used. Within
this paper, this classifier will be refered to as Spectrogram
ConvNet.

Note that the ConvNet’s architecture implementation, writ-
ten with PyTorch [36], is made https://github.com/UlysseCote
Allard/LongTermEMGreadily available here (https://github.
com/UlysseCoteAllard/LongTermEMG).

D. TEMPORAL-SPATIAL DESCRIPTORS DEEP NETWORK
Due to the ubiquity of handcrafted feature sets within the
field of EMG-based gesture recognition, a deep network
taking Temporal-Spatial Descriptors (TSD) as input is also
considered. TSD is a handcrafted feature set proposed by
Khushaba et al. [37] which achieved state-of-the-art results
in EMG-based gesture classification. A short overview of this
feature set is given in Appendix A and the interested reader
is encouraged to consult [37] for a detailed description. Note
that before computing the gesture, the data is preprocessed as
described in Section III-A3 (without the spectrogram part).
The deep network architecture was again selected to be
as simple as possible and is comprised of 3 fully connected
layers each 200 neurons wide. Each layer also applies batch
normalization, leaky ReLU (slope 0.1) as the activation
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FIGURE 2. The ConvNet's architecture employing 206 548 learnable parameters. In this figure, B; refers to the ith block (i € (0, 1, 2, 3}). Conv refers to a
convolutional layer. When working with the reduced dataset, the number of output neurons from the gesture-head are reduced to seven.

function and dropout (p=0.5). The training procedure is
the same as for the Spectrogram ConvNet. ADAM is also
employed with a learning rate of 0.002515 (found by cross-
validation on the 3DC Dataset using the same hyperparameter
as the Spectrogram ConvNet). The PyTorch implementa-
tion of the Deep Network, which will be referred to as
TSD DNN for the remainder of this paper, is also made
https://github.com/UlysseCoteAllard/LongTermEMGreadily
available here (https://github.com/UlysseCoteAllard/Long
TermEMG).

E. CALIBRATION METHODS

This work considers three types of calibration for long-term
classification of SEMG signals: No Calibration, Recalibration
and Unsupervised Calibration. In the first case, the network
is trained solely from the data of the first session. In the
Recalibration case, the model is re-trained at each new ses-
sion with the new labeled data. Unsupervised Calibration is
similar to Recalibration, but the dataset used for recalibration
is unlabeled. Section IV and V presents the unsupervised
calibration algorithms considered in this work.

IV. UNSUPERVISED DOMAIN ADAPTATION
Domain adaptation is an area in machine learning which
aims at learning a discriminative predictor from two datasets
(source and target datasets) coming from two different, but
related, distributions [22] (referred to as D, and D;). In the
unsupervised case, one of the datasets is labeled (and comes
from Dy), while the second is unlabeled (and comes from D;).
Within the context of myoelectric control systems, labeled
data is obtained through a user’s conscious calibration ses-
sion. However, due to the transient nature of sEMG sig-
nals [4], [38], classification performance tends to degrade
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over time. This naturally creates a burden for the user who
needs to periodically recalibrate the system to maintain its
usability [38], [39]. During normal usage, however, unlabeled
data is constantly generated. Consequently, the unsupervised
domain adaptation setting naturally arises by defining the
source dataset as the labeled data of the calibration session
and the farget dataset as the unlabeled data generated by the
user during control.

The PyTorch implementation of the domain adversarial
algorithms is mainly based on [40].

A. DOMAIN-ADVERSARIAL TRAINING OF

NEURAL NETWORKS

The Domain-Adversarial Neural Network (DANN) algorithm
proposes to predict on the target dataset by learning a repre-
sentation from the source dataset that makes it hard to distin-
guish examples from either distribution [14], [22]. To achieve
this objective, DANN adds a second head (which may be
comprised of one or more layers) to the network. This head,
referred to as the domain classification head, receives the
features from the last feature extraction layer of the network
(in this work case; from the global average pooling layer).
The goal of this second head is to learn to discriminate
between the two domains (source and target). However, dur-
ing backpropagation, the gradient computed from the domain
loss is multiplied by a negative constant (-1 in this work).
This gradient reversal explicitly forces the feature distribution
of the domains to be similar. The backpropagation algo-
rithm proceeds normally for the original head (classification
head). The two losses are combined as follows: £y(0; Dy) +
rdLq(0; Ds, Dy), where 0 is the classifier’s parametrization,
Ly and L, are the prediction and domain loss respectively.
Aq is a scalar that weights the domain loss (set to 0.1 in this
work).
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B. DECISION-BOUNDARY ITERATIVE REFINEMENT
TRAINING WITH A TEACHER

Decision-boundary Iterative Refinement Training with a
Teacher (DIRT-T) is a two-step domain-adversarial training
algorithm which achieves state-of-the-art results on a variety
of domain adaptation benchmarks [23].

1) FIRST STEP

During the first step, referred to as VADA (for Virtual
Adversarial Domain Adaptation) [23]), training is done using
DANN as described previously (i.e. using a second head
to discriminate between domains). However, with VADA,
the network is also penalized when it violates the cluster
assumption on the target. This assumption states that data
belonging to the same cluster in the feature space share the
same class. Consequently, decision boundaries should avoid
crossing dense regions. As shown in [41], this behavior can be
achieved by minimizing the conditional entropy with respect
to the target distribution:

Lo(6: D) = Eco, [ho(0)” Infho))] (M

where 6 is the parametrization of a classifier A.

In practice, £, must be estimated from the available data.
However, as noted by [41], such an approximation breaks
if the classifier & is not locally-Lipschitz (i.e. an arbitrary
small change in the classifier’s input produces an arbi-
trarily large change in the classifier’s output). To remedy
this, VADA proposes to explicitly incorporate the locally-
Lipschitz constraint during training via Virtual Adversarial
Training (VAT) [42]. VAT generates new “virtual” examples
at each training batch by applying small perturbation to the
original data. The average maximal Kullback-Leibler diver-
gence (Dkp,) [43] is then minimized between the real and
virtual examples to enforce the locally-Lipschitz constraint.
In other words, VAT adds the following function to minimize
during training:

lIrll<e

Ly(©; D) = Exp [max Dxy(ho (X)|ho(x + r))} @

As VAT can be seen as a form of regularization, it is also
applied for the source data. In summary, the combined loss
function to minimize during VADA training is:

mein ‘Cy(e; Dy) + 1aLa(0; Ds, Dy) + AysLy(0; Dy)
+ A Ly(0; D) + A Le(0; D) (3)

where the importance of each additional loss function is
weighted with a hyperparameter (Ag, Ay, Ayr, Ac). A diagram
of VADA is provided in Figure 3.

2) SECOND STEP

During the second step, the signal from the source is removed.
The idea is then to find a new parametrization that fur-
ther minimizes the target cluster assumption violation while
remaining close to the classifier found during the first step.
This process can then be repeated by updating the original
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FIGURE 3. The VADA algorithm which simultaneously tries to reduce the
divergence between the labeled source ({xs, ys}) and unlabeled target
({x¢}) dataset while also penalizing violation of the cluster assumption on
the target dataset.

classifier with the classifier’s parametrization found at each
iteration. The combined loss function to minimize during the
nth iteration thus becomes:

min AR Dk (ho,_, ()|1h6, )]+ vt L(6; D)+ Le(6; D)
)

where B is a hyperparameter which weighs the importance of
remaining close to hg, ,. In practice, the optimization prob-
lem of Eq. 4 can be approximately solved with a finite number
of stochastic gradient descent steps [23]. Following [23],
the hyperparameters values are set to Ay = 1072, Ay = 1,
Ay =1072, 0. =10"2, 8 =102

Note that, both DANN and VADA were conservative
domain adaptation algorithms (i.e. the training algorithms try
to generate a classifier that is able to discriminate between
classes from both the source and target simultaneously).
In contrast, DIRT-T is non-conservative as it ignores the
source’s signal during training. In the case where the gap
between the source and the target is important, this type of
non-conservative algorithm is expected to perform better than
its conservative counterparts [23].

C. UNSUPERVISED ADAPTATION - HYPERPARAMETERS
SELECTION

One challenge in applying unsupervised domain adaptation
algorithms is the selection of the hyperparameters associated
with the loss functions’ weights. This is due to the absence of
labeled data on the target dataset, which in practice prohibits
performing standard hyperparameter selection. One possible
solution is to perform the adaptation without explicitly min-
imizing the distance between the source and target, so that
this distance can be used as a measure of adaptation perfor-
mance [44]. However, such a solution precludes algorithms
like the ones considered in this work and so the question
of how to best perform hyperparameters selection remains a
difficult and open question.

In their work introducing VADA and DIRT-T [23],
Shu et al. observed that extensive hyperparameter tuning was
not necessary to achieve state-of-the-art performance on the
datasets they were using. Consequently, following this obser-
vation, the hyperparameters associated with the unsupervised
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domain adversarial algorithms described in this section used
the defaults weights recommended in their respective paper.

V. UNSUPERVISED SELF-CALIBRATION

Within an unsupervised domain adaptation setting, the classi-
fier’s performance is limited by the unavailability of labeled
data from the target domain. However, real-time EMG-based
gesture recognition offers a particular situation from which
pseudo-labels can be generated from the recorded data by
looking at the prediction’s context. These pseudo-labels can
then be used as a way for the classifier to perform self-
recalibration. Zhai et al. [17] proposed to leverage this con-
text by relabeling the network’s predictions. Let P(i, j) be
the softmax value of the network’s output for the jth gesture
(associated with the jth output neuron) of the ith example of
a sequence. The heuristic considers an array composed of
the + segments surrounding example i (included). For each
J» the median softmax value over this array is computed:

P(i,j) = median(P(i — 1, ), P(i — t + 1, ),
L PA ), PAHED) (5)

The pseudo-label of i then becomes the gesture j associated
with the maximal P(i, J)- The median of the softmax’s outputs
is used instead of the prediction’s mean to reduce the impact
of outliers [17]. This self-calibrating heuristic will be referred
to as MV (for Multiple Votes) from now on. As it was the
best performing setting, the All-Session recalibration setting
(i.e. using all available unlabeled data across sessions) [17] is
employed for MV. The hyperparameter ¢t was set to 1 second,
as recommended in [17].

This work proposes to improve on MV with a new self-
calibrating algorithm, named SCADANN, which can be
divided into three steps:

1) Apply DANN to the network using the labeled and
newly acquired unlabeled data.

2) Using the adapted network, perform the relabeling
scheme described in Section V-A.

3) Starting from the adapted network, train the net-
work with the pseudo-labeled data and labeled data
while continuing to apply DANN to minimize domain
divergence.

The first step aims at reducing the domain divergence
between the labeled recording session and the unlabeled
recording to improve classification performance of the
network.

The second step uses the pseudo-labeling heuristic
described in Section V-A. In addition to using the predic-
tion’s context to enhance the relabeling process, the proposed
heuristic introduces two improvements compared to [17]:

First, the heuristic tries to detect transition from one gesture
to another. Then, already relabeled predictions falling within
the transition period are vetted and possibly relabeled to better
reflect when the actual transition occurred. This improvement
aims at addressing two problems. First, the added latency
introduced by majority-voting pseudo-labeling is removed.
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Second, this relabeling can provide the training algorithm
with gesture transition examples. This is of particular interest
as labeled transition examples are simply too time consuming
to produce, especially considering the current need for peri-
odic recalibration (g gestures create g x (g — 1) transitions
to record). Introducing pseudo-labeled transition examples
within the target dataset, could allow the network to detect
transitions more rapidly and thus reduce the system latency.
In turn, due to this latency’s reduction, window’s length could
be increases to improve the overall system’s performance.

The second improvement, introduces the notion of stability
to the network’s predictions. Using this notion, the heuristic
removes examples that are more likely to be relabeled falsely
from the pseudo-labeled dataset. This second improvement
is essential for a realistic implementation of self-calibrating
algorithms, as otherwise the pseudo-labeled dataset would
rapidly be filled with an important quantity of noise. This
would result in a rapidly degenerating network as self-
calibration is performed iteratively.

The third step re-calibrates the network using the labeled
and pseudo-labeled dataset in conjunction. DANN is again
employed to try to obtain a similar feature representation
between the source and target datasets. The source dataset
contains the labeled dataset alongside all the pseudo-labeled
data from prior sessions, while the target dataset contains the
pseudo-labeled data from the current session. The difference
with SCADANN’s first step is that the network’s weights
are also optimized in relation to the cross-entropy loss cal-
culated from the newly generated pseudo-labels. If only
the pseudo-labeled dataset was employed for recalibration,
the network performance would rapidly degrade from being
trained only with noisy labels and possibly without certain
gestures (i.e. nothing ensure that the pseudo-labeled dataset
is balanced or even contains all the gestures). Early stopping
is performed using part of the newly generated pseudo-labels.

A. PROPOSED PSEUDO-LABELS GENERATING HEURISTIC
For concision’s sake, the pseudo-code for the proposed rela-
beling heuristic is presented in Appendix B-Algorithm 1.
Note also that a python implementation of SCADANN
(alongside the pseudo-labeling heuristic) is available
in the previously mentioned online https://github.com/
UlysseCoteAllard/LongTermEMGrepository.

The main idea behind the heuristic is that if the new
prediction is different than the previous one, the state goes
from stable to unstable. During the stable state, the pre-
diction of the considered segment is added to the pseudo-
label array. During the unstable state, all the network’s output
(after the softmax layer) are instead accumulated in a second
array. When this second array contains enough segments
(hyperparameter sets to 1.5s), the class associated with the
output neuron with the highest median value is defined as the
new possible stable class. The new possible stable class is
confirmed if the median percentage of this class (compared
with the other classes) is above a certain threshold (85% and
65% for the seven and eleven gestures dataset respectively
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(selected using the 3DC dataset)). If this threshold is not
achieved, the oldest element in the second array is removed
and replaced with the next element. Note that the computation
of the new possible stable class using the median is identical
to MV.

When the new possible class is confirmed, the heuristic
first verifies if it was in the unstable state for too long (2s in
this work). If it was, all the predictions accumulated during
the unstable state are removed. Otherwise, if the new stable
state class is different than before it means that a gesture’s
transition probably occurred. Consequently, the heuristic
goes back in time before the instability began (maximum
of 0.5s in this work) and looks at the derivative of the entropy
calculated from the network’s softmax output to determine
when the network started to be affected by the gesture’s
transition. All the segments from this instability period (and
adding the relevant segments from the look-back step) are
then relabeled as the new stable state class found. If instead
the new stable state class is identical to the previous one, only
the segments from the instability period are relabeled. The
heuristic then returns to its stable state.

B. SCADANN - HYPERPARAMETERS SELECTION

On the surface, SCADANN introduces several hyperpa-
rameters whose selection, within an unsupervised domain
adaptation paradigm, is not straightforward. The majority
of the introduced hyperparameters, however, have a mean-
ingful interpretation within the context of EMG-based ges-
ture recognition. In other words, reasonable values can be
assigned to them without performing detailed data-driven
hyperparameter selection. In addition, because these newly
introduced hyperparameters are solely related to the pseudo-
labeling aspect of the work, a labeled dataset (in this work
case the 3DC Dataset) can be leveraged to perform hyperpa-
rameter selection.

C. ADAPTIVE BATCH NORMALIZATION

For the sake of completeness, in addition to the five previ-
ously mentioned adaptation algorithms, this work also con-
siders Adaptive Batch Normalization (AdaBN) [39], [45].
AdaBN is an unsupervised domain adaptation algorithm
which was successfully applied to EMG-based gesture recog-
nition in [39]. The hypothesis behind AdaBN is that the label-
related information (the difference between gestures) can be
encapsulated within the weights of the network, while the
domain-related information (the difference between sessions)
are contained within the batch normalization (BN) statistics.
In practice, this means that the adaptation is done by feed-
ing the unlabeled examples from the target dataset to the
network to update the BN statistics. Note that within this
work’s setting, as only one session is contained within the
source dataset and inter-user classification is not considered,
the multi-stream aspect proposed in [39] cannot be applied.

VI. EXPERIMENTS AND RESULTS
As suggested in [46], a two-step statistical procedure is used

whenever multiple algorithms are compared against each
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TABLE 1. Offline accuracy for seven gestures.

Spectrogram ConvNet

No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 93.58% NA NA NA NA NA NA
STD 4.58% N\A N\A N\A NA N\A N\A
Session 1 TL.10%  72.76%  73.35% 74.28% 72.61% T4.45% 75.50%
STD 2290%  26.00%  25.48% 24.42% 25.95% 24.03% 25.41%
Friedman Rank 4.85 4.73 4.25 3.70 5.23 278 2.48
NA 1 1 1 1 0(0.01193)  0(0.00305)
Cohen’s Dz NA 0.19 0.24 0.36 0.16 0.62 0.52
Session 2 6875% T449%  75.55% 75.52% 76.02% 70.01% 77.22%
STD 22.58%  22.73%  22.76% 23.55% 23.10% 24.82% 22.50%
Friedman Rank 5.60 4.40 4.03 3.40 2.95 4.68 2.95
HO N\A 1 1 0(0.00512)  0(0.00063) 1 0 (0.00063)
Cohen’s Dz NA 0.73 0.77 0.70 0.79 0.22 0.92
TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 96.39% NA NA NA N\A NA NA
STD 3.20% NA N\A NA N\A NA N\A
Session 1 78.14%  83.15%  80.90% 80.94% 84.37% 83.01% 84.91%
STD 18.49%  1547%  15.46% 14.06% 14.64% 19.43% 16.09%
Friedman Rank 545 4.03 4.95 4.68 3.00 3.48 243
N\A 1 1 1 0(0.00168)  0(0.01536) 0 (0.00006)
Cohen’s Dz NA 0.90 0.37 0.22 0.88 0.86 0.84
Session 2 79.718%  8473%  84.50% 82.16% 8591% 81.47% 88.20%
STD 19.06%  19.38%  17.37% 17.68% 19.06% 19.23% 17.55%
Friedman Rank 5.20 393 4.20 5.18 3.23 4.15 213
HO N\A 1 1 1 0(0.01919) 1 0 (0.00004)
Cohen’s Dz N\A 0.55 0.52 0.28 0.61 048 0.81

other. First, Friedman’s test ranks the algorithms amongst
each other. Then, Holm’s post-hoc test is applied (n = 20)
using the No Calibration setting as a comparison basis. Addi-
tionally, Cohen’s D, [47] is employed to determine the effect
size of using one of the self-supervised algorithm over the No
Calibration setting. To better contextualize the performance
of the basic Spectrogram ConvNet used in this work, a com-
parison between the Spectrogram ConvNet and 6 widely used
features ensembles within the field of SEMG-based gesture
recognition is performed. For the sake of concision, this
comparison is given in Appendix A.

A. TRAINING RECORDING

In this subsection, all training was performed using the
first and second cycles of the relevant Training Recording,
while the third cycle was employed for testing. All 20 par-
ticipants completed three Training Recordings and only
the labels from the first Training Recording are used (the
data from the other Training Recordings are used without
labels for the unsupervised recalibrations algorithms when
relevant). The time-gap between each Training Recording
was around seven days (14-day gap between session 1 and 3).
Note that for the first session, all algorithms are equivalent
to the No Calibration scheme and consequently perform the
same.

1) OFFLINE SEVEN GESTURES REDUCED DATASET

Table 1 shows a comparison of the No Calibration set-
ting alongside the three DA algorithms, AdaBN, MV and
SCADANN for both the Spectrogram ConvNet and the TSD
DNN.

2) OFFLINE ELEVEN GESTURE DATASET

Table 2 compares the No Calibration setting with the three DA
algorithms, AdaBN, MV and SCADANN for both networks.
Figure 4 shows a histogram of the accuracy obtained by
the TSD DNN for the No Calibration, SCADANN and the
Recalibration methods.
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TABLE 2. Offline accuracy for eleven gestures.

Spectrogram ConvNet

No Cal DANN VADA DirtT AdaBN MV SCADANN
Session 0 84.19% NA NA NA NA NA NA
STD 9.12% NA NA NA N NA NA
Session 1 3829%  6227% 6245% 6235% 61.83% 60.75% 63.00%
STD 2533%  24.86% 25.00% 24.99% 25.42% 26.38% 24.84%
Friedman Rank ~ 5.50 3.85 3.83 378 4.05 355 345
HO N\A  0(0.04626)  0(0.04626)  0(0.04626)  0(0.04626) 0 (0.02155) 0 (0.01615)
Cohen’s Dz NA 0.63 0.63 057 .49 0.93 0.71
Session 2 56.69%  62.08% 62.40% 62.43% 62.49% 5827% 63.43%
STD 23.04%  22.84% 22.77% 22.69% 22.98% 23.26% 23.03%
Fricdman Rank  5.43 395 365 3.68 3.80 445 3.05
NA 1 0(0.04684) 0 (0.04684) 1 1 0 (0.00305)
Cohen’s Dz N 075 0.77 075 0.78 0.53 0.68
TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 89.95% NA NA NA NA NA NA
STD 837% NA NA NA N NA N
Session 1 66.16%  12.44% 69.25% 69.14% 73.63% T134% 75.40%
STD 22.66%  20.58% 19.51% 16.64% 19.79% 23.41% 20.06%
Friedman Rank ~ 5.65 3.83 475 4.88 318 333 2.40
HO NA 0(0.02265) 1 1 0(0.00146)  0(0.00266) 0 (0.00001)
Cohen’s Dz NA 0.76 036 0.26 0.87 0.92 1.10
Session 2 66.84%  714.30% 73.61% T371% 74.99% 69.94% 77.65%
STD 2053%  20.57% 18.65% 17.26% 21.97% 20.19% 19.52%
Fricdman Rank ~ 6.15 413 375 395 298 4.70 235

N\A 0(0.00607)  0(0.00177) 0[0,60384) 0(0.00002)  0(0.03379) 0 (<0.00001)
Cohen’s Dz NA 0.82 0.71 0.63 0.80 1.02 112
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FIGURE 4. Offline accuracy using the TSD DNN for the eleven gestures in
respect to time. The values on the x-axis represent the average number of
days elapsed across participants since the first session.

B. EVALUATION RECORDING

1) ELEVEN GESTURES - DYNAMIC DATASET,

OFFLINE ADAPTATION

Table 3 compares the No Calibration setting with the three DA
algorithms, AdaBN, MV and SCADANN for both networks
on the second Evaluation Recording of each session, when
the labeled and unlabeled data leveraged for training comes
from the Training Recordings (as in Section VI-A2).

2) ELEVEN GESTURES - ADAPTATION ON THE

DYNAMIC DATASET

Table 4 presents the comparison between the No Calibration
setting and using the first Evaluation Recording of each
experiment’s session as the unlabeled dataset for the three DA
algorithms, AdaBN, MV and SCADANN.

A histogram of the dynamic dataset’s accuracy of the
No Calibration, Recalibrated, SCADANN and Recalibrated
SCADANN methods, trained on the TSD DNN, using the
first Evaluation Recording of each experimental session
as unlabeled data is shown in Figure 5. The Recalibra-
tion SCADANN scheme systematically and significantly
(p<0.05) outperforms the Recalibration scheme for all three
sessions for both networks, using the Wilcoxon signed rank-
test [46], [48], as can be seen from Table 5.
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TABLE 3. Dynamic dataset’s accuracy for eleven gestures using Training
Recordings as unlabeled data.

Spectrogram ConvNet

No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 47.81% N\A N\A N\A N\A N\A N\A
STD 10.94% N\A N\A N\A N\A N\A N\A
Session 1 38.39%  39.64% 39.52% 39.07% 38.99 39.70% 40.80%
STD 16.65%  17.37% 17.66% 17.56%  17.16% 17.75% 17.77%
Friedman Rank 4.80 3.78 4.10 4.70 4.33 330 3.00
N\A 1 1 1 1 1 1
Cohen’s Dz N\A 0.45 0.32 0.16 0.17 0.54 0.63
Session 2 38.54%  39.87% 40.07% 39.59%  39.53% 40.98% 42.26%
STD 14.65%  15.32% 15.81% 1543%  15.59% 15.18% 16.34%
Friedman Rank 5.50 4.20 3.60 4.45 4.30 3.35 2.60
N\A 1 0 (0.02166) 1 1 0(0.00824) 0 (0.00013)
Cohen’s Dz N\A 0.33 0.35 0.25 0.22 0.84 0.65
TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 53.08% N\A N\A N\A N\A N\A N\A
STD 11.48% NA NA NA N\A NA NA
Session I 46.09%  48.07% 43.92% 275%  41.11% 48.36% 49.09%
STD 1470%  14.59% 13.45% 1265%  14.11% 14.30% 14.68%
Friedman Rank 4.50 3.00 5.40 5.80 375 2.85 2.70
N\A 1 1 1 1 1 1
Cohen’s Dz N\A 0.55 -0.37 -0.49 0.21 1.08 0.67
Session 2 46.01%  48.50% 45.69% 45.48%  48.35% 48.17% 50.90%
STD 15.72%  15.80% 14.21% 13.26%  16.17% 17.06% 16.64%
Friedman Rank 4.90 3.85 4.80 5.00 3.73 378 1.95
H N\A 1 1 1 1 1 0(0.00009)
Cohen’s Dz N\A 0.50 -0.05 -0.08 0.42 0.60 0.91

TABLE 4. Dynamic dataset’s accuracy for eleven gestures using the first
Evaluation Recording as unlabeled data.

Spectrogram ConvNet

No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 47.81% 49.37% 49.36% 49.48% 47.33%  47.68% 49.89%
STD 10.94% 11.24% 11.04% 11.21% 10.45%  11.27% 11.25%
Friedman Rank 4.75 3.80 3.78 3.38 4.95 4.80 255
HO N\A 1 1 1 1 1 0 (0.00490)
Cohen’s Dz N\A 0.64 0.60 0.53 -0.11 -0.07 0.73
Session 1 38.39% 40.92% 40.73% 40.66% 40.36%  38.60% 41.07%
STD 16.65% 18.51% 18.55% 18.38% 17.77%  17.13% 19.11%
Friedman Rank 5.15 3.10 3.63 3.85 4.25 4.83 3.20
N\A 0(0.02643) 1 1 1 1 0(0.02643)
Cohen’s Dz N\A 0.56 0.53 0.49 0.41 0.13 0.52
Session 2 38.54% 40.78% 40.82% 41.01% 38.15%  40.02% 41.41%
STD 14.65% 16.05% 16.05% 16.29% 1536%  15.42% 16.45%
Friedman Rank 5.10 2.78 3.28 2.95 5.60 4.10 3.50
NA  0(0.00063) 0(0.00266) 0 (0.00063) 1 1 0(0.00633)
Cohen’s Dz N\A 0.50 0.48 0.51 -0.07 0.79 0.48
TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN
Session 0 53.08% 55.29% 50.42% 53.59% 49.98%  53.67% 55.69%
STD 11.48% 12.09% 10.67% 11.51% 10.90%  11.51% 12.37%
Friedman Rank 4.10 2.60 5.80 4.00 5.50 3.70 2.30
N\A 1 1 1 1 1 1
Cohen’s Dz N\A 0.71 -0.81 0.13 -0.60 0.30 0.67
Session 1 46.09% 50.65% 46.10% 49.30% 48.12%  47.34% 51.41%
STD 14.70% 14.55% 13.66% 13.81% 14.14%  16.16% 15.46%
Friedman Rank 5.50 2.30 5.55 3.50 4.60 4.40 215
HO N\A 0(0.00001) 1 0(0.01366) 1 1 0(0.00001)
Cohen’s Dz N\A 1.35 <0.01 0.73 0.36 0.46 117
Session 2 46.01% 50.91% 48.33% 50.27% 44.22%  46.90% 52.01%
STD 15.72% 15.88% 14.12% 14.60% 14.58%  16.31% 17.17%
Friedman Rank 5.40 2.65 4.20 3.15 5.90 4.50 2.20
HO N\A 0(0.00028) 1 0(0.00396) 1 1 0 (0.00002)
Cohen’s Dz N\A 0.98 0.46 0.84 -0.28 0.37 1.32

VII. DISCUSSION

The task of performing adaptation when multiple days have
elapsed is especially challenging. As a comparison, on the
within-day adaptation task presented in [17], MV was able to
enhance classification accuracy by 10% on average compared
to the No Calibration scheme. Within this work however,
the greatest improvement achieved by MV was 3.35% for the
Spectrogram ConvNet and 5.18% for the TSD DNN. Overall,
the best improvement in this paper was 8.47% and 10.81%
both achieved by SCADANN with the Spectrogram ConvNet
and TSD DNN respectively. All three tested domain adver-
sarial algorithms were also able to consistently improve the
network’s accuracy compared to the No Calibration scheme
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FIGURE 5. TSD DNN dynamic dataset’s accuracy for eleven gestures in
respect to time. Training is performed offline with the first Training
Recording session. Adaptation takes place on the first Evaluation
Recording of the corresponding tested session, while the test set comes
from the second Evaluation Recording of the same tested session. The
values on the x-axis represent the average number of days elapsed across
participants since the first session.

TABLE 5. Accuracy for the Recalibration and Recalibration SCADANN
with eleven gestures on the dynamic dataset using the first Evaluation
Recording as unlabeled data.

Spectrogram ConvNet ‘ TSD DNN
Recalibration  Recalibration SCADANN ‘ Recalibration  Recalibration SCADANN

Session 0 47.81% 49.89% 53.08% 55.69%
STD 10.94% 11.25% 11.48% 12.37%
HO 0(0.00642) 0 (0.00642) 0(0.01000) 0 (0.01000)
Cohen’s Dz N\A 0.73 N\A 0.67
Session 1 49.54% 53.02% 53.51% 58.34%
STD 11.28% 11.18% 11.98% 11.82%
HO 0(0.00455) 0 (0.00455) 0(0.00014) 0(0.00014)
Cohen’s Dz N\A 0.88 NA 1.25
Session 2 52.18% 55.19% 57.18% 60.81%
STD 10.66% 10.15% 11.12% 10.10%
HO 0 (0.00059) 0 (0.00059) 0(0.00012) 0(0.00012)
Cohen’s Dz N\A 111 NA 0.75

FWilcoxon signed rank test. Null hypothesis rejected when HO=0 (p<0.05).

(the only exception being VADA and Dirt-T for the TSD
DNN in Table 3). When used to adapt to dynamic unsuper-
vised data, some were even able to achieve a higher overall
ranking than SCADANN using the Spectrogram ConvNet.
Note however, that the improvements they seem to allow is
overall lower than when they are applied on image-based
dataset such as MNIST and CIFAR [23]. Deep domain adver-
sarial algorithms thus seems to be a promising avenue to
explore further, by developing adversarial algorithms specif-
ically for the field of sSEMG-based gesture recognition.
SCADANN could then easily be augmented by these new
algorithms to improve performance further.

In Table 4, it can be seen that the performances of MV
dropped substantially compared to the other experiments con-
ducted within this paper. A possible explanation is that this
was the first time that MV had to adapt using the Dynamic
Dataset data. In other words, instead of adapting to a well
defined series of examples grouped by gesture, MV had to
contend with a continuous data stream including gesture tran-
sitions. In contrast, SCADANN actually performed generally
better in Table 4 than in Table 3, which is encouraging as
Table 4 showcased a more realistic setting for unsupervised
recalibration.

It is also important to note that both the general per-
formance and the type of error that the classifier makes
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can greatly affect the self-calibrating algorithms. While
SCADANN partially address the first consideration (by
ignoring data that are more likely to be misclassified), the sec-
ond consideration is harder to address. That is, when the
classifier is not only wrong, but is confident in its error and
that error spans over a large amount of time, the pseudo-
labeling heuristic cannot hope to re-label the segments cor-
rectly or even identify this segment of data as problematic.
In an effort to address this issue, future works could explore
the use of a hybrid IMU/EMG system, as they have been
shown to improve gesture recognition accuracy [49], [50].
The use of accelerometer data within the field is generally
linked with mechanomyogram (MMG), which is strongly
associated with EMG signals. Recent works [51] however,
have shown that, within a human-computer interaction con-
text, accelerometer data can also help recognize different
gestures with high accuracy using the positional variance
of the different gestures, which is uncharacteristic of MMG.
The fusion of these two different modalities could reduce
the likelihood of concurrent errors, enabling SCADANN’s
relabeling heuristic to generate the pseudo-labels more accu-
rately. Note that, using EMG signals alone, SCADANN’s
relabeling heuristic substantially enhanced the pseudo-labels
accuracy compared to the one used with MV. As an exam-
ple, consider the supervised Recalibrating classifier (with the
Spectrogram ConvNet) trained on all the training cycles of
the relevant Training Recording and tested on the Evalua-
tion Recording. This classifier achieves an average accuracy
of 49.84% over 544 263 examples. In comparison, the MV
relabeling heuristic achieves 54.28% accuracy over the same
number of examples, while the SCADANN relabeling heuris-
tic obtains 61.89% and keeps 478 958 examples using the
65% threshold. When using a threshold of 85%, the accuracy
reaches 68.21% and retains 372 567 examples. SCADANN’s
improved relabeling accuracy compared to MV is in part due
to the look-back feature of the heuristic (when de-activated,
SCADANN’s relabeling accuracy drops to 65.23% for the
85% threshold) and its ability to remove highly uncertain sub-
sequences of predictions.

The results presented in Table 5 are of particular inter-
est as they show that SCADANN actually consistently and
significantly improves the classifier’s performance over the
recalibration scheme. In other words, SCADANN enhance
classifier’s performance without increasing the training time
for the participant. In addition, as SCADANN does not
impact the classifier’s inference time, SCADANN seems to
be an overall net benefit for the classifier’s usability.

A. LIMITATIONS OF THE STUDY

One major limitation of this work is that the participants were
not reacting to the different classifiers being tested (instead
using the leap-motion based controller) while performing the
task from the Evaluation Recording. This limitation is the
only difference between the Dynamic dataset and an online
dataset. It is important to note that the participants generally
became better at performing the requested task over time
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(see [12] and Table 5). The extent to which this improve-
ment can be attributed to the user’s adaptation to the leap-
motion based controller and how much should be attributed
to the participants learning how to complete the task better
remains unclear. What is known is that the user’s adaptation
to the controller substantially affects the real-time control
performance of the system [6], [52]. If and how much this
adaptation changes in relation to the controller use, however,
remains an open question to the best of the authors’ knowl-
edge. Furthermore, this user adaptation would substantially
alter the optimal rate of unsupervised calibration and the
acceptable extent of said calibration. These new parameters
might be better explored within a reinforcement learning [53]
framework.

As a direct consequence of not having the adaptation
algorithms tested in real-time, another limitation of this
work is that the adaptation algorithms were not evaluated
using online metrics (e.g. throughput, completion rate, over-
shoot) [54]. To do so would require recording a separate
long-term dataset, as extensive as the one used in this work,
for each compared technique so that the different adaptive
classifier could be used by the participants in real-time. The
difficulty of comparing different adaptation algorithms using
online metrics was, in fact, the motivation behind the use of
the Long-term 3DC Dataset [12] which allows for recording
closer to an online setting (compared to offline datasets)
without biasing the dataset to a particular EMG-based ges-
ture classification algorithms. Thus, allowing comparison
between multiple techniques on a single dataset.

VIil. CONCLUSION
This paper presents SCADANN, a self-calibrating domain
adversarial algorithm for myoelectric control systems.
Overall, SCADANN was shown to improve the network’s
performance compared to the No Calibration setting in all
the tested cases and the difference was significant across
all experiments except for one single session. In addition,
this work tested three widely used, state-of-the-art, unsuper-
vised domain adversarial algorithms on the challenging task
of EMG-based self-calibration. These three algorithms were
also found to consistently improve the classifier’s perfor-
mance compared to the No Calibration setting. MV [17] and
AdaBatch [39], two self-calibrating algorithms designed for
EMG-based gesture recognition, were also compared to the
three DA algorithms and SCADANN. Overall, SCADANN
was shown to consistently obtain the best average accuracy
amongst the six unsupervised adaptation methods consid-
ered in this work both using offline and dynamic datasets.
Given the results shown in this paper and considering that
SCADANN has no computational overhead at prediction
time, using it to adapt to never-before-seen data is a net
benefit both for long-term use but also right after recalibration
(as shown in Figure 5).

Future works will focus on implementing SCADANN
to update in real-time while in use by participants. The
interaction between human and machine adaptation and
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its impact on self-adaptive algorithms like SCADANN
will be investigated by leveraging a reinforcement learning
framework.

APPENDIX A

ConvNet's COMPARISON WITH HANDCRAFTED

FEATURE SETS

To better interpret the contributions of this manuscript, it is
important to contextualize the ConvNet’s classification per-
formances with respect to the state of the art in SEMG-based
gesture recognition.

The comparison considers the simple ConvNet employed
throughout this work with six high performing feature sets
presented in the following subsections. The python imple-
mentation of the different feature sets are available on
this work’s https://github.com/UlysseCoteAllard/LongTerm
EMGrepository: (https://github.com/UlysseCoteAllard/Long
TermEMG) and a detailed description of most of the features
are given in [6]. Note that the hyperparameters associated
with these feature sets employed the ones recommended in
their respective original paper.

A. HUDGIN'S FEATURES

Hudgin’s features [55] are a set of four features all in
the time-domain comprised of: Mean Absolute Value, Zero
Crossing, Slope Sign Changes and Waveform Length. As all
the features are in the time-domain, this feature set is often
referred to (and will be in this work) as TD. TD is arguably
the most commonly employed feature set [8] and serves
as a baseline when comparing different handcrafted feature
sets.

B. NinaPro FEATURE SET

The NinaPro feature [18], [56] set has been successfully
employed on the diverse NinaPro datasets and consist of the
concatenation of the TD features alongside Histogram and
marginal Discrete Wavelet Transform.

C. SampEn PIPELINE

The SampEn pipeline [57] consists of Sample Entropy, Cep-
stral Coefficients, Root Mean Square and Waveform Length.
This feature set was found to be the best combination of fea-
tures amongst the 50 considered in the original work (brute-
force search).

D. LSF9

LSF9 [58], [59] is a newly proposed feature set which
was originally developed specifically for low sampling
rate recording devices (200Hz). Nevertheless, this feature
set also offers exceptional performance on higher sampling
rate datasets. LSF9 consists of: L-scale, Maximum Fractal
Length, Mean Value of the Square Root, Willison Ampli-
tude, Zero Crossing, Root Mean Square, Integrated Absolute
Value, Difference Absolute Standard Deviation Value and
Variance.
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Algorithm 1 Pseudo-Labeling Heuristic

1

: procedure GeneratePseudoLabels(unstable_len, threshold_stable, max_len_unstable, max_look_back, thresh-
old_derivative)

2: pseudo_labels <— empty array
3: arr_preds < network’s predictions
4: arr_net_out <— network’s softmax output
5: begin_arr <— The unstable_len first elements of arr_net_out
6: stable <— TRUE arr_unstable_output gets empty array
7: current_class <— The label associated with the output neuron with the highest median value in begin_arr
8: for i from 0..arr_preds length do
9: if current_class different than arr_preds[i] AND stable TRUE then
10: stable < FALSE
11: first_index_unstable < i
12: arr_unstable_output <— empty array
13: if stable is FALSE then
14: APPEND arr_net_out to arr_unstable_output
15: if length of arr_unstable_output is greater than unstable_len then
16: REMOVE the oldest element of arr_unstable_output
17: if length of arr_unstable_output is greater or equal to unstable_len then
18: arr_median <— The median value in arr_unstable_output for each gesture
19: arr_percentage_medians <— arr_median / the sum of arr_median
20: gesture_found < The label associated with the gesture with the highest median percentage from
arr_percentage_medians
21: if arr_percentage_medians| gesture_found] greater than threshold_stable then
22: stable < TRUE
23: if current_class is gesture_found AND The time within instability is less than max_len_unstable then
24: Add the predictions which occurred during the unstable time to pseudo_labels with the gesture_found
25: else if current_class is different than gesture_found AND The time within instability is less than
max_len_unstable then
26: index_start_change <— GetIndexStartChange(arr_net_out, first_index_unstable, max_look_back)
27: Add the predictions which occurred during the unstable time to pseudo_labels with the gesture_found
label
28: Re-label the predictions from pseudo_labels starting at index_start_change with the gesture_found
label
29: current_class < gesture_found
30: arr_unstable_output <— empty array
31 else
32: Add current prediction to pseudo_labels with the current_class label
return pseudo_labels
Algorithm 2 Find Index Start of Transition Heuristic
1: procedure GetIndexStartChange(arr_net_out, first_index_unstable, max_look_back, threshold_derivative)
2: data_uncertain < Populate the array with the elements from arr_net_out starting from the first_index_unstable-
max_look_back index to the first_index_unstable index
3: discrete_entropy_derivative <— Calculate the entropy for each element of data_uncertain and then create an array with
their derivatives.
4: index_transition_start < 0
5: for i from 0..data_uncertain length do
6: if discrete_entropy_derivative[i] greater than threshold_derivative then
7: index_transition_start < i
8: Get out of the loo

return first_index_unstable + index_transition_start
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TABLE 6. Comparison between the ConvNet employed in this work and
Handcrafted feature sets.

SampEn

ConvNet TD NinaPro Pipeline LSF9 TDPSD TSD
7 Gestures 93.13% 89.18% 89.48% 91.03% 94.45% 92.67% 95.01%
STD 6.44% 8.34% 7.87% 7.48% 5.89% 6.26% 547%
Friedman Rank 3.50 5.86 5.61 4.42 2.51 3.98 213
HO N\A 0(<0.00001)  0(<0.00001) 0 (0.04023) 0(0.03578) 1 0(0.00196)
11 Gestures 85.42% 81.11% 81.32% 83.57% 87.94% 84.86% 91.03%
STD 9.69% 9.97% 9.80% 9.71% 9.26% 9.61% 8.73%
Friedman Rank 4.07 5.70 5.52 4.41 2.69 4.01 1.61
HO N\WA 0(0.00017) 0 (0.00095) 1 0(0.0.00147) 1 0 (<0.00001)

E. TDPSD

TDPSD [60], [61] proposes to consider the EMG signal
alongside their nonlinear cepstral representation. Then, one
vector per representation is created by computing the: Root
squared zero, second and fourth moments as well as Sparse-
ness, Irregularity Factor and the Waveform Length Ratio. The
final vector used for classification is obtained from the cosine
similarity of the two previous vectors. The interested reader
is encouraged to consult [60] for a detailed description of this
feature set.

F TSD

TSD [37] represents the evolution of TDPSD. The idea of
leveraging the cosine similarity between two vectors of the
same features computed from different representation of the
signal remain. However, the features have been updated and
now consist of: the Root squared zero, second and fourth
moments as well as the Sparseness, Irregularity Factor, Coef-
ficient of Variation and the Teager-Kaiser energy operator.
Most importantly, this feature set not only considers the
similarities between the signal of a particular channel and its
nonlinear transformation but also considers these similarities
across channels. The interested reader is encouraged to con-
sult [37] for a detailed description of this feature set.

G. DATASET AND CLASSIFIER

A standard Linear Discriminant Analysis [8] is selected for
classification as it is widely employed in the field and is a
computationally and time efficient classification technique
both at training and prediction time, while still achieving high
classification accuracy [6], [8], [57].

The Long-term 3DC Dataset is employed for compar-
ison. For each Training Recording of each participant
(20 participants x 3 sessions). The first two cycles are
employed for training, while the last cycle is reserved for test-
ing (total of 60 train/test per method). The comparison is done
for both the seven and eleven gestures considered in this work.
The ConvNet’s architecture and hyperparameters are exactly
as described in Section III-C. The LDA implementation is
from scikit-learn [62] with its defaults parameters.

H. COMPARISON OF RESULTS
Table 6 presents the comparison between the ConvNet and
the six feature sets.

When testing on the Evaluation Recording, the
ConvNet obtained an average accuracy of 49.84%=+10.93%,
while TD obtained 48.90%+10.80%, TDPSD obtained
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50.55%=+10.89% and TSD obtained 56.50%=+11.27%. The
comparison shows that despite the simplicity of the ConvNet
used in this work, it performs almost identically to TDPSD on
average and similarly to the five other feature sets considered.

APPENDIX B
PSEUDO-LABELING HEURISTIC
See Algorithms 1, 2.
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