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ABSTRACT Shipboard power systems that service large-scale dynamic loads and electric propulsion can
significantly improve their performance by adding controllable energy storage. These systems require power
management controls that consider dynamics like generator ramp rates, along with energy storage capacity
and location. In the early-stage design process, many alternative designs are considered, and each requires a
unique controller. This article describes a numerical optimization technique that establishes an upper bound
performance criteria without manually designing controllers for each system. The solution is a best case
performance that assumes perfect future knowledge of the time-varying load. While unrealistic in real-time,
this technique yields a fair comparison between competing architectures without the variability of different
control methods. To demonstrate the concept, a notional multi-bus power system architecture is evaluated
on a representative set of operational duties to illustrate comparisons between system attributes like energy
storage power and efficiency ratings. A design trade study shows that the success rate for a baseline ship can
improve from under 60% to nearly 100% by increasing generator power by 10% and energy storage capacity
by 100%. These automated architecture benchmarks fit into a broader total ship optimization process, or can
be used in human-driven trade studies.

INDEX TERMS Electric ship, energy storage, power flow, power system optimization, power management,
pulse loads, power system control, ship design.

I. INTRODUCTION
A. MOTIVATION
Designing power systems for naval and marine vessels is
increasingly challenging due to dynamic power demands
from electric propulsion, positioning thrusters, cranes, sen-
sors, weapons, and other mission loads [1], [2]. As new
technologies are deployed to serve these demanding loads,
the initial system design process needs better tools to study
the equipment type, rating, and interconnection while consid-
ering system dynamics. Load dynamics can exceed the ramp
rating of generators, so energy storage devices are often added
to serve fast loads. Their specifications are critical consider-
ations [3]–[5]. Hybrids of multiple storage technologies can
handle both fast and slow power demands, and their physical
location affects both performance and resiliency.

The overall ship design process must include an evaluation
of the power system as a critical part of vessel capability.
This multi-parameter design problem is often automated, for
example in ‘‘set-based design’’ [6], and therefore requires
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an automated evaluation of the power system. Unfortunately,
these dynamic power and energy systems require both global
and local controllers [7]–[11], which must be designed in
order to evaluate the system. Traditional quasi-static analysis
and optimization are insufficient.

The goal of this article is to develop a method to
automatically characterize system performance by determin-
ing optimal system behavior without directly designing a
system controller. We seek to rigorously quantify the per-
formance of the power system architecture independent of
specific control methods.

B. LITERATURE REVIEW
Previous studies in power system architecture include opti-
mization algorithms to design a power system or subsystems
[12], [13], general architecture arrangements [14], [15], and
power system resilience [16], [17].

Methods for designing the system controller include opti-
mized power converter set points in a DC system [8],
stochastic optimization [7], multi-agent systems [9], and var-
ious implementations of centralized [10] and cooperatively
distributed Model Predictive Control [11]. Many of these
control methods do not directly consider line flow limitations.
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Given this variety of control methods, quantifying system
performance is difficult and drives the need for automated
evaluation. A quasi-static linear programming approach was
used in [18]–[20] to determine what a controller should do at
each instant in time, without designing the controller itself.
However, controlling the system based solely on the present
state as in a traditional power system will yield suboptimal
solutions [21], [22]. The energy storage and generator ramp-
ing limits add system dynamics such that optimal control
decisions now depend on future events. Considering future
loads improves performance in many conditions [23].

C. APPROACH
This article describes an optimization method to rigorously
determine the best case performance of a power system that
includes time dependent dynamics without the need to design
a unique controller for that system. The system controller is
assumed to have full knowledge of all time varying future
load power demands. This use of future demand is similar
to model predictive control [10] with a very long prediction
horizon, rather than the typical horizons of a few seconds.
Allowing such a large prediction horizon is an optimistic
assumption, but it does provide a rigorous upper bound on
system performance and avoids the difficulties of selecting
among thousands of possible controller designs. The results
can be compared against the performance of a controller with
no future knowledge [19], [20], [23].

These analysis methods are not the actual real-time
controllers that go on the ship, they must merely produce
a rigorous benchmark to compare candidate designs and
enable quantitative system design and evaluation. Although
the actual controller can never have perfect future informa-
tion, it may preview load demands several seconds into the
future through feedback from loads or by imposing activation
delays on load requests. The quality of such a controller’s
preview information dictates its proximity to this upper bound
benchmark [23].

The optimization problem is formulated as a multi-period
extension to the standard constrained optimal power flow
technique [24], [25] with the addition of energy storage
capacity limits and efficiency. The results quantify perfor-
mance for a specific ship configuration and mission given
system constraints, and quantifies the time and location of
any power or energy shortfalls. This article builds on the
unconstrained analysis originally presented in [25] by solving
the full multi-period optimal power flow (MP-OPF) problem
with line limits and ramp rates, and quantifies trade studies
on an updated system model with a much broader set of
missions.

Although muti-period optimal power flow is a well known
problem, it is typically studied in the context of the day-ahead
planning performed by power system operators [26]. This
work instead uses multi-period optimal power flow as a
benchmark for an ideal controller in order to evaluate power
system architectures. The metric of success is a system’s
ability to meet a set of dynamic loads, rather than fuel

FIGURE 1. Overall design process.

consumption [27], [28], reconfiguration in the presence of a
fault [29], or other metrics.

D. APPLICATION
The overall ship design process consists of two optimizations:
here we develop an ‘‘inner’’ optimization of the dynamic
control for a power system to develop a fitness metric, which
fits into a broader ‘‘outer’’ optimization that considers the
overall ship design as illustrated in Fig. 1 [30], [31]. An archi-
tecture and control actions can be simultaneously optimized
as in [32] for vehicle transmissions or in [27], [33] for energy
storage. This has not been pursued here to keep the design
process modular.

As shown in Fig. 1, for a given power system architecture
and mission load package, a set of 200 mission load profiles
are generated [20], [34]. Each mission represents a fixed
demand profile at every bus for each time step. Load shedding
is allowed but at high cost. The results in this article consider
any load shedding as a mission failure because many loads
will fail if curtailed. Alternatively, the load demand could be
assumed to be modified in response to power shortfalls as
in [35]–[37]. By using a large fixed set of missions rather
than a stochastic model, the power system’s fitness can be
evaluated broadly, but individual mission failures and short-
falls can still be studied in detail. The results provide insight
into component ratings early in the design process.

These results are then post-processed to determine an
overall fitness metric for that design, which feeds into the
higher-level optimization. Anymission load profiles that can-
not be served with this best case performance represent a
fundamental limit of the power system, and no controller
exists that will serve them better. These failed missions are
identified for further study to determine if they are unrealistic
or truly critical.

The primary contributions of this article are as follows:
• We have developed a method to rigorously define
an upper bound on the performance of a ship power
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system that takes into account system static and dynamic
attributes such as generator ramp limits, energy stor-
age capacity and efficiency, and transmission line
limits.

• We have performed an extensive series of trade studies
using a rich set of power system load profiles in order to
illustrate the ship design decisions that can be enabled
via our tool.

This article is organized as follows: Section II describes
a method for using optimal power flow to characterize ship
power system performance. Section III presents details on a
notional power system, mission load profiles, and the numer-
ical solver. Section IV shows results for various system
configurations, with applications to a ship design sequence
in Section V. The results are discussed in Section VI, with
conclusions in Section VII.

II. ALGORITHM FORMULATION
One goal of early stage design is to identify which missions
can be accomplished with a given power system architecture,
and the load shortfall for infeasible cases. This is accom-
plished by performing a multi-period optimal power flow
problem [38]–[42]. The solution to this problem shows what
an ideal controller (with perfect knowledge of future load)
should do. If a demand can not be met by this optimal
controller, no realizable controller could completely meet
this demand. A feasible numerical solution is guaranteed by
allowing unlimited load shedding pLS at each bus, but at very
high cost.

A. SINGLE PERIOD OPTIMAL POWER FLOW
The problem mathematically starts with a single-period
general form [24], [25] for AC power

min
x

f (x) (1)

such that g(x) = 0 (2)

h(x) ≤ 0 (3)

xmin ≤ x ≤ xmax. (4)

The vector of decision variables x is given as

x =


Vm
2

Pg
Qg

 . (5)

The vectors Vm and2 are formed from the voltage magnitude
and angle, respectively, at each bus as follows

Vm =
[
vm 1, vm 2, . . . , vmnb

]> (6)

2 =
[
θ1, θ2, . . . , θnb

]>
. (7)

They can also be expressedmore compactly in the polar forms
vi = (vm i, θi) for individual buses and V = (Vm,2) for a
vector of buses. The vectors Pg and Qg are given as

Pg =
[
Pgen,Pes,PLS

]> (8)

Qg =
[
Qgen,Qes,QLS

]>
. (9)

The vectors

Pgen =
[
pgen 1, pgen 2, pgen ng

]> (10)

Qgen =
[
qgen 1, qgen 2, qgen ng

]> (11)

consist of the real and reactive power, respectively, supplied
by each generator. The vectors

Pes =
[
pes 1, pes 2, pes nes

]> (12)

Qes =
[
qes 1, qes 2, qes nes

]> (13)

consist of the real and reactive power, respectively, supplied
by each energy storage unit. The vectors

PLS =
[
pLS 1, pLS 2, pLS nb

]> (14)

QLS =
[
qLS 1, qLS 2, qLS nb

]> (15)

consist of the real and reactive load shed at each bus. They
are also expressed in the rectangular forms si = pi + jqi
for individual generators and Sg = Pg + jQg for a vector
of generators.

The constraints g and h include the network flow con-
straints as described later in Section II-C. The constraints (4)
are of the form

vm i min ≤ vm i ≤ vm i max (16)

θimin ≤ θi ≤ θimax (17)

pimin ≤ pi ≤ pimax (18)

qimin ≤ qi ≤ qimax (19)

to impose limits on the voltage magnitude and angle at each
bus and the minimum and maximum real and reactive powers
of each generator and energy storage unit.

The cost function f is the sum of the costs of conventional
generators, energy storage, and load shedding. For the
simulations in this article the following cost functions are
used:

fLS (pLS ) = 10 · p2LS + 1000 · pLS (20)

fgen(pgen) = 0.1 · p2gen + pgen (21)

fes(pes) = 0.001 · p2es. (22)

Note that that although the general AC power flow formu-
lation allows for a cost of reactive power, we assume in our
simulations that reactive power is essentially free.

The cost fLS represents the value of the lost load, while fgen
represents the economic cost of operating the generator. The
term fes is a small quadratic cost for the energy storage to
ensure that the optimization has a unique solution and will
tend to balance the usage of the various storage devices, all
else being equal. The marginal cost of using energy storage is
less than the marginal cost of using conventional generators,
which is less than the marginal cost of load shedding. The
primary performance metric is load satisfaction, so the load
shedding cost is dominant. The fuel costs are included to
encourage fuel minimization if all loads are satisfied. The
load demand at each bus is assumed given, and the com-
mand for load shedding pLS represents the quantity of power
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shortfall at each bus and determines the cost of unserved
load fLS (pLS ). At this early stage of design true economic
costs functions are irrelevant. Instead, the costs are chosen
heuristically so that the cost of load shed is several orders
of magnitude larger than the cost of generation, which is
several orders of magnitude larger than the cost of energy
storage.

B. MULTI-PERIOD OPTIMAL POWER FLOW
Unlike a single-period optimal power flow which solves for
power flow at a single time step only, the MP-OPF optimizes
power and energymanagement for the entire mission simulta-
neously. The solver has knowledge of all loads during the full
mission scenario. One example result is that energy storage
units are pre-charged before servicing pulse loads. It is also
possible to implement a stochastic version of the multi-period
optimal power flow problem [26], but it is not considered
here. Conceptually, the MP-OPF is constructed via copies
of the candidate power system at each of T time steps. The
decision variables Vm,2, Pg, and Qg have a representation at
each time step that combine to create the extended MP-OPF
decision variables

V̄m = {Vm(1),Vm(2), . . . ,Vm(T )} (23)

2̄ = {2(1),2(2), . . . ,2(T )} (24)

P̄g = {Pg(1),Pg(2), . . . ,Pg(T )} (25)

Q̄g = {Qg(1),Qg(2), . . . ,Qg(T )}. (26)

For a power architecture with nb buses, ngen generators, and
nes energy storage (ES) units, the new decision variables V̄m
and 2̄ each have nbT elements, and the variables P̄g and Q̄g
each have (ngen + nes + nb)T elements.
The time-dependent mission load is assigned for each

time step along with power and energy storage capacity
constraints. The solver can then make control decisions for
the entire mission simultaneously to determine the required
power’s source and distribution path that minimizes the cost
function in (1) and meets the constraints in (2) - (4).

1) GENERATOR RAMP RATES
Conventional gas turbine and diesel generators have both
positive and negative power ramp rate limits, defined as r i+
and r i−, respectively. Their constraints are defined as

r i− ≤
pit − p

i
t−1

1t
≤ r i+, (27)

where pit and p
i
t−1 represent the ith generator power at time

t and t − 1. These generator ramp rates are significantly less
than the rate of many advanced pulsed loads, which drives
the need for energy storage to service higher rate demands
(of typically much shorter duration). Note that although ramp
rates on reactive power are possible, they are not considered
here.

2) ENERGY STORAGE
Energy storage units can shift power in time but cannot be a
net creator of energy, so constraints are added to reflect their

storage capacity. We use a basic model for energy storage
that does not assume a particular technology and allows for
bidirectional power flow.

Each energy storage unit has maximum and minimum real
and reactive power limit (e.g.± 10MWand± 10MVAR) and
a maximum energy capacity (e.g. 60 MJ). The storage itself
is modeled with constant one-way efficiency ηes (round-trip
η2es), so the net power after losses is integrated to determine
the energy storage state,

Emin ≤ Estart−
τ∑
t=0

pes−netj (t)1t≤Emax ∀τ ∈ (0,T ),

(28)

pes−netj (t)=

{
ηespesj (t) pesj ≤ 0
1
ηes
pesj (t) pesj > 0

(29)

where pesj (t) is the power from the jth energy storage unit
(positive for output power), and pes−netj is the net power
stored internally after losses. For simplicity, it is assumed that
the energy storage unit can supply its rated reactive power
with no effect on the stored energy. In reality, there will be an
energy loss associated with supplying reactive power. These
tend to be much smaller, however, because they are driven
primarily by the converter efficiency. The time step is 1t ,
and Emin and Emax are the minimum and maximum stored
energies, respectively. Some storage technologies degrade
over time, so these power and capacity values are based
on those available throughout the useful life of the storage
devices.

Additionally, we add the constraint∑
t

pes−netj (t)1t = 0 (30)

to set the cumulative sum of energy in each storage unit
to zero in order to ensure that the charge returns to its ini-
tial value. Otherwise, the optimal solution could result in a
depleted energy storage state with insufficient reserves for
future load demand beyond the final time of the simulation.
We assume all energy storage units are fully re/dis-chargeable
without degradation and the cost for accessing it is virtually
zero.

In reality, energy storage units have rate limits too, but
they are much faster than a generator’s and the simula-
tion time step, so they are considered infinite. In setting
up the optimization problem, the generator ramp rate and
energy storage constraints (27)-(28) are added as linear
inequality constraints (3) and the energy storage terminal
constraints (30) are added as linear equality constraints (2).

3) MULTI-PERIOD OBJECTIVE FUNCTION
After adding the multi-period constraints on energy
storage capacity and ramp rates, the final formulation for
multi-period optimal power flow is modified from (1) as

min
x̄

f̄gen(P̄g)+ f̄es(P̄es)+ f̄LS (P̄LS ) (31)
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FIGURE 2. The representative thirteen-bus power system architecture has 8 switchboards, 5 load centers, and 4 zones with numbered
buses as shown (reproduced from [37]). Components include two Main Turbine Generators (MTG), two Auxiliary Turbine Generators (ATG),
four energy storage units (ES), four Service Loads (SL), two Propulsion Motor Drive (PMD) loads, one Radar (R) load, and three Mission
Loads (ML1, ML2, ML3).

where the decision variables x̄ =
[
V̄m, 2̄, P̄g, Q̄g

]>, costs,
and constraints are all modified to the multi-period extended
versions by considering copies of the candidate power system
at each of T time steps as described above. The optimization
then determines these decision variables across all T time
steps.

For further details on the multi-period optimal power flow
formulation see [26] and [25].

C. NETWORK FLOW CONSTRAINTS
1) AC POWER FLOW
The network power flow equations are dictated by basic
circuit laws. Using the notation in [24]

Ibus = YbusV (32)

where the complex bus admittance matrix Ybus relates the
complex node voltages V to the complex nodal current injec-
tions Ibus. The complex power injection at each bus Sbus =
Pbus + jQbus can then be expressed as

Sbus(V ) = [V ]I∗bus = [V ]Y ∗busV
∗ (33)

where [·] is an operator that converts a vector to a diagonal
matrix and ∗ denotes complex conjugate. Power balance at
each bus then dictates

gP(2,Vm,Pg) = Pbus(2,Vm)+ Ptotal = 0 (34)

gQ(2,Vm,Qg) = Qbus(2,Vm)+ Qtotal = 0 (35)

where Ptotal and Qtotal are vectors of total real and reactive
power injections at each bus. They represent the net load
injection (load demand minus load shed) at each bus minus
the power supplied by all generators and energy storage units
connected to each bus. These power balance constraints then
form the equality constraints (2).

Likewise, the currents injected at the ‘‘from’’ and ‘‘to’’
ends of a line, If and It , can be expressed as [24]

If = Yf V (36)

It = YtV (37)

where Yf and Yt are the ‘‘from’’ and ‘‘to’’ admittance matri-
ces, respectively. Equations (36) and (37) can then be written
in terms of complex power flows as

Sf (V ) = [Cf V ]I∗f = [Cf V ]Y ∗f V
∗ (38)

St (V ) = [CtV ]I∗t = [CtV ]Y ∗t V
∗ (39)

where Cf and Ct are matrices of zeros and ones mapping
buses to the branches that they are connected from and to,
respectively. Given these complex power flows, the con-
straints on apparent power flow can then be expressed as

hf (2,Vm) = |Sf (2,Vm)| − Smax ≤ 0 (40)

ht (2,Vm) = |St (2,Vm)| − Smax ≤ 0 (41)

where Smax is a vector of the maximum line apparent power
flows, to form the inequality constraints (3).

2) DC POWER FLOW
In certain cases the network flow equations can be simpli-
fied by using the DC (linear) approximation to the optimal
power flow. The DC approximation makes the following
assumptions [43]:
• All lines are lossless.
• All bus voltage magnitudes are 1 p.u.
• All voltage angle differences across branches are small.
Based on these assumptions, it can be shown that the bus

power injection (33) simplifies to [24]

Pbus(2) = Bbus2 (42)
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where Bbus is a matrix formed from the line reactances. The
power balance constraint (34) can then be simplified to

gP(2) = Bbus2+ Ptotal = 0. (43)

The line flows (38) and (39) can also be simplified to [24]

Pf (2) = −Pt (2) = Bf2. (44)

This allows the inequality constraints (40) and (41) to be
simplified to

hf (2) = Bf2− Pmax ≤ 0 (45)

ht (2) = −Bf2− Pmax ≤ 0 (46)

A limitation of the DC power flow approximation is that
it only solves for real power. Even when the real power
demands are below generator power limits, the generators still
may not be able to provide adequate reactive power. Addition-
ally, lines that are not overloaded in terms of real power may
be overloaded in terms of apparent power. Therefore, the DC
approximation must be used with cognizance that real power
demands are the dominating effects. See Section III-C for a
validation of these assumptions for our particular system.

3) NETWORK RECONFIGURATION
Generators and loads determine the current injections on each
bus, but only indirectly change the power flow on lines.
Lines with power converters to directly control flow can be
represented using an additional decision variable. Line limits
are included as hard constraints in (40) and (41) to reflect
overheating or breaker tripping. When these constraints are
active it typically indicates an undersized power transfer sys-
tem that cannot move power to where it is needed. However,
a single line can overload even while other lines have excess
capacity.

A given scenario might result in nominal load shortfall
due to constraint violation, but in reality the system can still
complete the mission once a breaker trips. This often occurs
if there are multiple power paths, but some have limited
capacity. A simple example is a port and starboard bus system
as shown in Fig. 3, with a vital load on bus 9 dually fed from
both buses. These feeders for bus 9 may have a rating to serve
only the vital load, but can act as an unintended power transfer
path between buses 1 and 8 and overload. If one of these
breakers opens on the lower-rated path, all the buses and loads
can be fully served with no overloads.

Transmission system reconfiguration by opening breakers
allows for different sets of permissible generator power out-
puts and can improve overall capacity. However, determining
multiple admissible configurations is a difficult problem -
especially when considering voltage limits and transients
[29], [44], [45] - and is therefore not considered in this setup.

III. EXAMPLE POWER SYSTEM
A. POWER SYSTEM ARCHITECTURE
This article uses a thirteen-bus shipboard system, as shown
in Fig. 2. The model is based on a notional all-electric ship

FIGURE 3. A simple example of network flow constraints in a DC system,
where load shedding occurs despite available generation and nominal
transmission capacity. This portion of the full system in Fig. 2 shows a
6 MW Auxiliary Turbine Generator (ATG) on bus 8 connected to a 5 MW
load on bus 1 through a line of 10 MW capacity, which is normally
sufficient. However, there is a second 1 MW path through bus 9, which is
at its limit. In this configuration there is no way to increase power flow
through the larger line as any change in bus voltage will overload the low
capacity path, so the load receives less than 3 MW.

TABLE 1. Power system parameters. The Rating (1 p.u.) column indicates
the baseline (per unit) rating for each parameter. The sweep range
indicates the range that the parameter can be swept over with respect to
the baseline value.

developed by the Electric Ship Research and Development
Consortium (ESRDC) [46]. Themodel has undergone a series
of revisions [25], [34] to reach its present form [37]. It is a
four-zone power and energy architecture with two Main Tur-
bine Generators (MTG), two Auxiliary Turbine Generators
(ATG), and four energy storage (ES) units (one per zone).
There are 6 main load types distributed throughout the ship:
4 evenly distributed Service Loads (SL), 2 Propulsion Motor
Drive (PMD) loads each with 1/2 of the total propulsion load,
1 Radar (R) load, and 3 pairs of Mission Loads (ML1, ML2,
and ML3).

Table 1 shows total power generation is 82MW, comprised
of two 35 MW MTGs and 2 ATGs at 6 MW each. Four
10 MW/60MJ energy storage units add an additional 40 MW
of power and 240MJ of energy storage. The baseline parame-
ter values are taken from [25], and the sweep range parameter
is used for the trade studies in later sections. Load shedding
is allowed on each bus to guarantee feasibility as mentioned
in Section II.
Power conversion modules are omitted as they can be

represented as a branch power limit and a small line loss. For
the case studies in this article, all such losses (along with line
losses) are omitted. This is because at an early design stage
losses are typically not known [25]. In the detailed design
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FIGURE 4. Sample mission load profiles showing the time-sequenced
total ship load demand required to accomplish representative
operational missions. Each solid trace indicates a single load profile. Each
load profile is formed from the combination of constant and pulsed load
demands of various powers, ramp rates, and time durations. Note the
large variation in load demand both within and across missions. Dashed
horizontal lines show the 82 MW total generation capacity and 122 MW
total power available including energy storage.

phase, the upper bound established in the preliminary phase
can be used as a benchmark to evaluate the losses associated
with actual lines, power converters, and energy storage units.

Because energy storage losses are typically higher than
generation or transmission losses, they are a major driver of
the overall system efficiency. The system efficiency is also
heavily mission-dependent. For instance, in a mission where
high-efficiency generators are the primary power source,
the mission efficiency will be very high. Conversely, a mis-
sion that must heavily rely on low-efficiency energy storage
will have a much lower mission efficiency.

B. OPERATIONAL MISSION LOAD PROFILE
This ship system (Fig. 2) is evaluated for its ability to supply
power to 200 samples of various operational mission load
profiles generated from a load demand model [34], [47].
These mission load profiles each represent a single tactical
engagement over 600 s, which is sufficient time to fully exer-
cise the power system via energy storage charge discharge,
generator ramping, etc. Fig. 4 shows the time-dependent
load demand profiles of five such trials. (The five trials
were chosen to illustrate the large variation on load demand
both within and across trials.) Given the system capabilities,
we would like to identify which scenarios fail, and to what
extent. A failed scenario means that the system is physically
incapable of supplying the full load without violating con-
straints, regardless of the controller selected. For this study,
a failed scenario is defined as any trial that must shed load,
regardless of how much or for how long.

C. SOLUTION METHOD
The power system solver MATPOWER [24] is used, which
accepts problems in standard form (1)-(3). This solver can
handle the MP-OPF problem by using the extended MP-OPF

FIGURE 5. Comparison of AC and DC optimal power flow formulations.
The top plot shows generator power summed over all four generators. The
bottom plot shows lost load. The two solutions agree to within 650 kW.

variables (31). Time steps of 0.5 s are used for 1t in
(28)-(30). This framework allows full AC power flow anal-
ysis; the results here use the DC approximation to improve
solution speed while producing nearly identical results.

To test whether the DC approximation is valid for the
example system in Fig. 2, several representative load profiles
were run using both AC and DC optimal power flow. Two
major simplifying assumptions are made in this set up. First,
lines are modeled as lossless, with a resistance of 0.0 p.u. and
a reactance of 0.01 p.u. This is not a major limitation for a
ship system because cables on ships are very short compared
to transmission lines in terrestrial systems. The second is
that all loads have unity power factor. This is also not a
major limitation as ship designers have tight control over
what loads are placed on ships and can therefore require that
loadswith low power factors include appropriate power factor
correction.

Fig. 5 shows an example for one profile. For this particular
profile, the AC and DC MP-OPF results are nearly identical.
The maximum difference in generator real power is 650 kW.
For the AC system, the maximum generator reactive power
supplied is 12.9 kVAR and the maximum line reactive power
flow is 34.7 kVAR. Also, the bus voltage magnitudes are all
equal to 1.0 p.u. to 3 significant digits. These results indicate
that for our particular system the DC approximation is quite
accurate. The DC approximation solved in 27minutes 55 sec-
onds while the AC solution took 29 minutes and 5 seconds
to converge to a solution. Due to the difference in solution
speeds, all of the following results use the DC power flow
approximation.

IV. EXAMPLE OPTIMIZATION RESULTS
To study the trade offs between different component specifi-
cations, a set of power systems are generated with varying
specifications using the same architecture as the baseline
system in Fig. 2. A single mission load profile (as in Fig. 4)
is applied to the set of systems to demonstrate the behavior
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FIGURE 6. Typical system performance (a) compared with the effects of
limited power flow (b) and generator ramp limits (c). Energy storage unit
capacities are 60 MJ each. The system cannot fully meet demand and
sheds load from 455-570 s in the baseline case (a). Energy storage usage
is similar even with reduced line limits (b), but the normally identical
units start to diverge based on location once there is an active flow
constraint. The generator usage is aggressive with the baseline 1 MW/s
limits (c), but the response slows with limited ramp rates.

of the multi-period power flow optimization algorithm as
shown in Fig. 6. This method was initially used on a similar
power system without line flow or ramp rate constraints

[25], so this section focuses on the effects of including
them.

A. RESULTS WITH HIGH RAMP RATES AND LINE LIMITS
As a first case, we consider the baseline system with all
generator ramp rates set to 1 MW/s and all line flows set to
41MW. The results for a typical 600-second mission vignette
are shown in Fig. 6a. With the line limits set to half of the
total generator capacity, power flow constraints are not active
and the load demand stays below the total installed power
(i.e. generators plus storage). However, even with the high
generator ramp rates and line limits, the load can not be fully
met due to the limited energy storage capacity.

At the beginning of the mission in Fig. 6a the generators
provide more power than the load demand in order to charge
the energy storage units. Then, during a period of load spikes,
generator power remains relatively constant while energy
storage supplies the load until demand exceeds the total gen-
erator power (as seen by the nonzero value of lost load from
455-570 s). At this point, the system sheds some of the load in
order to reserve stored energy for the large load spikes. This
is because the cost of load shedding is quadratic; therefore the
system incurs a lower cost by having a smaller shortfall for a
longer time rather than a larger shortfall for a shorter time.

Fig. 6a illustrates why analyzing system performance is
much more complicated than simply ensuring that total load
demand is less than total installed generation and energy stor-
age capacity. Factors such as generator ramp rates and energy
storage capacities must also be accounted for. Additionally,
when there is a shortfall, the optimal method for address-
ing the shortfall (i.e. by shedding load) must be carefully
considered.

B. EFFECTS OF RESTRICTIVE LINE LIMITS
The same load profile in Fig. 6a is applied to the baseline
system with its line limits reduced to 14 MW. The energy
storage behavior is shown in Fig. 6b.

When the line limits are reduced, the line constraints
become active and change the way the power sources are
allocated. The four energy storage units behave symmetri-
cally until diverging when restrictive line limits are active.
The limits create a location-based value for the different
generation assets, often termed locational marginal pricing.
Fig. 6b also indicates when the line limit constraints are active
as determined by a non-zero value of the Lagrange multiplier
outputs of the solver. This constraint causes the four storage
units to diverge.

A major takeaway from Fig. 6a is that when line power
flow limits are high, the location of energy storage is not
significant since all units are utilized equally regardless of
location. If, however, flows are constrained, energy storage
placement becomes important. Also note that energy storage
placement may be influenced by other factors. For instance,
if line losses are high, energy storage should be physically
close to loads. Also, it may be necessary to locate energy
storage in different parts of the ship due to survivability
concerns.
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C. RESULTS WITH LIMITED GENERATOR POWER RAMP
RATES
Most generators have power ramp rates that are insufficient to
serve advanced pulse loads. Fig. 6c shows the effect of vary-
ing generator ramp rates on the baseline mission. When ramp
rate limits are high, the generators are able to quickly ramp to
track large changes upward or downward in load. When ramp
rate limits are lower, however, generators must increase their
generation early in anticipation of large load spikes. (This is
particularly prominent in the trace for the 0.1 MW/s ramp
rate, which is constantly ramping up or down at its maximum
rate in anticipation of future load demands.) Excess power
generation will be used to charge energy storage, which will
then aid the generator in servicing large load spikes. This
means that, all else being equal, a system with low generator
ramp rates will place a higher demand on energy storage than
a system with high generator ramp rates.

D. OTHER CONSIDERATIONS
In many cases it is not a single constraint that causes a
load shortfall, but the interaction of multiple constraints. For
example, a mission that is unsuccessful in meeting the load
demand with restrictive line flow and ramp rate constraints
may be successful if either constraint is relaxed slightly.
Therefore if a mission fails, all active constraints must be
considered together to determine the root cause. This anal-
ysis should include potential transmission reconfigurations
as mentioned in Sec. II-C3, which are not automatically
optimized.

V. TRADE STUDIES
The proposed method can rapidly create data for trade studies
between different power system designs. Performance is con-
troller dependent, so this upper bound method is a useful way
to compare two candidate systems. Although this best case is
unrealizable without exact future knowledge, it can provide
insights into the relative performance of designs.

Performance on a single mission is not always insightful,
so we consider a set of 200 representative mission load
profiles. A mission is considered a ‘‘success’’ if all the load
demands are met at all times, and a ‘‘failure’’ if not. There
is some middle ground that can be quantified by MW-hrs
of unserved load or similar metrics, but these can be diffi-
cult to translate into mission success and therefore are not
considered in this study. Data is generally presented as a
percentage of successful missions. This approach provides
the ship designer with clear insight into which missions are
attainable (or not). In the failed mission case, it also enables
them to take a closer look at how critical those missions are
and which loads may be shed.

These multi-dimensional results are organized as specific
design decisions of interest between particular variables. All
trade studies are conducted using the system shown in Fig. 2
using the parameter values in Table 1 as a baseline, with vari-
ations shown in per unit (p.u.) with respect to this baseline.
The sweep range is meant to encompass the range of values
from minimum to maximum capability.

A. DESIGN DECISIONS
1) ENERGY STORAGE TECHNOLOGY
When determining they type of energy storage to install
designers must take into account energy storage power,
capacity, and efficiency. Fig. 7a shows the mission success
rate as a function of energy storage capacity and power.
Increasing the storage capacity is initially valuable, but
becomes less useful unless power limits are also increased.
However, increasing energy storage power beyond 0.75 p.u.
provides no additional performance. Other factors also
influence this decision, including robustness to line outages.

Fig. 7b shows the relationship between energy storage
power and efficiency while energy storage capacity is held
constant at 1 p.u. The figure illustrates that if energy storage
is very inefficient (below 70% one-way) performance will
be degraded. For moderate efficiencies (between 80% and
90%) the percentage of missions that can be successfully
accomplished drops by only 1% from the 100% efficient
case. For very high efficiencies (above 95%) there is no
degradation in performance for storage powers greater than
0.75 p.u.

Fig. 7c illustrates the tradeoff between energy storage
capacity and efficiency while energy storage power is held
constant at 1 p.u. Not surprisingly, for low storage capacities,
efficiency is not a major concern. This can be seen by the
fact that contours of constant performance are nearly vertical
for capacities less than 1 p.u. At higher capacities, efficiency
matters much more. For instance, at 4 p.u. of storage capacity
only 77% of missions are successful when storage efficiency
is 50%. For the same capacity, if efficiency is increased to
85%, then 84% of missions are successful.

These results indicate that if the only free design parameter
is the type of energy storage, decreasing storage power to
0.75 p.u. and increasing capacity will yield better perfor-
mance for the same size/weight/cost. Likewise, energy stor-
age should ideally be at least 90% to 95% efficient. Higher
efficiencies than this could save energy and lower operating
costs, but do not yield a meaningful increase in the percent-
age of missions that can be accomplished. As shown below,
varying both generator and energy storage parameters yields
more options.

2) ENERGY STORAGE CAPACITY VS LINE LIMITS
Fig. 7d shows the percentage of missions that are successful
as a function of energy storage capacity for several differ-
ent line limits. Inadequate line limits can be compensated
with energy storage. For instance, the system with 4.0 p.u.
of energy storage and a line limits of 0.45 p.u. has similar
performance to the system with 1 p.u. of energy storage and
a line limit of 1.0 p.u. Note, however, that for the system with
line limits of only 0.35 p.u. increasing energy storage does
not significantly improve performance. For a fully functional
power system there is no performance gained by increasing
the line limit beyond the baseline 1.0 p.u. There may be
additional benefits if system components are damaged or
off-line, which is not considered here.
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FIGURE 7. Trade studies showing the relationship between system parameters and the percentage of missions that are successful.
Figs. 7a, 7c, and 7e show contours of the Pareto frontier using interpolated data. Figs. 7b, 7d, and 7f show the raw data from the parameter
sweeps. In each plot all parameters other than the two being swept are held constant at 1 p.u. Efficiencies are one-way (round-trip would be
η2

es).

3) GENERATOR RAMP RATE VS PEAK POWER
Fig. 7e illustrates the relationship between generator power
and ramp rate. For any given generator power level, perfor-
mance increases with ramp rate up to 0.5 p.u., beyond which
there is little improvement. Likewise, for a given ramp rate,

performance increases with generator power until a generator
power of approximately 1.2 p.u.

From these results, it is clear that the baseline generator
set is not optimal for the system’s mission requirements, with
less than 60% mission success. That could be improved to
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FIGURE 8. Relative difficulty of completing various missions. Each plot compares the percentage of load served by mission for two different
configurations. Each point represents a single mission, and shows its relative difficulty for both cases.

over 95% with a set of generators with 1.1 p.u. of power, but
only 0.5 p.u. of ramp rate. Similar studies could consider only
one generator or generator type.

4) BETTER GENERATORS VS ENERGY STORAGE CAPACITY
Fig. 7f shows the impact of both generator power and energy
storage capacity, including combinations that result in 100%
mission success. Previously, when considering generator
modifications alone (Fig. 7e), a generator power of 1.2 p.u.
is required to accomplish all missions. This same result can be
achieved with only 1.1 p.u. by increasing the storage capacity
to 2 p.u.

B. ADDITIONAL PERFORMANCE METRICS
The percentage of missions that meet the load demand
throughout is not the only design metric that may be consid-
ered. Others include the percentage of load served (defined
as the load energy served divided by the energy demand),
an assigned cost of load shed, or the percentage of time that
all the loads are served.

As a comparison example, with a generator power
of 0.8 p.u. and no energy storage, all missions shed some
load and fail, but over 90% of the load is still served. If there
were a design requirement to serve 99% of the load, it could
be achieved with a generator power of 1 per unit and an
energy storage capacity of 0.25 per unit. From an uptime
perspective, all loads are served 90.5% of the time in this
case.

These results taken together illustrate how onemust choose
the appropriate performancemetric for the given design prob-
lem. In general Mission Success ≤ Percent of Uptime ≤
Percent of Load. Therefore requiring 99% mission success
may be a much more stringent requirement than requiring
99% of load served. In the case of a warship engagement
scenario, any interruptions to certain critical loads is unac-
ceptable; therefore, percentage of successful missions is the
primary metric considered here.

C. SHADOW PRICES
The Kuhn-Tucker multiplier associated with an inequality
constraint on the power flow problem represents the reduction
in cost that could be achieved by relaxing the constraint.
(Inactive constraints will have zero cost.) In the multi-period
problem these change with time, so they can provide insight
into which constraints are binding at different times in the
mission.

D. SPREAD IN PERFORMANCE BY MISSION
This subsection considers the variability of performance
among the 200 different missions. In particular, we study if
the missions have the same relative difficulty for different
ship configurations. To do this, each mission’s difficulty is
evaluated in terms of percentage of load served for two very
different configurations. A scatter plot is then generated,
showing the percentage of load served by mission for each
configuration.

Fig. 8a shows one such plot comparing two potential archi-
tectures. The first architecture has low energy storage capac-
ity (0.01 p.u.) and high line limits (2.0 p.u.), while the second
architecture has high energy storage capacity (6.0 p.u.) and
low line limits (0.35 p.u.). Points in the lower left corner of the
plot represent missions that are difficult for both architectures
and points in the upper right corner those that are easy for
both. Most points are along a diagonal line from the lower
left to the upper right. This trend indicates that even though
the architectures have different performance in an absolute
sense, they find the same missions relatively difficult.

Fig. 8b compares two other architectures. The first archi-
tecture has low energy storage capacity (0.01 p.u.) and high
generator power (1.2 p.u.), while the second has high energy
storage capacity (6.0 p.u.) and low generator power (0.8 p.u.).
The points are dispersed relatively uniformly in this case,
indicating runs that are relatively stressing for one architec-
ture, but easy for another. For instance, the mission in the
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upper left corner has only 96.5% of load served by the first
architecture, but has 100% served by the second architec-
ture. Conversely, the point in the lower right has 99.3% of
load served by the first architecture, but only 78.8% of load
served by the second architecture. This illustrates why ana-
lyzing only the ‘‘difficult’’ missions is generally not sufficient
except in particular cases like Fig. 8a.

VI. DISCUSSION
Power systems with energy storage and generator dynam-
ics are typically difficult to analyze because they require a
new system controller for every candidate system architec-
ture, a time consuming process which can provide erroneous
results without careful controller design. The methods in this
article produce a best-case upper bound performance for a
given architecture. This is particularly valuable for early stage
trade studies conducted well before the design of specific
system controllers

The method is automated and allows for large scale archi-
tecture trade studies with minimal human input as illustrated
in Fig. 1, where the amount of lost load would typically act a
fitness metric for the system.

The technique is also useful to a human designer to gain
insight and quantitative comparisons. Three example use
cases are discussed in this article:

• The system behavior on a single mission as shown
in Fig. 6 provides insight into the time and location of
power shortfalls and transmission congestion, as well as
typical generator and storage utilization.

• The type of trade study data shown in Fig. 7 provides
quantitative, actionable insight. For this nominal system
design, the data in Fig. 7a would encourage a shift
to storage devices that have higher capacity but lower
power, e.g. batteries rather than capacitors. Similarly,
Fig. 7e demonstrates that for the nominal 1 p.u. design
point, generator ramp rate should be sacrificed in favor
of generator power.

• Any conclusions are based on the mission load scenar-
ios, so the upper bound performance can identify which
missions are fundamentally difficult and dominating the
design process, as shown in Fig. 8.

VII. CONCLUSION
A daunting task for ship designers is analyzing complex
shipboard power architectures with constraints and time
dependent elements like generator ramp rates and energy
storage. This is particularly problematic early in the design
process because each candidate power system architecture
can only be evaluated by designing a controller for it, which
is time consuming and subject to variations based on design
choices.

The technique developed in this article produces a
quantifiable upper bound on the best case performance of any
possible controller for a power system, and indicates funda-
mental limitations of the architecture itself. Real controllers

may not achieve this upper limit because the analysis here
assumes exact future load knowledge, but it provides a
well-defined upper bound for use as a standard method to
compare architectures. For early-stage system analysis before
the actual controllers are designed, the eventual system per-
formance can be estimated by considering this upper limit and
the lower bound of a purely instantaneous controller with no
future predictions.

In contrast to previous work, this method solves a dynamic
optimization problem accounting for energy storage capac-
ity and generator ramp rates in addition to generator and
energy storage powers and line flow limits. The problem is
formulated as a nonlinear multi-period optimal power flow
optimization with additional linear constraints, and solved via
numerical optimization. The power shortfall at each bus for
a given mission is quantified, which can assist in prioritizing
possible capability improvements.

The proposed method has been demonstrated on a notional
electric warship using a set of mission load profiles. Results
indicate that significant performance gains can be achieved
with minor improvements to the baseline system. For
instance, a 10% gain in performance can be achieved by
choosing an energy storage technology that has double the
storage capacity and half the peak power of the baseline
technology. Likewise, mission performance can be increased
by 35% with a 10% increase in generator power, even if
generator ramp rates are halved. Through considering both
generation and storage simultaneously the performance can
be improved from under 60% to nearly 100% with a 10%
increase in generator power and a doubling of energy storage
capacity.
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