
Received September 13, 2020, accepted September 15, 2020, date of publication September 28, 2020,
date of current version October 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3027310

Compensation Module Design for Overlapping
Band in Band-Interleaved Data Acquisition
Systems Based on Hybrid Particle Swarm
Optimization Algorithm
YU ZHAO 1, PENG YE 1,2, JIE MENG 1, (Graduate Student Member, IEEE),
KUOJUN YANG 1, (Member, IEEE), JIAN GAO 1, (Member, IEEE), ZHIXIANG PAN 1,
WUHUANG HUANG 1, (Member, IEEE), JINPENG SONG 3, (Member, IEEE),
AND XUEFENG DAI 1
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Department of Research and Development, Uni-Trend Technology (China), Dongguan 523000, China
3School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Corresponding authors: Kuojun Yang (yangkuojun@uestc.edu.cn) and Peng Ye (yepeng_uestec@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61901037, Grant 61801092, and Grant
61701077, in part by the Fundamental Research Fund for the Central University of China under Grant ZYGX2019J065, and in part by the
Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents.

ABSTRACT The band interleaved data acquisition system (BI-DAS) is an attractive structure to improve
the bandwidth of the acquisition system. However, the non-ideal characteristic of the spectrum analysis
filter in BI-DAS results in an overlapping frequency band between two adjacent frequency sub-bands. Phase
misalignment (PM) between two sub-bands in the overlapping band may cause those signals canceled or
partially canceled to each other when sub-bands’ signal are merged. In this paper, a compensation module
with a digital all-pass filter (APF) is proposed for the PM of the overlapping bands in BI-DASs. Based
on this compensation module, a hybrid Particle Swarm Optimization (PSO) algorithm, along with the
Levenberg-Marquardt (LM) algorithm is proposed to design coefficients of the compensation module. The
compensation module and corresponding method proposed in this paper are verified in a BI-DAS with
20Gsps sampling rate and 5.5GHz bandwidth. The experimental results show that the proposed compensation
module can effectively compensate the PM between the sub-bands in the overlapping band. The proposed
hybrid PSO-LM (HPSOLM) algorithm combines the flexibility and reliability inherent in the PSO with the
fast convergence and precision of the LM algorithm. It can effectively design the compensation module with
stable APF while consuming less time and obtaining better compensation results than the conventional PSO
method.

INDEX TERMS Band interleaved data acquisition system, overlapping band, phase compensation, digital
all-pass filters, hybrid particle swarm optimization algorithm, Levenberg-Marquardt algorithm.

I. INTRODUCTION
To keep abreast of the exploding frequency of signals in
electronic systems, the bandwidth of the data acquisition
system (DAS) in the electronic equipment, such as commu-
nication receivers and electronic instruments, is up to tens
or even hundreds of GHz [1]–[3]. As the core device of
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the acquisition system, analog-to-digital converter (ADC)
significantly defines the upper limit of the DAS’s bandwidth.
In the foreseeable future, the upcoming improvement nodes
of complementary metal oxide semiconductor (CMOS) ADC
do not adapt the expected bandwidth requirement for the
next generation DAS. To resolve this contradiction, parallel
DAS architectures, e.g., band-interleaved (BI) DAS [4], [5],
frequency-interleaved (FI) DAS [6], [7] and asynchronous
time-interleaved (ATI) DAS [8], etc., are attractive solutions
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that transcend the limitation imposed by traditional CMOS
ADC devices.

These parallel DAS architectures have a similar strategy,
which transfers the high-frequency signals to the baseband,
and recovers the signals at the digital back-end after sampling
with a low bandwidth ADC. Taking BI-DAS as an example,
BI-DAS divides the frequency of the broadband signal into
several narrow sub-bands by analog filters, and transfer the
high-frequency sub-bands to the low-frequency bands by
analog down-conversion, to reduce the bandwidth pressure
of the ADC. The signals of each sub-band are converted back
to their original frequency band by digital signal processing
after the ADC quantifies the signals in each sub-band. After
that, the signals of multiple frequency bands are merged in
the digital domain to recover the original signals.

However, due to the transition region of analog filters, sig-
nals in a particular frequency bandwill appear in two adjacent
sub-bands simultaneously, which is called the overlapping
band [9]. Phase misalignment (PM) between two sub-bands
in the overlapping band may cause those signals canceled
or partially canceled to each other when merging the sub-
bands’ signal. The resulting combined frequency response
may accordingly have an undesirable attenuated magnitude
response in the overlapping band.

Albert. T [9] proposed a method for the PM in the over-
lapping band based on the cross-spectrum between two sub-
bands. However, this method is under the assumption that the
PM between two sub-bands is linear. In practice, the analog
filters usually have steep cutoffs to ensure the accuracy of
frequency segmentation. These sharp cutoffs introduce the
phase nonlinearity in the region around the cutoff frequency
as well as the nonlinear PM in the overlapping band, which
invalidates linear PM correction methods. Besides, to the
best of our knowledge, there is no literature defining the
overlapping bands in BI-DAS.

The all-pass filter (APF) has been widely used in
non-linear phase equalization [10]–[13], which significantly
affects the phase response while the magnitude response
is unity throughout the frequency band. The characteristic
doesn’t introduce any magnitude distortion to the frequency
band makes APF an excellent candidate to compensate the
non-linear PM in the overlapping band.

Based on the APF, a novel PM compensation module is
proposed for the overlapping band in the BI-DAS. The design
of the compensation model can be turned to a parameter
optimization problem that minimizes the PM in the overlap-
ping band [14]. Non-linear least squares (NLS) approaches
were often used for such parameter optimization problems
since the non-linear relationship between the coefficients
and the phase response of the APF [10]. However, conven-
tional gradient-based iterative optimization method such as
the Levenberg-Marquardt (LM) method is sensitive to the
selection of initial value, which may cause the optimization
to trap into the local optima [15]. In addition, such algorithms
are subordinate to unconstrained optimization algorithms,
which may lead to the instability of APF in the compensation

model when APF’s poles move outside the unit circle during
the optimization process.

Recently, meta-heuristic algorithms have received more
attention in the solving such NLS optimization problems,
such as Genetic Algorithm (GA) [16], [17], Difference Evo-
lution (DE) [18], [19], Ant Colony Optimization (ACO)
[20], Artificial Bee Colony (ABC) [21] and Particle Swarm
Optimization (PSO) [22], [23] algorithms. These evolution-
ary algorithms are population-based optimization techniques
which incorporate random search and selection strategy for
global optimization solution.

Among these algorithms, GA’s global search ability
is highly dependent on the diversity mechanism, which
increases the realization complexity [24]. DE algorithm over-
comes the shortcoming of GA’s complexity, but it is sen-
sitive to the choice of its control parameters [25]. ACO
algorithm has a robust local optimization ability, but for
multi-modal problems, it tends to the local optima. Also,
the ACO algorithm has a slow descending speed [26]. ABC
algorithm has emerged recently for solving the multi-modal
problems. Still, some hinders have been observed that the
ABC, due to adopting the probabilistic mechanism, consumes
more iterative trials and execution compared to the PSO
algorithm [24].

Compared with the other meta-heuristic algorithms afore-
mentioned, the PSO algorithm is more comfortable to be
implemented and requires a few parameters to adjust. More-
over, the sharing mechanism among particles provides better
convergence performance [14]. However, the convergence
speed of the PSO algorithm decreases when approaching the
global optimal solution, and their optimization results have
strong randomness. How to improve the convergence speed
and numerical stability of the PSO algorithm has become a
vital research topic.

This paper proposes a design method of this compensation
module with a stable APF based on the hybrid PSO algorithm.
The main contributions of this paper are listed as follows:

1) Based on the two sub-bands BI-DAS, this paper analyzes
the effect of the PM in the overlapping band during the
combination of sub-bands. A mathematical definition of the
overlapping band in BI-DAS is proposed, which provides
strict theoretical support for the compensation of the over-
lapping band.

2) According to the characteristics of the PM in the over-
lapping band, a novel compensation module is proposed.
The proposed compensation module compensates linear and
non-linear PM by the combination module of integral delay,
fractional delay, and an APF, respectively.

3) A hybrid PSO algorithm designing coefficients of
the compensation module both in linear compensation
module and APF is proposed. The method utilizes the
Levenverg-Marquardt (LM) algorithm to accelerate the con-
vergence speed and reduce the randomness of the PSO
algorithm. The introduction of the PSO algorithm elimi-
nates the hassle of the selection of the initial values of the
LM algorithm.
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4) To avoid the instability of the designed APF in the
compensation module introduced by the unconstrained opti-
mization algorithm, i.e., the LM algorithm, a parameterizing
process is introduced before utilizing the LM algorithm in the
HPSOLM algorithm.

The compensation module and HPSOLM algorithm pro-
posed in this paper is verified in a BI-DAS with 20Gsps
sampling rate and 5.5GHz bandwidth. Based on the data from
the experimental platform, the superiority and validity of the
proposed HPSOLM algorithm are further validated by com-
paring it with the conventional PSO algorithm. In addition,
the impact of the PSO algorithm and the LM algorithm on
the proposed HPSOLM is discussed.

The remaining of this paper is organized as fol-
lows. Section II introduces the principle of the BI-DAS.
In Section III, the definition of the overlapping band and error
analysis of PM in the overlapping band is given. Section IV
describes the proposed compensation module for PM and
the corresponding HPSOLM algorithm. The experimental
platform and results are provided in SectionV and SectionVI,
respectively, followed by a conclusion in Section VII.

II. PRINCIPLE OF THE BAND INTERLEAVED DATA
ACQUISITION SYSTEM
In a two sub-bands BI-DAS, as illustrated in Fig. 1, the input
analog signal x(t) is divided into two frequency bands by the
analog analysis filters Ha1(j�) and Ha2(j�), corresponding
to the low-pass filter and band-pass filter, respectively. The
higher frequency band is down-converted to the baseband by
an analog mixer with the analog local oscillator (LO) whose
frequency is denoted as �l .

FIGURE 1. Mathematics model of the two channel BI-DAS.

The anti-aliasing filters Haa(j�) are used to avoid the
aliasing components of the sampling process. Meanwhile,
Haa(j�) in the higher-frequency band also has the function
of eliminating the high-frequency image components intro-
duced by the analog down-conversion. Signals before sam-
pling of each sub-band can be illustrated as

X1(j�) = X (j�)Ha1(j�)Haa(j�)

X2(j�) =
1
2
[X (j(�+�l))Ha2(j(�+�l))

+X (j(�−�l))Ha2(j(�−�l))]Haa(j�),

(1)

where X (j�),X1(j�) and X2(j�) are the expressions of
x(t), x1(t) and x2(t) in the frequency domain, respectively.
In this paper, �l is higher than the high pass-band fre-

quency of Ha2(j�), so that the image components of the

mixer are away from the baseband and can be eliminated by
Haa(j�), a low-pass filter. Note that the effects of frequency
interferences and nonlinearity of the analog mixer are irre-
spective in this paper.

Under the sampling rate of Ts/2, where Ts is the sampling
rate of the BI-DAS, x1(t) and x2(t) are converted into digital
signals. The sampling rate is halved to reduce the pressure
of the front-end ADC, even though the ADC is still work-
ing in over-sampling mode. The sampled signals need to be
up-sampled. Otherwise, the following digital up-conversion
will introduce the image components into the frequency of
interest. Frequency expression of digital signals after up-
sampling, wm[n] (m = 1, 2) can be written as

Wm(ejω) =
1
2Ts

+∞∑
p=−∞

Xm(j
ω

Ts
− j
πp
Ts

), (2)

where p indexing the frequency replica of sampling and
−π ≤ ω ≤ π .
After the up-sampling, the signals in the second sub-band

should be up-converted to their original frequency band with
digital LO whose frequency is denoted as ωl , where ωl =
�lTs. The final output of each sub-band can be denoted as

Y1(ejω) = W1(ejω)Faa(ejω)

Y2(ejω) =
1
2
[W2(ej(ω+ωl ))Faa(ej(ω+ωl ))

+W2(ej(ω−ωl ))Faa(ej(ω−ωl ))]Fai(ejω).

(3)

Since the aliasing errors and image components introduced
by up-sampling and digital up-conversion are significantly
attenuated by the Anti-aliasing filter Faa(ejω) and Anti-image
filter Fai(ejω), respectively, only the case of p = 0 in (2) is
taken into consideration. Substituting the (1) and (2) into (3),
(3) can be rewritten as

Y1(ejω) = X (j
ω

Ts
)G1(ejω)

Y2(ejω) = X (j
ω

Ts
)G2(ejω),

(4)

where

G1(ejω) =
1
Ts
Ha1(j

ω

Ts
)Haa(j

ω

Ts
)Faa(ejω)

= M1(ω)ejφ1(ω), (5)

G2(ejω) =
1
Ts
Fai(ejω)Ha2(j

ω

Ts
)
[
Hai(j

ω + ωl

Ts
)

× Faa(ej(ω+ωl ))+ Hai(j
ω − ωl

Ts
)Faa(ej(ω−ωl ))

]
= M2(ω)ejφ2(ω), (6)

and

Mm(ω) =
∣∣∣Gm(ejω)∣∣∣

φm(ω) = arg
{
Gm(ejω)

}
, m = 1, 2. (7)

In order to simplify the expression, the fixed attenuation
caused by interpolation and mixing in equations (5) and (6)
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has been compensated. The final output of BI-DAS Y (ejω) is
obtained as follow

Y (ejω) = Y1(ejω)+ Y2(ejω)

= X (j
ω

Ts
)[G1(ejω)+ G2(ejω)]

= X (j
ω

Ts
)T (ejω), (8)

where T (ejω) is the transfer function of the BI-DAS. Similar
to (5) and (6), the final output of the BI-DAS in (8) can be
written as

T (ejω) = MT (ω)ejφT (ω), (9)

where

MT (ω) =

√
M1(ω)2 +M2(ω)2+

2M1(ω)M2(ω) cos1φ(ω)
, (10)

φT (ω) =

arctan
M1(ω) sinφ1(ω)+M2(ω) sinφ2(ω)
M1(ω) cosφ1(ω)+M2(ω) cosφ2(ω)

, (11)

and 1φ(ω) = φ2(ω) − φ1(ω) is the PM between two sub-
bands.

III. PROBLEM FORMULATION
A. DEFINITION OF OVERLAPPING BAND
Ideal analog filters have no transition region, which is impos-
sible in practice. The overlapping frequency region exists
between two adjacent sub-bands to some extent as illustrated
in Fig. 2, where ωFCP represents the intersection of two sub-
bands. Signals with frequencies nearωFCP will appear in both
two sub-bands, simultaneously.

Signals with frequency ω2 in Fig. 2, for example, belong
to the second sub-band. However, due to the transition band
of the first sub-band, the signals of this frequency don’t get
sufficient attenuation in the first sub-band, so that some sig-
nals still enter the first sub-band. Thus, the PM between two
sub-bands in this frequency may cause signals that canceled
or partially canceled to each other when signals are merged
in the digital domain.

FIGURE 2. Magnitude-frequency response of G1(ejω) and G2(ejω) with
overlapping region.

From amathematical point of view, it can be seen from (10)
and (11) that MT (ω) ≈ M1(ω) and φT (ω) ≈ φ1(ω) when

M1(ω) � M2(ω) whatever the value of 1φ(ω), vice versa.
In order to weight the difference between M1(ω) and M2(ω),
a variableMD(ω) is introduced as

MD(ω) = 20× log
M1(ω)
M2(ω)

. (12)

According to (10), the maximum and minimum value of
MT (ω) isM1(ω)+M2(ω) andM1(ω)−M2(ω) corresponding
to1φ(ω) = 0 and1φ(ω) = ±π , respectively. Thus, the max
magnitude fluctuationMF(ω) ofMT (ω) introduce by the PM
is

MF(ω) = 20× log
M1(ω)+M2(ω)
M1(ω)−M2(ω)

= 20× log
10

MD(ω)
20 + 1

10
MD(ω)
20 − 1

. (13)

In (13), MF(ω) is a monotone decreasing function of
MD(ω), whichmeans that the magnitude response fluctuation
of the sum of two sub-bands introduce by the PM would be
negligible when MD(ω) is greater than a certain threshold.
This threshold, namelyMDmax , can be deduced by

MDmax = 20× log
10

MFmax
20 +1

10
MFmax

20 − 1
, (14)

where MFmax depends on the compensation accuracy is the
maximum acceptable fluctuation introduced by the PMof two
sub-bands. From this perspective, themathematical definition
of the overlapping band can be written as

X (j
ω

Ts
) ∈ overlapping band MD(ω) ≤ MDmax

X (j
ω

Ts
) /∈ overlapping band MD(ω) > MDmax .

(15)

Above all, MT (ω) whose ω is in the overlapping band is
affected not only by the M1(ω) and M2(ω), but also by the
1φ(ω). In contrast, the MT (ω) whose ω is outside the over-
lapping band is only affected by the correspondingM1(ω) or
M2(ω), and irrespective of the 1φ(ω).

B. PHASE MISALIGNMENT IN THE OVERLAPPING BAND
After defining the overlapping band, this section focus on
the impact of PM in the overlapping band. Assuming the
ideal combined magnitude response of the overlapping band
isMideal(ω) = M1(ω)+M2(ω), corresponding to1φ(ω) = 0.
The relative magnitude errorMrel(ω) introduced by1φ(ω) is
defined as

Mrel(ω) = 20× log
MT (ω)
Mideal(ω)

, ω ∈ overlapping band .

(16)

Substituting (10) and (12) into (16), it can be reformed as

Mrel(ω) = 10× log

(
1+

2× 10
MD(ω)
20 (cos1φ(ω)− 1)

(1+ 10
MD(ω)
20 )2

)
.

(17)
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FIGURE 3. Contours of Mrel affected by MD and 1φ in the overlapping
band.

Fig. 3 illustrates the contour of the Mrel in (17), when
MD is constant, Mrel decreases with 1φ approaches ±π .
Especially for the case that MD = 0 and 1φ = ±π ,
the combined magnitude MT is equal to zero, which leads
a big dip in the combined magnitude response. Conversely,
when 1φ is constant, Mrel is proportional to MD. In other
words, the smaller the MD, the more sensitive the frequency
point is to the change of 1φ.
However, due to the non-linear phase response of analog

filters Ha1(j�), Ha2(j�) and Haa(j�), G1(ejω) and G2(ejω)
also have non-linear phase response. Even though the digital
filters Faa(ejω) and Fai(ejω) are linear-phase finite impulse
response (FIR) filters. The non-linear phase response of
φ1(ω) and φ2(ω) introduce the nonlinearity into the 1φ(ω)
between two sub-bands, which invalidates the linear PM
correction method proposed in [9].

On the other hand, the different signal path in each
sub-band introduces linear PM between two sub-bands.
Therefore, 1φ in the overlapping band is denoted as a vari-
able divided into two parts varies with ω

1φ(ω) = −

linear phase︷ ︸︸ ︷
ω · δd + δφ(ω)︸ ︷︷ ︸

non−linear phase

, (18)

where δd is the group delay difference between two sub-
bands, and δφ(ω) is the non-linear PM between two sub-
bands, which varies with ω.

IV. PROPOSED COMPENSATION STRATEGY
A. ESTIMATION OF THE MAGNITUDE AND PHASE
DISTORTIONS
Prior to the compensation process, a simple estimation
method based on sinusoidal signals is proposed for the

magnitude difference and phase misalignment in the overlap-
ping band.

First of all, a bunch of sinusoidal signals covers the entire
bandwidth of the BI-DAS are fed into the system to determine
the frequency range of the overlapping band in line accor-
dance with (14) and (15).

After that, sinusoidal signals with N frequencies
(ω1, ω2, . . . , ωN ) evenly distributed in the overlapping band
with the same amplitude are fed into the BI-DAS as excita-
tions. Note that these signals should have sufficient amplitude
so that they wouldn’t drown into the background noise in each
sub-band.

Adopting the sin-fitting algorithm [27], the magnitude dis-
tortion in ωn, (n = 1, 2, . . .N ) is calculated as

Mrel(ωn) = 20× log
(

MabsT (ωn)
Mabs1(ωn)+Mabs2(ωn)

)
(19)

according to (16), where Mabs1(ωn), Mabs1(ωn) and
MabsT (ωn) are the absolute magnitude of signals in each
sub-band and combined output, respectively, and

1φ(ωn) = φabs2(ωn)− φabs1(ωn) (20)

with φabs1(ωn) and φabs2(ωn) denoting the initial phase of sig-
nals in each sub-band. An average value of1φ(ωn),1φ̄(ωn)
is obtained after several measurements for the calculation of
(20) and (21) to reduce the influence of the time jitter of the
sampling clock and the phase jitter of the LO.

B. COMPENSATION MODULE
To compensate the PM in (18), the compensation module for
PM is composed of three parts, as illustrated in Fig. 4, Inte-
gral Delay/Discard Module (IDM), Fractional Delay Module
(FDM), and an APF Fap(ejω), where the IDM and FDM
make up the linear compensation part of PM in (18). The
combination delay of these two parts is denoted as δ̂d =
δ̂Id + δ̂Fd , where δ̂Id is an integer, and the IDM chooses
whether Delay or Discard depends on the sign of δ̂Id . An APF
is adopted to compensate for the non-linear part of 1φ(ω) in
(18), since it significantly affects the phase response while
the magnitude response is unity throughout the frequency
band [10]. Suppose that the phase response characteristic of
compensated signals in Fig. 4 is φ1c(ω), which is calculated as

φ1c(ω) = φ1(ω)+ φc(ω)

= φ1(ω)− ω · δ̂d + φap(ω), (21)

where φap(ω) is the phase response of Fap(ejω). The transfer
function of a P-order APF based on cascading second-order

FIGURE 4. Compensation Module of the PM in the overlapping band.
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sections, where P is an even number, in the Z domain is

Fap(z) =
P/2∏
p=1

|ξp|
2
− 2 · Re(ξp) · z−1 + z−2

1− 2 · Re(ξp) · z−1 + |ξp|2 · z−2
(22)

where ξp = Mp · ejθp is a pole of the pth section, Mp and θp
are the radii and angle of the ξp. Since the coefficients in (22)
are all real, another pole of pth section is located at ξ∗p , where
∗ is the conjugate operation. Therefore, the phase response of
compensation module with a P-order APF is

φc(ω,U) = −(δ̂d + P)ω

− 2
P/2∑
p=1

[
arctan{

Mp sin(ω − θp)
1−Mp cos(ω − θp)

}

+ arctan{
Mp sin(ω + θp)

1−Mp cos(ω + θp)
}

]
(23)

Note that the position of the compensationmodule depends
on the definition of1φ(ω). In Fig. 4, the compensation mod-
ule is added to the first sub-band since 1φ(ω) is defined as
φ2(ω)−φ1(ω) in this paper. On the contrary, the compensation
module should be added to another sub-band if 1φ(ω) =
φ1(ω)− φ2(ω). This alternative position allows the proposed
strategy to be extended to BI-DASs with more than two sub-
bands.

C. DESIGN ALGORITHM OF THE COMPENSATION
MODULE
According to the analysis aforementioned, the phase response
of the compensated first sub-band should satisfy that
φ1c(ω) = φ2(ω), which means

1φ̄(ω) = φc(ω,U)

= − (δ̂d + P)ω

− 2
P/2∑
p=1

[
arctan{

Mp sin(ω − θp)
1−Mp cos(ω − θp)

}

+ arctan{
Mp sin(ω + θp)

1−Mp cos(ω + θp)
}

]
. (24)

It is a typical nonlinear approximation problem for variable
U in (24) that can be tackled using nonlinear optimization
methods with nature. Define an error vector R as

R = [e(ω1,U), e(ω2,U), · · · , e(ωN ,U)]T , (25)

with

e(ω,U) =
√
W (ω)

[
φc(ω,U)−1φ̄(ω)

]
, (26)

whereW (ω) is the weighting function and

U =
[
δ̂d ,M, θ

]
, (27)

and

M =
(
M1,M2, · · · ,MP/2

)T
θ =

(
θ1, θ2, · · · , θP/2

)T
. (28)

According to the analysis in Section III-B, it is more sen-
sitive to phase error where the amplitude deviation between
two sub-bandsMD(ω) is small, so that the weighting function
W (ω) in this situation is defined as

W (ω) = 10−MD(ω)/1000. (29)

Theweighted least square (WLS) problem in this paper can
be described as

Minimize E(U) =
1
N
RTR

Subject toMp < 1, p = 1, 2, · · · ,P/2, (30)

where the constrain ofMp<1 is used to guarantee the stability
of the designed filter Fap(z) [10].

To solve the WLS problem in (29), this section provides
a novel weighted HPSOLM algorithm. In this algorithm,
PSO is firstly utilized to find the near-optimal point in the
global space. Then the LM algorithm is followed to find the
local-optimal based on the near-optimal point calculated by
the PSO.

1) PARTICLE SWARM OPTIMIZATION ALGORITHM
The PSO algorithm [28] is a population-basedmultipoint evo-
lutionary algorithm. The searching process in PSO starts with
a population of particles move in a search space by following
the current optimum particles and changing their positions
and velocity to find the best particle position. During its
movement, particles distribute information among them to
search in a good area of the search space. The associated
velocity of an individual particle in Us is

V k+1
s = V k

s + C1 · r1 ·
(
zbs − Uk

s

)
+C2 · r2 ·

(
gb− Uk

s

)
, (31)

where s ∈ [1, S] represents the index of population of parti-
cles and corresponding velocity matrix, where S is the popu-
lation size of particles, C1, and C2 are acceleration constants,
r1, r2 are uniformly distributed random number in [0, 1], zbs
and gb are the local best solutions and global best solution,
and k ∈ [1,K ] is the iteration index, whereK is themaximum
iteration times of PSO. The population is updated as

Uk+1
s = χ

{
Uk
s + V

k+1
s

}
, (32)

where χ{·} is a constraining factor, which guarantees the
stability of the APF. The necessary and sufficient condition
for stability of APFs is that all the poles are in the unit
circle [10], corresponding toMp<1, p = 1, 2, · · · ,P/2. Since
Mp = 1 is critically stable, a variable ρ slightly less than 1
is introduced to guarantee the stability of APF. The designed
APF is stable whose Mp is less or equal to ρ, which can be
used as a constrained factor of the population in PSO

χ {Us} =

{
Us ·Mp = ρUs ·Mp > ρ

Us ·Mp = Us ·MpUs ·Mp ≤ ρ
(33)
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After a new population is formed, the greedy based selec-
tion procedure is introduced for sorting and updating of zbs
and gb.

2) PARAMETERIZED LEVENBERG-MARQUARDT ALGORITHM
The final gb of PSO algorithm is substituted into the LM
[15] algorithm as the initial condition. However, utilizing the
LM algorithm directly on the gb may cause Mp to exceed
the stable interval of the APF in the compensation module
during the iteration process since the LM algorithm is a kind
of unstrained optimization method.

Inspired by [29], if

Mp = F(xp) =
ρ

1+ e−xp
, (34)

thenMp varies over the interval 0<Mp<ρ when the parameter
xp varies from −∞ to ∞. Besides, (34) is a monotonically
increasing function, which provides a one-to-one mapping
between the entire space and the stability region of the APF
in the compensation module, as illustrated in Fig. 5.

FIGURE 5. Parameterizing process constrained optimization problem to
unconstrained optimization problem.

In (23), it is a periodic function for θp whose period is 2π .
So that there is no constrain on the θp, so as to the δ̂d . Thus,
the constrained WLS problem in (30) is transformed into an
unconstrained WLS problem

Minimize E(Û) =
1
N
RxTRx, (35)

where

Rx =
(
ex(ω1, Û), ex(ω2, Û), · · · , ex(ωN , Û)

)T
, (36)

with

ex(ω, Û) =
√
W (ω)(φc(ω, Û)−1φ̄(ω)), (37)

and

φc(ω, Û) = − (δ̂d + P)ω

− 2
P/2∑
p=1

[
arctan{

F(xp) sin(ω − θp)
1− F(xp) cos(ω − θp)

}

+ arctan{
F(xp) sin(ω + θp)

1− F(xp) cos(ω + θp)
}

]
, (38)

Û =
[
δ̂d ,X, θ

]
X =

(
x1, x2, · · · , xP/2

)T
, (39)

with −∞<xp, θp, δ̂d<∞ characterizing all the compensation
module with stable APF where parameters can take any val-
ues in the entire parameter space.

Thus, the (30) can be tackled by the LM algorithm without
losing the stability of APF filters. The LM algorithm has a
strong ability to find a local optimistic result, whose updating
vector 1 is obtained by

1 = (H + λD)−1JTWR, (40)

where

H = JTWJ,

is the approximate Hessian matrix,

D = diag {H} ,W = diag {W (ω1),W (ω2), · · · ,W (ωN )}

are diagonal matrix contains all the diagonal elements of
H and the weighting matrix whose diagonal elements are
{W (ω1),W (ω2), · · · ,W (ωN )} with off-diagonal elements
are all zeros, respectively.

In (40), J is the Jacobin matrix of (38). LM algorithm
switches between gradient descent method (GDM) and the
Gauss-Newton method (GNM) by controlling parameter λ,
which determines how the LM algorithm works and has a
great initial value. If the currentE error is smaller than the last
time, then λ becomes smaller, the algorithm is switched to the
approximate GNM. Otherwise, reject this iteration process, λ
is increased more like a GDM. It recalculates 1 until the E
goes down. The integrated HPSOLM algorithm proposed is
summarized in Algorithm 1.

The proposed algorithm makes use of the global search
capability of the PSO algorithm and overcomes the defect
of local optimization and initial value selection of the LM
algorithm. Meanwhile, the introduction of the LM algorithm
overcomes the shortcoming of the PSO algorithm that the
optimization ability declines near the global minimum, which
further guarantees the numerical stability of the algorithm
while improving the accuracy of the algorithm without losing
the stability of the APF in the compensation module.

D. PARAMETER SELECTION
In Algorithm 1, parameters S, C1, C2, and KPSO will affect
the global search ability of the HPSOLM algorithm. C1 and
C2, corresponding to cognitive and social ratio of the PSO
algorithm are set to C1 = C2 = 2 as previous lecture [30].
Higher S and KPSO value means better global optimization
ability of the HPSOLM algorithm, which may also increase
the execution time of the optimization process. In the pro-
posed HPSOLM algorithm, the parameters S is suggested
around 100 in this paper, since the problem to be solved is
a highly nonlinear complex problem [31]. KLM determines
the local search ability of the HPSOLM algorithm. Due to the
LM is a local search algorithm, it should not be set too large.
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Algorithm 1 Hybrid PSO-LM Algorithm
Setting: S, C1, C2, KPSO, KLM , ρ
Initialization: Generating random Us with size S
PSO ALGORITHM:k = 1
while k<KPSO do
for s=1:S do

V k+1
s =

V k
s + C1 · r1 ·

(
zbs − Uk

s
)
+

C2 · r2 ·
(
gb− Uk

s
)

Uk+1
s = χ{Uk

s + V
k+1
s }

if E(Uk+1
s )<E(zbs) then

zbs = Uk+1
s

end if
if E(Uk+1

s )<E(gb) then
gb = Uk+1

s
end if

end for
k = k + 1;

end while
Switching to the LM algorithm,
k = 1, λ = 10000, v = 10
Parameterizing gb to Û1,
Û1 · xp = F−1(gb ·Mp),p = 1, 2, · · · ,P/2
while k<KLM do
Hk = JTkWJk , Dk = diag {Hk}

1k = (Hk + λ · Dk)−1 Jk ·W · Rxk

Ûnew = Ûk +1k
if E(Ûnew)<E(Ûk ) then
Ûk+1 = Ûnew
λ = λ/10
v = 10

else
Ûk+1 = Ûk
λ = v× λ
v = 10× v

end if
k = k + 1;

end while

For multi-modal problems, once it falls into the local optimal,
increasing the number of iterations is useless for jumping
out the local optimal. The selection of KLM and KPSO are
according to the specific problem, which will be discussed
in Section VI.

E. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed HPSOLM
algorithm is the sum of the PSO and the LM algorithm, which
are KPSO × S×O(h) and KLM ×O(h3), respectively, where
h is the number of the coefficients to be solved [32], [33].

Assuming that KPSO, KLM and S are held unchanged,
the computational complexity of the LM algorithm in the
HPSOLM algorithm is lower than that of the PSO algorithm
when h is small. So that, the computational complexity of
the HPSOLM algorithm is less than that of the conventional

PSO algorithm under the same condition, whose iterations are
K ′PSO = KPSO + KLM .
The complexity of the LM algorithm will exceed that of

the PSO algorithmwith the increased h. Meanwhile, the com-
plexity of theHPSOLMalgorithmwill be higher than the con-
ventional PSO algorithm with the same iterations. However,
due to the randomness of the PSO algorithm, multiple oper-
ations may be required to obtain the optimal value. In con-
trast, the HPSOLM algorithm can get the optimal solution
without numerous runs. From this perspective, the HPSOLM
algorithm still has lower computational complexity than the
conventional PSO algorithm.

V. IMPLEMENTATION PLATFORM
The proposed compensation module has been implemented
in an BI-DAS with 20Gsps sampling rate and 5.5GHz band-
width, whose main circuit diagram is illustrated in Fig. 6.
In this implementation platform, signals from RF generator
(SMB100A, R&S, Inc.) are fed into a splitter which splits the
RF signals into two identical signals.

FIGURE 6. Implementation platform of BI-DAS in this paper.

The split signals are decomposed into two frequency sub-
bands, where the high-frequency sub-band is down-converted
by analog mixer through the decomposition board. In the
decomposition board, the -3db bandwidth of analysis fil-
ters Ha1(j�) and Ha2(j�) are 3400MHz and {3400MHz,
5500MHz}, respectively. The frequency of the analog LO,
�l is chose as 6000MHz. Decomposed signals are converted
to differential signals via an ultra-wideband amplifier.

Signals of two sub-bands converted into differential
form are fed into two acquisition boards. Each acquisition
board is composed of two ADC (EV10AQ190, TELEDYNE
E2V, Inc.) with 5Gsps sampling rate, 10bit quantization
bit, corresponding slave Field Programmable Gate Array
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(FPGA, XC7K325T, Xilinx, Inc.) used for the data receiving
and controlling of each ADC. The two ADCs in an acquisi-
tion board work in time-interleaved (TI) manner to achieve
a sampling rate of 10Gsps, which is the sampling rate for
each sub-band. The track-and-holds of ADCs play the role
of anti-aliasing filters Haa(j�) in this platform, whose -3dB
bandwidth is 3400MHz. Note that the errors introduced by
TI-ADC have been corrected, which are not considered in the
following experiments.

The slave FPGA corresponding to each acquisition board’s
ADC receives the sampled data and transmits it to the master
FPGA (XC7K325T, Xilinx, Inc.) on the processing board
through the CPCI connector for data combination of TI-ADC,
so as to recover the data stream of 10Gsps sampling rate.
After completing the combination of TI-ADC, the data is
sent to industry personal computer (IPC) via a peripheral
component interface express (PCI-e) interface for subsequent
digital signal processing. All the signal processing processes
in the experiment were realized in MATLAB 2016A in IPC
with an Intel Core I7-6700 3.4 GHz CPU and 8 GB RAM.

In the digital signal processing section, the pass-band and
stop-band cutoff numerical frequencies of the anti-aliasing
filter Fai(ejω) are 0.45π and 0.50π , respectively. The
pass-band and stop-band cutoff numerical frequencies of the
anti-image filter Faa(ejω) are 0.55π and 0.60π , respectively.
These filters are all linear phase low-pass FIR filters whose
orders are 163, pass-band fluctuation is less than 0.01dB,
stop-band attenuation is greater than 80dB. In order to ensure
the accuracy of estimation and compensation of the overlap-
ping band, the linear delay introduced by these FIR filters
has been compensated by discarding points. The parameters
of the experimental platform are summarized in Table 1.

TABLE 1. Parameter value of the implementation platform.

VI. RESULTS AND DISCUSSION
In this section, the proposed compensation module and
HPSOLM algorithm are validated based on the platform in

Section V. The overlapping band is determined by a bunch
of equal amplitude sinusoidal signals, with equal frequency
interval 10 MHz around the 3400MHz, generated from the
SMB 100A RF generator.

Taking the method proposed in Section IV-A, the mea-
sured magnitude response and phase misalignment 1φ̄ with
100 times average processing is illustrated in Fig. 7 below.
The maximum fluctuation MFmax in this experiment is set
as 0.1 dB, which means that the overlapping band, according
to (15), is the frequency band whose MD(ω) ≤ 44 dB, cor-
responding to the frequency from 3210 MHz to 3780 MHz.
Since the signals path of the second sub-band is longer
than the first sub-band, the overall trend of the measured
1φ̄(ω) is decreasing. Note that the magnitude of signals with
3210 MHz frequency is normalized to 0dB as a reference.

FIGURE 7. Measured magnitude response and phase misalignment in the
overlapping band based on the platform in Section V with 100 times
average processing.

In Fig. 7, there is a great dip of real combined signals
compared with ideal combined signals between 3400MHz to
3550MHz, where the phase misalignment 1φ̄(ω) is around
±π . However, when the MD(ω) between two sub-bands is
sufficiently large, theMrel(ω) is small even though the1φ̄(ω)
is around ±π , which confirms the analysis in Section III.B.
Following the definition of the overlapping band, the com-

pensation strategy proposed is adopted for the compensation
of the 1φ(ω). As a reference, PSO algorithm is selected for
comparison. The parameters setting of the HPSOLM and
PSO algorithm are listed in Table 2, where the PSO algo-
rithm’s parameters have the same value in both HPSOLM and
PSO algorithm. Meanwhile, the mean and statistical values
are adopted within 100 independent runs. In the initialization
process of the PSO algorithm, the range of the random popu-
lation is 

Us ·Mp ∈ [0, ρ]
Us · θp ∈ [0, 2π ]

Us · δ̂
p
d ∈

[
Min

{
δgd (ω)

}
− P,

Max
{
δgd (ω)

}
− P

]
.

(41)
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TABLE 2. Parameter setting of the PSO and the HPSOLM algorithm.

In (41), δgd (ω) is the group delay of 1φ̄(ω), whose maxi-
mum and minimum value are 66.88 and 101.90 in this exper-
iment, respectively.

The IDM and FDM in the proposed compensation module
in these experiments are realized by adding zeros before the
data and a FIR based fractional delay filter with 51 orders,
respectively.

A. COMPENSATION PERFORMANCE
Results below are obtained by taking the average over
100 independent runs to reduce the randomness of the PSO
algorithm. Fig. 8 visualizes the contrast of PM in the overlap-
ping band with compensation module (CM) designed by the
PSO algorithm and HPSOLM algorithm. The compensated
PM of the proposed HPSOLM is closed to zeros than the
conventional PSO method, at the same number of iterations,
especially in the frequency at which the MD(ω) between
the two sub-bands is small (ω from 1.059 to 1.096 rad),
corresponding to the high weighting function value.

FIGURE 8. Compensated phase misalignment comparison between PSO
and HPSOLM algorithm.

Although the compensation results of HPSOLM algorithm
are worse than the conventional PSO algorithm when the ω
is less than 1.02 rad. The Mrel(ω) is insensitive to the PM
where MD(ω) is bigger, corresponding to the low weighting
function in this frequency band, so it has little impact on the
compensation result and can be ignored.

Fig. 9 shows the Mrel(ω) before and after the proposed
compensation module, where the Mrel(ω) is greatly reduced

FIGURE 9. Relative Magnitude Error Mrel (ω) comparison with and
without compensation module.

blow 0.1dB (maximum tolerable fluctuation within an over-
lapping band, definition of the overlapping band) after the
compensation module designed by both PSO and HPSOLM.
However, referring to the zoom figure in Fig. 9, the com-
pensated Mrel(ω) with compensation module designed by
the proposed HPSOLM algorithm has a better compensation
effect than those designed by the conventional PSO algo-
rithm, especially in the ω from 1.059 to 1.096 rad.

B. CONVERGENCE PERFORMANCE
This part compares the convergence curves of PSO and
HPSOLM implementations in Section VI-A, whose results
are shown in Fig. 10. In these implementations, the PSO
algorithm has a slow convergence rate in the whole process.
However, the HPSOLM uses the PSO algorithm to perform a
coarse search in the solution space at the first 500 iterations,

FIGURE 10. Iteration process comparison between PSO and HPSOLM
algorithm.
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and then uses fine searchability of the LM algorithm to speed
up the convergence. LM algorithm accelerates the speed of
convergence, which makes the hybrid algorithm to obtain
better accuracy than the conventional PSO algorithm in the
same number of iterations, where the averaged final result of
HPSOLM drops from 0.012 to 0.0085 within 1000 iterations.

C. STABILITY PERFORMANCE
Fig. 11 and Fig. 12 show the poles and zeros location of the
APF in compensation module design by PSO and HPSOLM
within 100 independent runs, respectively. The poles of each
run are in the unit circle for APFs designed by both PSO
and HPSOLM, illustrated in the zoomed detail in Fig. 11 and
Fig. 12, which confirms the stability of these filters. Espe-
cially for the HPSOLM, despite the unconstrained optimiza-
tion approach, due to the mentioned parameterizing operation
in Section IV-C2, the stability of these filters is still guaran-
teed.

FIGURE 11. Poles and zeros iteration result of PSO
within 100 independent runs.

D. STATIC PERFORMANCE
To verify the efficiency of the proposed HPSOLM algorithm,
this section discusses the static performance comparison
between the PSO and HPSOLM algorithm within 100 inde-
pendent runs, which is illustrated in Fig. 13. According to the
whisker plot in Fig. 13, the median value for maximum Mrel
is reduced from 0.042 dB to 0.034 and the median value of
phase MSE is reduced from 0.0104 rad to 0.0088 rad for PSO
and HPSOLM algorithm, respectively.

Besides, the results of HPSOLM have high concentration
than those of PSO. The high concentration performance is
consistent with the experiment in Fig. 11 and 12, where the
poles and zeros location of APF designed by the HPSOLM is
more concentrated than those designed by the PSO algorithm.
Further more, there are some Mrel of the PSO algorithm

FIGURE 12. Poles and zeros iteration result of HPSOLM
within 100 independent runs.

FIGURE 13. Static performance of PSO and HPSOLM algorithm
in 100 independent runs (1 and 3, Mrel and E of 1000 times PSO with
128 popsize; 2 and 4, Mrel and E of 500 times PSO with 128 popsize and
500 times LM).

exceed the 0.1 dB, which invalidates the compensation pro-
cess.

Table 3 lists the time elapse comparison between con-
ventional PSO and HPSOLM algorithm. Compared with the
conventional PSO algorithm, the introduction of the LM

TABLE 3. Time elapse static performance of PSO and HPSOLM algorithm.
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algorithm not only speeds up the rate of convergence but also
overcomes the randomness of the PSO algorithm’s results.
The HSPOLM algorithm can get the optimal result after one
iteration process, instead of multiple iteration process to get
the optimal result like PSO, which reduces the complexity
of designing compensation module to some extent. Also,
the HPSOLM algorithm consumes less time than the PSO
algorithm in the same number of iterations under the setting
in Table 2.

E. DISCUSSION
The experiments in this section discuss the impact of the
PSO and LM algorithm on the proposed HPSOLM algorithm.
Referring to the description in Section IV-C, the PSO algo-
rithm is used for global search in the entire space, while the
LM focuses on locating the best solution start from the results
of the PSO algorithm.

Fig. 14 shows the iteration results with various iteration
times of the LM algorithm after an iteration results of the
PSO algorithm with 500 iteration times. It can be seen that
the final iteration results of the hybrid algorithmwill converge
further with the increase of the number of the LM algorithm
iterations. However, the gain of iteration’s number on the
convergence of the final result is weakened when the number
of iterations of the LM algorithm is greater than 500. For
non-quadratic and multi-modal problems, the PSO algorithm
has a certain probability falling into the region around the
local optimal solution, whereas the LM algorithm can only
iterate to the local optimal solution starting from these initial
points. Even if the number of the LM algorithm iteration
increases, the local optimal solution cannot be jumped out
to the global optimal solution.

To verify this problem, another experiment is designed
with constant iteration times of LM and various iteration

FIGURE 14. Iteration results of HPSOLM with constant times of PSO and
various times of LM in 100 independent runs. (1, 128 popsize with
500 times PSO. 2-6, 128 popsize with 500 times PSO and 100, 300, 500,
700, 900 times LM;).

FIGURE 15. Iteration results of HPSOLM with constant iteration times of
LM and various PSO in 100 independent runs. (1-5, 128 popsize with
500 times LM and 100, 300, 500, 700, 900 times PSO; 6, 256 popsize with
900 times PSO and 500 times LM).

times of PSO algorithm. In Fig. 15, when the number
of PSO iterations is small, such as 100 iteration times,
the hybrid algorithm is degenerated to a random LM algo-
rithm, the global search ability is reduced, and a large number
of iteration results remain in the local optimal solution.

With the increase of the PSO iterations’ times, the global
optimization ability of the algorithm is enhanced. The algo-
rithm can escape out of partial local optimization, and the
final result of the algorithm is improved, illustrated in 2 to 5 in
Fig. 15. These show that the global search ability of the hybrid
PSO algorithm is positively correlated with the iteration num-
ber of PSO. In addition, under the same number of iterations,
increasing the population number of PSO can also enhance
the global search ability of the hybrid algorithm. The medium
value of 6 is reduced to 0.0069 from 0.0075 in 5, as shown
in Fig. 15

According to the above experiments, in the HPSOLM
algorithm, the PSO algorithm determines the global search
capability of the HPSOLM algorithm. In contrast, the LM
algorithm determines the local optimal search capability of
the HPSOLM algorithm.

Therefore, in the HPSOLM algorithm, the global search
ability should be guaranteed, that is, PSO should have suf-
ficient iterations or the population size. However, increasing
the number of iterations and the population size of the PSO
algorithm will undoubtedly increase the consumption of time
elapse. Therefore, a compromise scheme should be selected
according to specific problems when utilizing the HPSOLM
algorithm.

VII. CONCLUSION AND FUTURE WORK
This paper devotes to the phase misalignment of the overlap-
ping bands in BI-DASs. The mathematical definition of the
overlapping band is given by analyzing the influence of phase
misalignment in the overlapping band. On this basis, a com-
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pensation module with an all-pass filter is proposed, which
divides the phase misalignment into linear and non-linear
parts and compensates them, respectively. An HPSOLM
algorithm is proposed to design the compensation module,
which combines the PSO algorithm with the LM algorithm.
Parameterizing the pole position of the all-pass filter before
utilizing the LM avoids the problem that the unconstrained
optimization method may cause the instability of the all-pass
filter in the compensation module. Experimental results show
that the proposed compensation module effectively compen-
sates the phase misalignment and the proposed HPSOLM
algorithm has better effectiveness than the conventional PSO
algorithm on the premise of ensuring the stability of designed
APF while less time elapse.

Since the proposed HPSOLM algorithm is based on the
PSO algorithm, it inherits some shortcomings of the PSO
algorithm, such as the premature problem, especially when
the problem dimension is large. In the following works,
the authors will focus on other swarm intelligence algorithms,
such as the Firefly Search algorithm, Cuckoo Search algo-
rithm, Beetle Antennae Search algorithm, etc., which may
have the potential to provide more excellent optimization
results.
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