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ABSTRACT Network virtualization (NV) is widely considered as one of the key technologies for future net-
works, which allows multiple virtual networks (VNs) to run on the same substrate network simultaneously.
Software defined networking (SDN) can be used as a platform to realize NV. Therefore, the NV-based SDN
has attracted intensive attention from both academic and industry in recent years. In this article, we focus
on virtual network embedding (VNE) problem, which is one of the most important technologies of NV.
Specifically, resource situation of underlying network (RSUN) is not considered in previous VNE algorithms,
which seriously affects the efficiency of VNE. To solve this problem, we develop two heuristic algorithms
to select the appropriate VNE according to RSUN. Our proposed algorithms adopt a novel node-ranking
method, which fully considers the node topology and resource attributes, to sort physical nodes. In addition,
two sorting approaches for virtual nodes and the global matching embedding (GME) approach are proposed.
Our numerical analyses validate our proposed schemes and algorithms in terms of the average revenue to
cost ratio, the average revenue, and the average VN request acceptance ratio.

INDEX TERMS Network virtualization, virtual network embedding, SDN, global resource matching,

node-ranking approach.

I. INTRODUCTION

To overcome the shortcomings of traditional network archi-
tectures, researchers propose the software defined network-
ing (SDN) technology, which is considered as a networking
paradigm of separating the control plane from the data plane.
The open and programmable interfaces allow for flexible
interactions between the networking applications and the
underlying physical network. As one of the enabling tech-
nologies for SDN [1], network virtualization (NV) allows
multiple heterogeneous virtual networks (VNs) to run on
a shared substrate networks simultaneously, which is con-
sidered as one of the key technologies for future networks.
Since the virtualization of SDN networks allow networks to
leverage the combined benefits of SDN and NV [2], it attracts
significant research attention in recent years. Compared with
the traditional network, a SDN architecture is more suitable
to realize NV technologies. The main reasons are as follows:
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1) SDN allows third-party to develop and deploy new man-
agement modules, thus it is more convenient to deploy NV;
2) It can process tasks in parallel. Specifically, the central-
ized management mode makes parallel operation of different
virtual machines easier; 3) In SDN, the controller plays the
role of global resource control and provides a convenient
condition for real-time resource acquisition. Therefore, it is
significant to study NV technologies in an SDN architecture.

Fig. 1 shows a virtualization-enabled SDN architecture,
which is composed of three layers. The functional descrip-
tions of these three layers are as follows: 1) Physical network
layer: Once being selected as the virtual network requests’
embedding nodes or links, the corresponding substrate nodes
and links, according to the forwarding rules received from
the SDN controller, can be responsible for receiving user data
flows and forwarding these flows; 2) Control Layer: Control
layer consists of a number of SDN controllers, which are
responsible for designing forwarding rules and forwarding
the rules to the substrate switches. In addition, the NV hyper-
visor AdVisor is deployed at the controllers to implement
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FIGURE 1. lllustration of the virtualization-enabled SDN architecture.

virtual network embedding (VNE); 3) Application Layer:
Various kinds of tenant applications are handled in applica-
tion layer, such as video application, game application and
web application, etc. User applications are characterized as
different VN requests, and embed the VNs into substrate
network to implement different types of user applications.
In this paper, we mainly focus on VNE, which is one
of the most critical technologies in NV. Different from the
traditional network, the flow table resource needs to be extra
considered in SDN network environment. Therefore, VNE
problem is more complicated in SDN architectures. However,
to our best of knowledge, the existing VNE algorithms have
not taken into account the resource situation of underly-
ing network (RSUN). Node resources and link resources in
the underlying network cannot always remain balanced, and
VNE often fails due to a certain resource shortage. Therefore,
the embedding effect of previous VNE algorithms is limited
due to the change of RSUN. In order to deal with this issue,
we design two heuristic algorithms for physical networks
with shortage of node resources (SNRs) and shortage of link
resources (SLRs), and two heuristic algorithms are denoted
as SNR-VNE and SLR-VNE. Bandwidth distance (BD) and
resource matching degree (RMD) are defined to sort physical
nodes. We first sort physical nodes according to BD, and
then physical nodes with equal BD are reordered according to
RMD. In SNR-VNE, the virtual nodes are sorted according
to the connection of the virtual links, and the global matching
embedding algorithm (GME) is proposed to embed virtual

VOLUME 8, 2020

nodes when the virtual node has no connection with the
already sorted virtual nodes. In SLR-VNE, the virtual nodes
are sorted according to the virtual node resources. Overall,
our major contributions in this paper are as follows:

1) A novel physical node-ranking approach is proposed
to sort physical nodes. We define BD and RMD in the
approach. The steps are as follows: (1) Physical nodes are first
sorted according to BD; (2) According to RMD, we rearrange
the order of nodes with the equal BD.

2) We design a novel node-embedding approach, namely
the GME algorithm, which can save CPU resources to the
greatest extent. We calculate the RMD between all physical
nodes and virtual nodes, and the most matching virtual node
and physical node are preferentially paired.

3) Two sub-algorithms are proposed to solve VNE for
different RSUNs. These two algorithms are applied to dif-
ferent RSUNs, which are not considered in previous VNE
algorithms.

4) We set up two network environments to validate the
advantage of our proposed algorithms. Simulation results
show that our proposed algorithms outperform other algo-
rithms in terms of average revenue to cost (R/C) ratio, average
long-term average revenue, and average acceptance ratio,
respectively.

The rest of the paper is organized as follows. Section II
briefly describes the related work. Section III presents the
network model and formulates the problem of the VNE.
Sections IV presents the integer programming formulation
to solve VNE problems. Section V introduces the node sort-
ing algorithm and global matching matrix (GMM). Section
VI introduces our proposed SNR-VNE and SLR-VNE algo-
rithms. Section VII provides performance evaluations. The
paper concludes with Section VIII.

Il. RELATED WORK

In this section, some works closely related to our work are
introduced. We first discuss the VNE heuristic algorithms
based on the classical method of node ordering, and then
discuss the VNE heuristic algorithms in a SDN architecture.

A. THE CLASSICAL METHOD OF NODE RANKING

In [3], the Markov Random Walk (RW) model is applied to
rank a network node based on its resource and topological
attributes. The node ranking measure reflects the relative
importance of physical nodes. According to the node ranking,
the authors propose two VNE algorithms, namely RW-Max
Match and RW-BFS. RW-Max Match embeds virtual nodes
onto substrate nodes according to the above ranks, and then
embeds the virtual links by shortest path method. RW-BFS is
a backtracking VNE algorithm based on breadth-first search,
which embeds virtual nodes and links during the same stage
by using node-ranking.

In [4], the authors propose a VNE algorithm named
VNE-NTANRC, which considers both the network topol-
ogy attributes and network resources. In VNE-NTANRC,
anovel node-ranking approach is adopted to rank all substrate
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and virtual nodes before embedding each VN. The novel
node-ranking approach consists two sub-approaches and con-
siders five important network topology attributes and global
network resources altogether. One sub-approach calculates
all node values (NoVs) directly according to the node-ranking
approach. The other sub-approach is stimulated through the
Google PageRank website algorithm, and can calculate NoV
in a stable state. In [5], network centrality analysis is intro-
duced into the VNE, and VNE algorithms are proposed based
on closeness centrality. The algorithms are more reasonable
than previous works in coordinating node and link embed-
ding. In addition, the proposed VNE approaches improve the
network utilization efficiency largely and decrease the time
complexity.

B. APPLICATION OF ARTIFICIAL INTELLIGENCE
TECHNOLOGY IN VNE

In recent years, with the development of artificial intelli-
gence, scholars introduce reinforcement learning into the
problem of VNE to optimize the node mapping process.

In [6], authors propose an efficient online heuristic VNE
algorithm, named Presto, based on an artificial intelligence
resource abstraction model called Blocking Island. This is
the first to apply Blocking Island paradigm to solve the VNE
problem. In [7], authors design reinforcement learning-based
neuro-fuzzy algorithms that perform dynamic, decentral-
ized and coordinated self-management of substrate network
resources to achieve better efficiency in the utilization of sub-
strate network resources. In addition, the proposed algorithms
are evaluated through comparisons with a Q-learning-based
approach. A policy network based on reinforcement learn-
ing is designed and implemented in [8]. Authors use policy
gradient to achieve optimization automatically by training
the policy network with the historical data based on virtual
network requests. A Continuous-Decision VNE scheme rely-
ing on Reinforcement Learning (CDRL) is proposed in [9],
which regards the node embedding of the same request as a
time-series problem formulated by the classic seq2seq model.
Moreover, two traditional heuristic embedding algorithms as
well as the classic reinforcement learning aided embedding
algorithm are used for benchmarking the CDRL algorithm.
In [10], authors propose a security-aware VNE algorithm
based on reinforcement learning. Security requirement level
constraint is added for each virtual node, and each sub-
strate node. Virtual nodes are embedded on substrate nodes
that are not lower than the level of security requirements.
In [11], authors propose a new and efficient algorithm, which
combines deep reinforcement learning with a novel neural
network structure. In [12] reinforcement learning based pre-
diction model is designed for the efficient Multi-stage Vir-
tual Network Embedding (MUVINE) among the cloud data
centers.

C. THE VNE HEURISTIC ALGORITHMS IN SDN
ENVIRONMENT

Hypervisors for SDN networks are comprehensively sur-
veyed in [2]. The SDN hypervisors first are categorized
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according to their architectures into centralized and dis-
tributed hypervisors, and then the hypervisors are further
sub-classified according to their execution platform into
hypervisors running exclusively on general-purpose com-
pute platforms, or on a combination of general-purpose
compute platforms with general- or special-purpose net-
work elements. In addition, the authors exhaustively compare
the network attribute abstraction and isolation features of
the existing SDN hypervisors. Finally, the authors outline
the development of a performance evaluation framework for
SDN hypervisors.

A hierarchical virtualization-enabled SDN architecture is
proposed in [1]. Under the constraints of virtual network
requirements and the resource characteristics of substrate
network, the VNE is formulated as a multi-objective opti-
mization problem to minimize network load and maxi-
mize embedding reliability. Since optimization problem is a
multi-objective optimization problem, which is relatively
complicated, the ideal point method is applied to solve this
problem. Specifically, virtual node embedding sub-algorithm
is first proposed to determine the locally optimal solution
to the two sub-problems, namely network load minimization
and embedding reliability maximization sub-problem. Then,
according to the distance between the feasible solutions and
the locally optimal solutions, a single-objective optimization
problem is formulated. To obtain the global VNE strategy,
a discrete particle swarm optimization (DPSO) algorithm is
applied to solve the problem. A self-adaptive VNE algo-
rithm is proposed in [13]. The authors divide VN requests
into different types through the adaptive algorithm. The
authors propose a self-adaptive VNE algorithm, through
which VN requests are divided into different types, and an
integer linear programming is formulated to solve VNE prob-
lem. In addition, three different types of VN requests are con-
sidered, i.e., VN requests for high bandwidth requirements,
VN requests for low latency requirements, VN requests
for high bandwidth requirements and latency requirements.
In [14], the authors tackle two problems, which are VNE
to balance the load on the substrate network and controller
placement to minimize controller-to-switch delays. In [15],
authors propose a mathematical programming formulation
that considers multi-objectives. In addition, a heuristic algo-
rithm is developed by proposing new design metrics.

D. BRIEF SUMMARY

To summarize, VNE has achieved some results in traditional
network architecture. Since a VNE problem is NP-hard in
the traditional network environment, heuristic algorithms
are developed to solve VNE problems. To improve embed-
ding efficiency, authors propose some efficient node-ranking
approaches before embedding virtual nodes. However, only
node capacity and link bandwidth requirements are consid-
ered in traditional network environments. Comparing with
the traditional network environment, the SDN environment
needs to consider the constraint flow table attribute. Thus,
the VNE problem is much more complicated than traditional
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network environment of VNE. RSUN is not considered in the
existing algorithms, thus algorithms are not suitable for SDN
environment. To deal with this issue, we propose two VNE
algorithms, namely SNR-VNE and SLR-VNE for different
RSUNSs.

In this paper, our proposed SNR-VNE and SLR-VNE algo-
rithms differ from previous algorithms in three aspects. First
of all, SNR-VNE and SLR-VNE are designed for scarce node
resources and scarce bandwidth resources of physical net-
works, respectively. Virtual network requests from different
tenants, which have different requirements on node resources
and link resources, may cause uneven network resources.
Thus, it is significant to develop VNE algorithms for different
underlying network environments. To the best of our knowl-
edge, this is the first time to propose the VNE algorithms for
different network resource conditions. Second, our proposed
algorithms adopt a novel node-ranking method, namely Best-
Match approach to rank substrate nodes before embedding
each virtual node. The novel node-ranking approach takes
two parts named Bandwidth-Distance and Resource-Variance
into consideration. Physical nodes are first sorted accord-
ing to the value of Bandwidth-Distance, and then the order
of physical nodes, which have equal Bandwidth-Distance
values are updated according to the value of Resource-
Variance. This node-ranking approach increases the possi-
bility of embedding the virtual nodes onto substrate nodes
that are close to each other, and selects substrate node that
has a higher matching degree with virtual node. Finally, the
difference between SNR-VNE and SLR-VNE is reflected
in the embedding order of virtual nodes. As to the SNR-
VNE algorithm, we embed the virtual nodes with larger node
resource requirements, which are relatively difficult to be
embedded. Due to the relative shortage of node resources,
the Global-Matching algorithm is proposed to embed each
virtual node. The node embedding algorithm can save node
resources to the greatest extent. As to the SLR-VNE algo-
rithm, virtual nodes are ranked according to link bandwidth.

IIl. NETWORK MODEL AND PERFORMANCE METRICS

In this section, the substrate network and virtual network
request models are described firstly, and then the measure-
ments of network resources are introduced in the following
subsection. The main index notations in this paper are listed
in Table 1.

A. NETWORK MODEL

To describe the VNE problem in the SDN environment,
we model the substrate network as a weighted undirected
graph and denote it by Gy = (Nj, Ly, RY, Ré), where N;
denotes the set of substrate nodes, L; denotes the set of
substrate links, R} denotes the set of attributes in the substrate
node ng € N; including the CPU capacity CPU(ng) and
flow table capacity F(ny), and R} denotes the attributes of the
substrate links [;(I; € Ls). We consider the link bandwidth
BW (l;) and delay Delay(l) as the link attributes. The lower
part of Fig. 2 represents a substrate network. The total CPU
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TABLE 1.
Notation Description
c The Substrate Network
Ny 100
Ny, 1, ] The Substrate Nodes
L The Set of Substrate Links
I, ij The Substrate Links
R! The Set of Substrate Node Attributes
R! The Set of Substrate Node Attributes
CPU(ny) The Total CPU of Substrate Node 7,
F(n,) The Total Flow Rules of Substrate Node 7,
BW(ly) Total Bandwidth of Substrate Link /
Cpu(ny) The Available CPU of Substrate Node 7,
Flow(n,) The Available Flow Rules of Substrate Node 7,
Bw(ly) The Available Bandwidth of Substrate Link /;
Delay(ly) The Link Propagation Delay of the Substrate
Link /,
P The Set of Paths that Start from Source Node A
’ to End Node £
G, The Virtual Network
N, The Set of Virtual Nodes
N, ,u, v The Virtual Nodes
L, The Set of Virtual Links
b, uv The Virtual Links
R" The Set of Virtual Node Attributes
R The Set of Virtual Link Attributes
Cpu(n,) The CPU Requirement of Virtual Link 7,
Flow(n,) The Flow Rules Requirement of Virtual Node n,
Bw(l,) The Bandwidth Requirement of Virtual Link /,
The Link Propagation Delay Requirement of the
Delay(l,) Virtual Link}j i e
M The Set of Physical Nodes have Embedded the
¢ Virtual Nodes Which belong to VN G
M The Set of Virtual Nodes have Embedded the
¢ Physical Nodes Which belong to VN G

and flow table are indicated on the left part of the box, and
the residual CPU and flow rules are represented on the right
part of the box. The numbers over the links denote the total
bandwidth resources, whose right side number represents the
residual bandwidth resources.

Similar to the substrate network, the virtual network can be
modeled as a weighted graph G, = (V,, L,, R}, Ré), where
N, is the set of all virtual nodes and L, is the set of all
virtual links, R? denotes the set of attribute in the virtual node
n, € N, including the required computing capacity CPU (1)
and flow table capacity F(ny), Rlv denotes the required band-
width capacity. We consider the required bandwidth BW (I;)
and delay Delay(l;) as the link attributes. The top part of Fig. 2
represents two virtual networks. The numbers aside the nodes
represent the required CPU and flow rules, respectively. The
numbers over the links represent the required bandwidth
resources.

We use M(v) = n to represent that the virtual node v is
embedded into the physical node n. The embedding process
is typically decomposed into two embedding steps as follows:
(1) embedding the virtual node to the physical node that can
satisfy the virtual node resource constraints; (2) embedding
the virtual link to the substrate links that can satisfy the virtual
link resource constraints. It is worth noting that the virtual
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Virtual Network 2

[1s[20]

Virtual Network 1

FIGURE 2. An example of VN embedding.

nodes from different virtual network requests can be embed-
ded to the same substrate nodes, but cannot be embedded
on the same substrate nodes when the virtual nodes come
from the same virtual network request. In fact, these two
stages are not sequential when we solve the problem of VNE.
Fig. 2 indicates the VNE solutions. Take VN1 as an example,
the node embedding solution is {a — A, b — B}, and link
embedding solution is {l,, — par}.

B. PERFORMANCE METRICS

In order to evaluate the performance of VNE algorithms, per-
formance metrics are necessary to be defined. This subsection
introduces some important performance metrics commonly
used in VNE. Similar to previous works [16], the revenue of
a VN request is defined as follows:

RGy) = Y {CPUm)+Hm)} + Y BW(@) (1)

ny€N, l,eL,

Accordingly, the cost of infrastructure providers (InPs)
accommodating a VN request can be defined as follow:

C(G)=)_ (CPUm)+Hn)} + Y BW(L,)x hops(ly)
ny€N, I,€eL,

@

From the InP’s perspective, the main goal of online
VN embedding algorithm is to maximize the revenue of InPs
and increase the resource utilization of substrate network by
accommodating as more VN requests as possible or improv-
ing the R/C ratio in the long run. We define three performance
metrics to evaluate our proposed algorithms, including the
long-term average revenue, R/C ratio and the VN request
acceptance ratio.

The long-term average revenue can be formulated as
follows:

T
> R(Gy. 1)

R= lim =°
t—00 T

3
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FIGURE 3. The diagram of VNE process.

The operator’s profit can be expressed by:

T
> R(Gy, 1)

=0
RIC="" 4

> C(Gy, 1)
=0

The VN request acceptance ratio can be defined by:

T

Z VNaccept

. =0

acce = lim
t—oo T

Z VN, request
t=0

&)

where VN,cc.p: denotes the number of already accepted VN
requests, and VN,egues; denotes the number of arrived VN
requests.

IV. PROPOSED VNE ALGORITHM

The proposed VNE algorithm is detailed in this section.
The overall framework is introduced at first, then we
present methods of sorting physical nodes and virtual
nodes. Next, we present GME. Finally, two heuristic
algorithms are designed for different network resource
conditions.

A. THE FRAMEWORK OF PROPOSED VNE ALGORITHM

The proposed VNE framework is presented in Fig. 3. When
a VN arrives, the system first determines the type of RSUN.
Equation (6) defines D(G,), which denotes RSUN between
VN and physical network. We select SNR-VNE as the embed-
ding method, when D(G,) < 0; otherwise, SLR-VNE is
selected as embedding method. 6§ is RSUN’s threshold, and it
is a real number. From the Fig. 3, the difference between the
two sub-algorithms is at the node embedding stage. The node
embedding phase of SNR-VNE contains GME and sorting
embedding algorithm. In SNR-VNE, the sorting embedding
algorithm is denoted as SNR-SE. In SLR-VNE, the sorting
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Algorithm 1 Physical Node Ranking Algorithm

Algorithm 2 Virtual Node Ranking in SLR-VNE

Input: Gy, G,.
Output: Node-Ranking vector t of the given network G
1. For all physical nodes i
2. Calculate BD;
3. End for
4. According to the value of BD, sort the substrate nodes
in descending order and denote it by t;
5. Calculate the RMD for the nodes which have the equal
BD value;
6. According to the value of RMD, sort the substrate nodes
which have the equal BD value, in descending order, and
update 7.

embedding algorithm is denoted as SLR-SE.
> (CPU(ny) + Flow(ny))

nseGy

D(Gy) = (6)

> Bw(ly)

lseGy

B. NODE RANKING APPROACH

1) PHYSICAL NODE RANKING APPROACH

In order to embed virtual node u, the physical nodes are sorted
according to BD. Formula (7) defines the BD of physical node
l.

BD; = Y distance(i. j) * BW (L), M) =j  (7)

VEN,

where distance(i, j) represents the hops of the shortest path,
BW(l,,) denotes the connection bandwidth of virtual link /,,,,,
Jj denotes the physical node, which host virtual node v, and
v denotes any other node, which belongs to the same virtual
network as u.

In an SDN environment, flow rules need to be considered.
In order to avoid the unbalanced consumption of CPU and
flow rules, RBR; , and Var; , are defined. RBR; , denotes the
distance between the resources of physical node i and virtual
node v. Var; , reflects the distance between the resources of
physical node i and virtual node v. The values of Var; , and
RBR; , can be obtained according to Equation (8) and (9).
We can get RMD; ,, according to Equation (10).

RBR;, — mln[F(z')/CPU(z.), F(w)/CPUW)] @)

’ max[F (i)/CPU (i), F(v)/CPU ()]
Var;, = [F(i) — FW)? + [CPU(i) — CPUMW* (9)
RBR?

\/ Var,-,v

According to the value of BD, physical nodes first are
sorted in ascending order. However, there are many physical
nodes that have equal values of BD. Therefore, we calculate
the RMD for the nodes with equal BD value, and sort the
nodes in descending order according to the value of RMD.
The procedures of the physical node-ranking approach are
detailed in Algorithm 1.

RMD;, = (10)
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Input: Gy, G,.
Output: NS link embedding solution.
1. For all virtual nodes do
2. Calculate Hy(n);
3. End for
4. The node with the highest H»(n) as the first embedding
node, recorded a s A(1);
5. For n = 2: |N,|
6. Form = 1: |N,|-n
7. Calculate H;
8. End for
9. The node with the highest H} as the priority
embedding node, recorded as A(n);
10. End for

2) VIRTUAL NODE RANKING APPROACH

We propose two virtual node ranking approaches for dif-
ferent underlying networks. The methods are applied to the
physical network where the node and link resources are
scarce. We need to save as many node resources as possi-
ble for SNR network. For the physical network with scarce
node resources, the embedding algorithm should preferen-
tially embed virtual nodes with large resource requirements.
We sort the virtual nodes according to Equation 11.

H(ny) = CPU(ny) + F(ny) Y

In SLR-VNE, we first embed the virtual node with the
largest connection bandwidth, which can be obtained through
Formula (12). The embedding order of the remaining virtual
nodes is determined according to Formula (13). Virtual nodes
are sorted according to algorithm 2. A (Line 4 and Line
9) represents the set of nodes that have been sorted.

Hym) = Y BW() (12)
l,enbr(n)

Hj(n) = BW () (13)
meA

C. GME ALGORITHM

The case of BD;, = 0 should be considered as to
SNR-VNE. In addition to the first virtual node, other virtual
nodes may have no virtual link that connects with the embed-
ded virtual nodes. When BD; ,, is equal to 0, it results in inef-
ficient embedding because physical nodes cannot be sorted.
SNR-VNE adopts the global matching embedding (GME)
algorithm to embed the virtual node. GME algorithm is
detailed in Algorithm 3.

D. HEURISTIC ALGORITHM

1) SNR-VNE ALGORITHM

According to the above node ranking, two sub-algorithms
are designed for different network resource conditions. Our
proposed algorithms include two-stage, namely node embed-
ding stage and the link embedding stage. SNR-VNE is a
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Algorithm 3 GME Algorithm

Algorithm 5 LBM-VNE Link Embedding Algorithm

Input: Gy, G,.
Output: Global optimal solution.
1. Forv = 1: |N,|
2.Fori=1:|Ny|
3. Calculate RMD,; , base on Eq (10);
4. End for
5. End for

6. Obtaining global matching matrix

7. Sort matrix elements in descending order, and record
the corresponding virtual nodes and physical nodes,
recorded as Q;

8. For i = 1: |N||Ny|

9. Select the top GMM, and find the corresponding virtual
node and physical node;

10. If CPU(N,) < CPU(N,) and F(N,) < F(N;);

11. M(n,) = ng;

12.  Delete the virtual node n, in 7, and set the rows,
which correspond to the embedding virtual nodes in
GMM to 0;

12. Break;

13. Else

14. Delete the top Q, and set the corresponding element

in GMM to 0;

15. End if

16. End for

Algorithm 4 SNR-VNE Algorithm

Input: Gy, G,.

Output: NS node embedding solution.

1. According to Formula (11), virtual nodes are sorted in
descending order and denote it by t;

2. Calculate the GMM, according to Algorithm 2;
3.Forv =1:|N,]|
4. Select the top virtual node n, in ;
5. If the maximum BD value is equal to O
6. Use GME to embed virtual nodes;
7
8
9
1
1

. If the virtual node i is successfully embedded
Delete virtual node i in t;
. Endif
0. Else
1. Sort physical nodes according to algorithm 1, and
denote it by €2;
12. Forj=1:|N;|
13.  If CPU(n,(i)) < CPU(ns(j))
and F(ny(i)) < F(ns());
4. M(ny) = ng;
15.  Break;
16. End if
17. End for
18. End if
19. End for

two-stage VN embedding algorithm. Algorithm 4 presents
the node embedding procedure of SNR-VNE scheme, which

178264

Input: Gy, G,.
Output: NS link embedding solution.
1. Sort the virtual links by the required bandwidth in
non-increasing order;
2. For all the unembedded virtual links in VN do
3. Choose the virtual link L, with the highest BW(Ly);
4. Use Dijkstra shortest path algorithm to find the shortest
path;
5. End for

Algorithm 6 SLR-VNE Node Embedding Algorithm
Input: Gy, G,.
Output: LS node embedding solution.
1. Sort virtual nodes according to algorithm 2;
2.Fori=1:|N,|
3. Sort physical nodes according to algorithm 1, and
denote it by €2;
4.Forj = 1: |Ny|
5. CPU(m() = CPU(ny())) and F(n,(i)) = F(ns())
6 M(ny) = ny;
7. Break
8
9

End if
. End for
10. End for

contains two parts. When the maximum BD value is equal
to 0, we adopt the GME algorithm to embed virtual nodes;
otherwise, we adopt the ranking method to embed the virtual
nodes according to Equation 11, and physical nodes are sorted
according to Algorithm 4 (Lines 11-17).

In the link embedding phase, we prioritize embedding
virtual links with greater bandwidth requirements. SNR-VNE
performs the link embedding by using shortest path algorithm
to embed the virtual links to the substrate paths. Virtual link
embedding algorithm is detailed in Algorithm 5.

2) SLR-VNE ALGORITHM
SLR-VNE is also a two-step embedding algorithm. We first
sort the virtual nodes according to Algorithm 2, and then
sort the substrate nodes according to Algorithm 1. Finally,
the qualified physical node is selected as the embedding node.
The detailed steps are shown in Algorithm 6.

Like the link embedding in the SNR-VNE algorithm,
the shortest path algorithm is used to embedding virtual links
in SLR-VNE.

E. TIME COMPLEXITY ANALYSIS

In order to reduce the complexity of the algorithm, we calcu-
late the distance of all nodes in advance. For the SNR-VNE,
the total time complexity involves three main procedures,
namely the physical node ranking, GME and link embedding.
Therefore, the total time complexity can be represented as
O(|Ns||Ny|? + |Ns|?|Ly ). For the SLR-VNE, it consists of the
three main steps, namely the physical node ranking, virtual
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TABLE 2.

Physical Network

Parameters

Experiment 1: Network
Generation Approach

Salam method, BorderLenght=1000,
Alpha=10, Beta=19

Experiment 2: Network
Generation Approach

Salam method, BorderLenght=1000,
Alpha=10, Beta=0.35

Node Capacity [50,100], uniform distributed
Link Bandwidth [50,100], uniform distributed
TABLE 3.
Virtual Network Parameters
Network Generation | Salam method, Border Lenght=1000,
Approach Alpha=10, Beta=19

VNR Arrival Rate

4 VNRs per 100 time units

Number of virtual nodes

An integer, distributed[2,20]

Node Capacity Demand [1,50], uniform distributed
Link Bandwidth | 557 iform distributed
Demand

node ranking, and link embedding. Therefore, the total time
complexity can be represented as O(|Ny||N,| + | N 12|L, ).

V. PERFORMANCE EVALUATION

This section presents the simulation parameter settings in
the form of tables. Main simulation results are illustrated.
In addition, we elaborate on quantifying the advantage of the
SNR-VNE and SLR-VNE algorithm. Our simulation work
composes of two parts. The aims of first part is to prove that
the embedding efficiency of SNR-VNE is greatly improved
compared with other algorithms. This part use substrate net-
work where each pair of substrate nodes is connected with
the probability of 0.5. The other part is to use substrate
network with 500 links, which elaborates on highlighting the
efficiency and effectiveness of SLR-VNE.

A. SIMULATION PARAMETER SETTINGS

To evaluate SNR-VNE and SLR-VNE, we conduct the simu-
lation work in a self-developed platform. Table 2 summarizes
the shared substrate network (single domain) parameters for
our simulation. These parameters are typical in VNE research
area. Table 3 summarizes the VN parameters for our simula-
tion. In this paper, we set the value of 6 to 0.1.

B. COMPARED ALGORITHMS

Four heuristic VNE algorithms make up the simulation part
in total. NRM-VNE and RCR-VNE are proposed in [16].
These algorithms are typical, latest, and most-related to our
algorithms.

C. SIMULATION RESULTS

According to D(G,), the simulation experiment 1 is based
on physical network practices where node resources are rel-
atively scarce. In this section, main simulation results are
presented. Fig. 4 shows the average R/C ratio as a function
of time, Fig. 5 shows the average revenue as a function of
time, and Fig. 6 presents the average VN acceptance ratio
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FIGURE 4. Average R/C ratio.

as a function of time. These three figures aim to prove the
efficiency and effectiveness of SNR-VNE in the long term.

1) AVERAGE R/C RATIO

Fig. 4 plots the average R/C ratio in terms of time. Derived
from Fig. 4, the average R/C ratio of all selected algorithms
decreases with the variation on time. As for RCR-VNE, the
R/C ratio is lowest, because adjacent virtual nodes are embed-
ded onto substrate nodes that are far from each other. Thus,
it leads to large amount of unnecessary bandwidth resources
consumption. As to the NRM-VNE algorithm, considering
the connection bandwidth of the nodes, bandwidth resources
can be saved. Compared with NRM-VNE and RCR-VNE
algorithms, SNR-VNE and SLR-VNE perform better. It is
owing to that the distance between the nodes is considered
in our proposed algorithm. For the SLR-VNE, the R/C ratio
is the highest, because the link bandwidth of the virtual
network is considered. Thus, more extra bandwidth resources
are saved. Fig. 4 shows that the R/C of SNR-VNE algorithm
is about 12% and 15% higher than the R/C of NRM-VNE and
RCR-VNE, respectively.

2) AVERAGE REVENUE

Fig. 5 depicts the average revenue as a function of time. To all
selected algorithms, the average revenue tends to decrease
with the number of VNs increasing. The SNR-VNE has
an apparent advantage over other heuristic algorithms. The
reason that the SNR-VNE algorithm has a larger average
benefit than other heuristic algorithms is that SNR-VNE can
accept more VNs than other heuristic algorithms. Because
SNR-VNE considers local resource matching and global
resource matching in the node embedding phase, which helps
to increase the utilization of node resources. When the num-
ber of VN5 increases, the SNR-VNE is able to embed VNs
more effectively. However, the performance of SLR-VNE
is very general. Because in the node embedding phase,
SLR-VNE does not consider the global resource matching,
but consider the connection bandwidth of the virtual net-
work. Although SLR-VNE performs best at the R/C ratio,
the performance of SNR-VNE is more stable when the three
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FIGURE 6. Average VN acceptance ratio.

performance metrics are considered together. Therefore,
SNR-VNE is more suitable for the physical network with
insufficient node resources. Fig. 5 shows that SNR-VNE
generates 5% and 10% higher revenue than RCR-VNE and
NRM-VNE, respectively.

3) AVERAGE VN ACCEPTANCE RATIO

Fig. 6 plots the average VN acceptance ratio as a function of
continuous time. The acceptance ratio is an important metric
to evaluate different VNE algorithms’ embedding abilities in
a continuous time event. As shown in Fig. 6, the average
acceptance ratio of all algorithms almost decay with the
variation on time. It reveals that there are no infinite node
resources for embedding more VNs. In addition, our pro-
posed SNR-VNE algorithm outperforms all selected heuris-
tic algorithms. It runs as expected because the SNR-VNE
takes local resources matching and global resources matching
into account simultaneously. Through using local resources
matching approach, virtual nodes are embedded to physical
nodes with high resource matching degrees when the topo-
logical distances of physical nodes are the same; and through
using global resources matching approach, the best match-
ing virtual nodes and physical nodes are found and embed-
ded. Since the physical node resources are relatively scarce,
it is beneficial to use node resources efficiently. An effi-
cient node embedding is therefore likely to be achieved.
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However, the SLR-VNE algorithm ranks virtual nodes
according to the connection bandwidth of the virtual net-
work. In the case of node resources shortage, connection
bandwidth sort cannot efficiently use node resources. There-
fore, SLR-VNE is not able to perform as well as the
SNR-VNE algorithm. To the remaining heuristic algorithms
(NRM-VNE and RCR-VNE), only physical node resource
attribute is considered in the node embedding stage. There-
fore, they cannot perform well in physical networks where
node resources are scarce. Fig. 6 shows that the accep-
tance ratio of SNR-VNE is about 5% and 10% higher
than the acceptance ratio of RCR-VNE and NRM-VNE,
respectively.

According to D(G,), simulation experiment 2 is exe-
cuted on the physical network with relatively scarce band-
width resources. Similar to experiment 1, we select the R/C
ratio, average revenue and VNs acceptance ratio to discuss
the efficiency and effectiveness of SLR-VNE in the long
term.

4) AVERAGE R/C RATIO

Fig. 7 plots the R/C ratio as a function of VNs arrival rate.
The R/C ratio metric is used to evaluate the resource effi-
ciency of different embedding algorithms. For SNR-VNE
and SLR-VNE, the average R/C ratio tends to decrease
at the beginning of the embedding. Physical resources are
fragmented when our algorithms perform VNE in the early
time of the simulation, and this leads to adjacent virtual
nodes being embedded onto substrate nodes that are far from
each other. The VN R/C ratio of all algorithms decrease to
stable statues since 30000 time units. With accommodating
more VNs, a balance can be achieved. Compared with the
NRM-VNE and RCR-VNE algorithms, our algorithms are
able to perform better. It is owing to that the distance of
physical nodes is considered in SLR-VNE and SNR-VNE
algorithms. For SLR-VNE, the reason for highest R/C ratio is
that the algorithm considers the link bandwidth of the virtual
links. Fig. 7 shows that the R/C of SLR-VNE algorithm is
about 15% and 20% higher than the R/C of RCR-VNE and
NRM-VNE, respectively.
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5) AVERAGE REVENUE

We plot the revenue results of all four embedding algorithms
in Fig. 8. The average revenue is essential to evaluate different
VNE algorithms abilities to embed VNs. From the Fig. 8,
the average revenue of all algorithms almost decay with the
variation on time. For all heuristic algorithms, the average
revenue will decrease to stable statues since 20000 time units.
SLR-VNE algorithm earns the highest average revenues
among all the algorithms. This behavior lies in two main rea-
sons as follows: 1) In the virtual node ranking stage, we fully
consider the connection bandwidth of virtual node. We first
embed virtual nodes with the largest connection bandwidth,
and the order of the other virtual nodes is determined by
the virtual link bandwidth; 2) In the physical node ranking
phase, the underlying network’s BD is considered and it
embeds adjacent virtual nodes to the closer substrate nodes,
which helps to save bandwidth resources and increase the
acceptance rate of VNs in the case of a shortage of bandwidth
resources. Fig. 8 shows that SLR-VNE generates 4% and 10%
higher revenue than NRM-VNE and RCR-VNE, respectively.

6) AVERAGE VN ACCEPTANCE RATIO

Fig. 9 plots the average VN acceptance ratio as a function
of continuous time. From the Fig. 9, the average VN accep-
tance ratio of all algorithms almost decay with the simu-
lation time increasing. It shows that there are no infinite
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bandwidth resources to accept more and more VNs, which
are applied by different end-users. In addition, our proposed
SLR-VNE algorithm outperforms other heuristic algorithms.
It runs as expected because the SLR-VNE takes the band-
width of virtual link and node distance of physical network
into account simultaneously. For SLR-VNE, virtual nodes
are embedded to physical nodes that are closer together than
other heuristic algorithms. This is beneficial to improve vir-
tual network acceptance in the physical network where band-
width resources are scarce. However, SNR-VNE algorithm
considers node resource matching and virtual node resources,
but not virtual link connection bandwidth in the virtual node
sorting phase. Therefore, the behavior of SNR-VNE is not
as good as the SLR-VNE algorithm. Fig. 9 shows that the
acceptance ratio of SLR-VNE is about 5% and 18% higher
than the R/C of NRM-VNE and RCR-VNE, respectively.

VI. CONCLUSION

In this paper, we have proposed two heuristic algorithms
for the two underlying network environments. In order to
improve the node resource utilization of the node resource
scarce network, we prefer to select a physical node with high
matching as an embedding node. In addition, we use the
global matching method to embed virtual nodes that are not
connected to the embedded virtual nodes. For the bandwidth
resource scarce network, we sort the virtual nodes according
to the connection relationship and sort the physical nodes
based on the number of hops. These strategies embed the
adjacent virtual nodes to substrate nodes that are close to
each other to increase the efficiency of bandwidth usage. The
simulation results show that the VNE algorithms proposed in
this paper perform better average acceptance ratio, average
R/C ratio, and average revenue than the other algorithms in
different network environments.
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