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ABSTRACT Nowadays, the extensive collection and storage of massive personal GPS data in intelligent
transportation systems every day provide great convenience for trajectory data analysis and mining research,
thus bringing valuable information for real-life applications. Yet, protecting personal privacy is also more
challenging in the smart environment. When trajectories of individuals are published together with their sen-
sitive attributes such as disease, income etc., one can use partial trajectory knowledge for identity, sensitive
locations, and sensitive values of target individuals.We present (α,K )L-privacy model and an anonymization
scheme aimed at Identifying and E liminating V iolating privacy Subtrajectories (IEVS), to prevent privacy
disclosure while preserving the accuracy and high quality of published trajectories. In particular, IEVS
employs three anonymization techniques, i.e., trajectory splitting, location suppression, and sensitive value
generalization to eliminate all subtrajectories violating (α,K )L-privacy principle. Experiments show our
scheme is effective to improve the data utility of anonymized trajectories when compared with previous
work.

INDEX TERMS Privacy preservation, trajectory data publishing, splitting, generalization, ITS.

I. INTRODUCTION
The rapid development of the Internet of things (IoT) and big
data technology has spawned many new smart application
domains for the urban environment. The massive amount
of information collected in IoT is shared across assorted
platforms and applications to predict the planning and devel-
opment of cities, thus accelerating the construction process
of smart cities [1]. The intelligent transportation system
(ITS) [2], for example, one of the important application
domains in smart cities, generates great amounts of real-
time GPS data every day. Such abundant spatiotemporal
information, organized as trajectories, reflects the historical
traffic conditions of a city. Analyzing and mining behavior
patterns from trajectories via big data technology can sup-
port decision-making for urban planning and development,
such as improving traffic congestion, optimizing freight
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movements, facilitating residents’ travel, etc. [3], to make
cities smarter.

Sharing traffic trajectories for data mining brings many
advantages to multiple applications in real life. However,
the release of raw trajectories may pose serious privacy
concerns even though the identity information of trajectory
users is removed, especially when these trajectories are cross-
referenced with the explicitly published spatiotemporal data
from users through various social networking services in
smart cities. For instance, an adversary sees that the target
individual posts the information of the gourmet shops he vis-
ited on the social network platform one day. If a published tra-
jectory dataset includes all the trajectory information of this
day, and there exists a trajectory containing the location-time
data of the target’s visit to the gourmet shops, the adversary
can associate this trajectory with the target accurately. He can
further obtain the target’s sensitive information contained in
the trajectory, such as the home address, travel habit, health
condition, personal interest, etc.Moreover, the adversarymay
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infer the sensitive values via trajectories if trajectory data
is published with other sensitive attributes of an individual,
which poses more serious privacy disclosure.

In the era of big data, adversaries can easily get more
and more spatiotemporal data published by trajectory users
through location-based social networking sites, so trajectory
data is more likely to expose individuals’ privacy. To cope
with the problem, trajectory k-anonymization, an attack tol-
erant principle, is presented to constrain the identification
probability of privacy-related information. Although many
approaches based on k-anonymity have been proposed to
protect location and trajectory privacy, most of them don’t
explicitly discuss data quality [4]. As a result, the published
trajectories are useless for data analysis and mining [5]. In the
widely employed k-anonymization techniques for trajectory
publishing, grouping k co-localized trajectories and gener-
alizing them to form a k-anonymized aggregate trajectory
changes the entire trajectory footprint, while over distorting
trajectory data. Generalizing k sampling points or k sep-
arated trajectory segments in different trajectories [6], [7]
for the k-anonymization of local areas or partial trajectories
cannot avoid privacy disclosure when the adversary holds
some location-time data of the target in different general-
ized segments or areas. Moreover, generalization cannot pre-
serve accurate trajectories for publishing. The other trajectory
k-anonymization approach is suppressing some sampling
points or trajectory segments to achieve k indistinguishable
trajectories for the protection of identity and the associated
sensitive values. But the related schemes [8]–[10] don’t refer
to the protection of sensitive location information in trajec-
tory data, thus resulting in the disclosure of sensitive location
information [11]. Additionally, only employing suppression
for trajectory anonymization may incur excessive trajec-
tory distortion, especially when trajectories are published
together with sensitive attributes because more locations
or trajectory segments are suppressed to protect sensitive
values.

To address the above problems, this paper aims to design
a novel trajectory anonymization scheme in a combined data
publishing scenario, where trajectory data without modifica-
tion are released with sensitive attributes. Our contributions
are summarized as follows.
• We formalize three types of privacy requirements in
our (α,K )L-privacy model for privacy preservation
when publishing trajectory data with sensitive attributes,
to resist identity linkage, sensitive location, and sensitive
value linkage attack.

• We design an anonymization scheme named IEVS and
implement the related algorithms to publish trajec-
tory data satisfying (α,K )L-privacy requirement. IEVS
employs techniques of trajectory splitting with location
suppression and sensitive value generalization to pre-
serve data utility of the anonymized dataset as much as
impossible.

• A set of experiments are implemented to evaluate the
effectiveness of our scheme.

The rest of our paper is organized as follows. Section 2 dis-
cusses related work. Section 3 formulates the problem.
We detail the IEVS scheme in Section 4. In Section 5, a set
of experiments are run on a synthetic dataset to evaluate our
scheme. Finally, we conclude this paper in Section 6.

II. RELATED WORK
A. STATIC RELATIONAL DATA ANONYMIZATION
k-anonymity [12] first applies to static relational data
anonymization. It can hold back the identity linkage attack
through creating equivalence classes, every of which includes
at least k records with identical quasi-identifiers (QIDs).
Some other extensive versions based on k-anonymity include:
l-diversity [13] requires l distinct sensitive values in each
equivalence class to protect against attribute disclosure,
t-closeness [14] gives strict limitation on the distance of
distribution of a sensitive value between any equivalence
class and the overall dataset, (α, k)-anonymity [15] constrains
the occurrence frequency of every sensitive value in each
equivalence class, which is available for the anonymization
of the dataset with average distribution sensitive values,
and the multi-sensitive bucketization model [16] is pre-
sented for achieving the k-anonymity of the relational dataset
with multi-sensitive attributes. Considering different require-
ments of privacy protection about different individuals,
Xiao and Tao [17] first present the notion of personalized
privacy protection. They set a guarding node (i.e., a gener-
alized sensitive value) for the sensitive value of each indi-
vidual to meet personalized anonymity. PE(α, k)-anonymity
model [18] is proposed to unify individual- and sensitive
value-oriented anonymity for personalized anonymization on
relational data publishing.

All the above methods for relational data anonymization
are not suitable for trajectories with characteristics of high
dimensionality, sparsity, and time-sequence. The reason is
that the anonymization, which makes the QIDs of at least k
trajectories identical with each other in a cluster, would cause
excessive information loss.

B. TRAJECTORY DATA ANONYMIZATION
1) ON LOCATION PRIVACY PROTECTION
Some studies [4], [6], [19], [20] focus on the protection
of stop points of a trajectory instead of the whole trajec-
tory to reduce the amount of unnecessary distortion. In [6],
generalization is employed to replace the positions of stop
points with coarse l-diverse zones. Han and Tsai [19] propose
four privacy risk levels for stop locations and consider both
spatial and semantic closeness in semantic location transla-
tion. Naghizade et al. [4] think that stop points are the most
sensitive part of the trajectory and propose an efficient algo-
rithm based on the method of perturbation, where sensitive
stop points are substituted by either moves from the same
trajectory or a minimal detour. In [20], a taxonomy tree for
semantic attributes of all sampling points is first built, then
the sensitive stop points are replaced with alternative places
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of interest (POIs) in the tree according to their sensitivities
set by trajectory users.

Location k-anonymity achieves local generalized areas
with at least k locations in different trajectories. So the adver-
sary can still analyze the movement mode of the trajectory
and even infers the trajectory associated with the target when
the adversary knows partial location-time data of the target in
different generalized areas.

2) ON TRAJECTORY PRIVACY PROTECTION
a: CLUSTER-BASED TRAJECTORY ANONYMIZATION
Most of the clustering-based approaches are employed under
the assumption that the attacker knows the whole trajec-
tory information of mobile objects. NWA [7] first proposes
(k, δ)-anonymity model to gather at least k trajectories close
to each other into a cylinder of radius δ and generate a
representative trajectory through space translation. In [21],
swaplocation is devised to change the location sequence of
trajectories in each clustered group by microaggregation.
Lin et al. [22] construct the k-anonymized trajectory dataset
based on a clustering method to resist the identity disclosure
of mobile individuals in a road-network. Dong and Pi [5]
propose a novel scheme TOPF to generate cluster groups
based on the frequent path in a road-network. TOPF first
removes infrequent roads in each trajectory and uses fre-
quent path to build clusters containing at least k trajectories.
Consequently, privacy is ensured by releasing only a set
of selected representative trajectories. Huo et al. [6] select
trajectory clusters by graph partition according to the spa-
tial distance of trajectories to reduce the information loss.
Gao et al. [23] propose the notion of trajectory angle to
take the trajectory direction into account when evaluating the
similarities of trajectories to form k-anonymized trajectory
clusters. (k,1)-anonymity model [24], an extended model
of (k, δ)-anonymity, uses clustering and space translation
to get personalized k-anonymized trajectories with respect
to different user-defined thresholds k and 1. Furthermore,
the WCOP-SA algorithm in [24] partitions trajectories into
several segments during the anonymization process aiming at
improving data utility. In [25], machine learning algorithms
are applied to cluster the trajectories and a variation of the
k-means algorithm is developed to preserve the privacy in
overly sensitive datasets.

b: GENERALIZATION-BASED TRAJECTORY ANONYMIZATION
To resist subtrajectory linkage attack, at least k trajec-
tory segments are generalized into areas by employing the
generalization-based method, assuming that partial trajec-
tory segments are the background knowledge of adversaries.
In [26] three generalization-based algorithms SEQANON,
SD-DEQANON, and U-SEQANON are designed for loca-
tion distance, semantic similarity, and user-specified utility
requirements respectively. To resist record linkage attack
and probabilistic attack, Gramaglia et al. [27] propose
kτ,ε-anonymitymodel and develop thekte-hide algorithm
to ensure that the adversaries holding the trajectory segment

of the target individual in time interval τ cannot link the indi-
vidual with less than k trajectories in the next following time
interval ε. Tu et al. [28] propose a strong privacy protection
scheme where a trajectory cannot distinguish with any other
k − 1 trajectories and any generalized area contains l-diverse
POI information with t-closeness in the dataset, to resist
re-identification attack and semantic attack, respectively.

Generally, the trajectories within a cluster are substituted
with a representative trajectory after the anonymization based
on clustering. So the published trajectory dataset is a set of
representative trajectories, which can be used for aggrega-
tion analysis but not for behaviour pattern discovery and the
mining of association rules [5]. Similarly, the generalized tra-
jectory dataset cannot provide accurate location-time points,
which has the same limitation of usage with the cluster-based
approach.

c: SUPPRESSION-BASED TRAJECTORY ANONYMIZATION
Trajectory anonymization based on suppression deletes
partial trajectories or locations leading to privacy leak-
age to achieve a subset of raw trajectories. Terrovitis and
Mamoulis [29] propose an anonymization approach,
by removing the minimum number of POIs from trajectories,
to prevent trajectories from the identity linkage attack by
multi-attackers holding the knowledge of temporal POI.
By employing local suppression, Chen et al. [8] propose
(K ,C)L-privacy model for trajectory anonymization. The
model guarantees that the identification probability of the
target trajectory is not higher than 1/k and the identification
probability of the sensitive value is not higher thanC . Further-
more, Chen et al. employ local suppression to achieve higher
data utility compared with the method of global suppression
presented in [9]. The personalized anonymity scheme on
trajectories PPTD [30] uses local suppression and general-
ization to provide different degrees of privacy protection on
trajectories and the associated sensitive values according to
the preset privacy levels. Al-Hussaeni et al. [10] propose the
ITSA algorithm to incrementally anonymize trajectory data
streams based on global suppression.

Our (α,K )L-privacy model extends the (K ,C)L-privacy
model [8], [9] by the addition of the protection of sensitive
locations. To preserve more location-time points in trajecto-
ries for high data utility, we design a novel anonymization
scheme IEVS, which employs trajectory splitting and loca-
tion suppression to anonymize trajectories locally and glob-
ally respectively and employs generalization to anonymize
sensitive values. Considering that our work is mostly related
to the researches in [8] and [9], we use the schemes in [8]
and [9] as the benchmarks to assess our IEVS scheme in
the experiments. This paper is the extension of our previous
work in [31].

III. PROBLEM DEFINITION
In this section, we first introduce some notions about
a trajectory dataset, then propose the attack model, and
(α,K )L-privacymodel followed for trajectory anonymization.
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A. TRAJECTORY DATASET
Definition 1 (Trajectory): A trajectory t of length n is

described as a sequence t = l1 → l2 → . . . → ln of n
locations visited by a trajectory user in chronological order,
where li (1 ≤ i ≤ n) represents a POI in the map. The length
of t is denoted as |t|, i.e., |t| = n.

We address the problem of privacy preservation in a com-
bined data publishing scenario, where the trajectory data
of an individual is published together with his/her sensitive
attribute. We give the notion of trajectory record for the
appropriate form of data.
Definition 2 (Trajectory Record): A trajectory record tr of

a specific data user contains his/her identity id, trajectory t
and sensitive attribute value s, described as

tr = 〈id, t, s〉

The identity information id should be removed in the trajec-
tory preprocessing phase. It is replaced with a number for
a clear description in the following sections. The value of
sensitive attribute s may involve the privacy of the trajectory
user. We only discuss a single sensitive attribute in this paper.
Definition 3 (Trajectory Dataset): A trajectory dataset T

is a set of trajectory records, i.e., T = ∪tr. |T | represents the
number of trajectory records in T . Each user is associated
with one trajectory record in the dataset.
Definition 4 (Subtrajectory): Let t = l1 → l2 → . . . →

ln be a trajectory in trajectory dataset T . t∗ = l∗1 → l∗2 →
. . . → l∗m (m ≥ 1) is a subtrajectory of t, denoted as t∗ =
sub(t), if and only if there are l∗1 = lp1 , l

∗

2 = lp2 , . . . , l
∗
m =

lpi (1 ≤ p1 < . . . < pi ≤ n) and m < n. All trajectories
containing t∗ in T is denoted as T (t∗).
Some locations are considered sensitive in a trajectory

(sensitive stop points along a path, e.g., a fact that an indi-
vidual visits an AIDS detection center). Some values of the
sensitive attribute associated with trajectories also may be
of sensitivity. Sensitive values are usually set by experts
in the concerned field. We consider two types of sensitive
information concerned with personal privacy in a trajectory
dataset, sensitive locations and sensitive values, denoted as
SL and SA respectively.
For example, Table 1 shows a trajectory dataset T com-

prised of 6 trajectory records (Records#1 to 6). a → d
is a subtrajectory of trajectories in Records#1, 2 and 5,
with length 2. Locations f and g are considered sensitive.
So the set of sensitive locations about T is {f , g}. The
domain of the sensitive attribute Disease of dataset T is
{gastritis,flu,HIV , cancer, fever}.HIV and cancer are usu-
ally considered sensitive in these values. So the set of sensi-
tive values of dataset T is {HIV , cancer}.

B. PRIVACY ISSUES
An adversary can easily launch background knowledge attack
once he holds some or all nonsensitive locations about the tar-
get individual, which may disclose the identity and sensitive
information of the target, thereby leading to privacy threats.

Definition 5: (Background Knowledge Attack). Assuming
that an adversary’s background knowledge about target v,
bkv, is a subtrajectory of trajectory tv and bkv is composed
of up to L nonsensitive locations (L < |tv|), three types of
private information may be disclosed.

1) IDENTITY DISCLOSURE
In trajectory dataset T , if the number of trajectory
records containing subtrajectory bkv, i.e., |T (bkv)|, is small,
the adversary can easily make the association between the
trajectory record and target v in T with high probability, and
further, obtain the sensitive locations and sensitive value of v.

2) SENSITIVE LOCATION DISCLOSURE
In T , if the identification probability, i.e., the probability of
associating a sensitive location sl to the trajectory records
containing bkv, i.e., P(sl,T (bkv)) =

|T (sl)∩T (bkv)|
|T (bkv)|

is high, the
fact that target v ever visiting sl can be easily inferred.

3) SENSITIVE VALUE DISCLOSURE
In T , if the identification probability, i.e., the probability of
associating a sensitive value s to the trajectory records con-
taining bkv, i.e., P(s,T (bkv)) =

|T (s)∩T (bkv)|
|T (bkv)|

is high, the fact
that target v owning sensitive value s can be easily disclosed.

C. PRIVACY MODEL
To protect privacy from background knowledge attack,
(α,K)L-privacy model is proposed for anonymized trajectory
publishing.
Definition 6 ((α,K )L-Privacy Model): Given a trajectory

dataset T , T = {〈1, t1, s1〉, . . . , 〈n, tn, sn〉}, the set of sen-
sitive locations SL and sensitive values SA, thresholds K, L
and α (0 ≤ α ≤ 1), T is said to be an (α,K )L-privacy of
a trajectory dataset if and only if: (i) |T (st)| ≥ K, for every
subtrajectory st, composed of up to L nonsensitive locations
in T , (ii) P(sl,T (st)) ≤ α, for every sensitive location sl ∈
SL contained in T (st), and (iii) P(s,T (st)) ≤ α, for every
sensitive value s ∈ SA contained in T (st).
(α,K )L-privacy model guarantees that an adversary, hold-

ing any subtrajectory st composed of up to L nonsensitive
locations in a trajectory dataset, cannot associate any trajec-
tory user with fewer thanK trajectory records in the published
dataset, nor can associate any sensitive location sl or value s
with the probability of higher than threshold α.

Reversely, if a subtrajectory st ′ in dataset T doesn’t meet at
least one of the above three conditions of Definition 6, st ′ vio-
lates (α,K )L-privacy. The notions of violating subtrajectory
andminimal violating subtrajectory (MVST) are described as
follows.
Definition 7 (Violating Subtrajectory and Minimal Violat-

ing Subtrajectory): Given a trajectory dataset T , st ′ is a sub-
trajectory of some trajectory in T . st ′ is said to be a violating
subtrajectory w.r.t. (α,K )L-privacy if (i) 0 < |T (st ′)| < K,
or (ii) P(sl,T (st ′)) > α, or (iii) P(s,T (st ′)) > α, where
sl and s are respectively a predefined sensitive location
and value in T . Furthermore, st ′ is a minimal violating
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FIGURE 1. IEVS framework for (α,K )L-privacy trajectory dataset.

subtrajectory if every proper subtrajectory of st ′ is not a
violating subtrajectory.
Definition 8 (Problematic Trajectory): Given a trajectory

dataset T , a trajectory t and an MVST st in T . t is called a
problematic trajectory respecting st if t ∈ T (st).

TABLE 1. Raw trajectory dataset T.

For example, given α = 0.5,K = 2, L = 2, SL = {f , g} and
SA = {HIV , cancer}. In Table 1, t1 = c → d is an MVST,
because |T (t1)| < K , and none of its subtrajectories, c or d ,
is a violating subtrajectory. t2 = a → b is also an MVST,
beacause P(g,T (t2)) = 1 > α. t3 = a → c is an MVST
too, beacause P(cancer,T (t3)) = 2

3 > α. The problematic
trajectories respecting a → c are trajectories of Records#1,
4 and 5. t4 = e → a is a violating subtrajectory, but not an
MVST, because e, one of the subtrajectory of t4, is an MVST.

D. PROBLEM STATEMENT
Trajectory dataset T is an (α,K )L-privacy of the trajectory
dataset iff no violating subtrajectory is contained in T. It is
sufficient to meet with (α,K )L-privacy by eliminating all
MVST in T , which reduces the workload of violating subtra-
jectory enumeration [8], [9]. Aiming at this, we propose IEVS
scheme to identify and eliminate all MVST. In particular,
splitting is employed first to locally eliminate the MVST
generated by Cases (i) and (ii) of Definition 7, supplemented
by global suppression. Then sensitive value generalization
is employed to eliminate those generated by Case (iii) of
Definition 7. By comparison of suppression method used
in [8] and [9], the IEVS scheme can preserve locations as

much as possible by local recoding of trajectory splitting and
reduce the information loss of trajectories by sensitive value
generalization. As a result, in the published dataset, every tra-
jectory user cannot be deduced to link with his record with the
probability of higher than 1/k and each of sensitive locations
and values cannot be inferred with the probability of higher
than threshold α, on the condition that an adversary holds the
subtrajectories composed of up to L nonsensitive locations,
which can be thought as the trajectory anonymization.

Subtrajectories composed of nonsensitive locations in T
can be regarded as QIDs. Sensitive information includes sen-
sitive locations and values. The performance of our proposed
IEVS scheme cuts off the one-to-one relationship between
QIDs and sensitive information, therefore the anonymization
of the trajectory dataset for privacy protection is achieved.
Definition 9 (Trajectory Dataset Anonymization): Given

trajectory dataset T and (α,K )L-privacy requirement,
the goal of anonymization of T is to achieve a sanitized
version T ∗ of T by using the IEVS scheme such that T ∗ not
only satisfies (α,K )L-privacy but also preserves high data
quality.

IV. IEVS SCHEME
In this section, the framework for the IEVS scheme is first
introduced. Then the function of each component is detailed.

A. FRAMEWORK OVERVIEW
IEVS framework is applied in the off-line mode, where tra-
jectory records are anonymized after data collection, and then
follows data publishing for data analysis and application.
The architecture of the IEVS framework is shown in Fig. 1.
We mainly focus on trajectory anonymity. It consists of two
modules IEVS I and II, based on the idea of identifying and
eliminating MVST.

B. IEVS I
We identify all theMVST violatingK -anonymity or sensitive
location α-privacy after the trajectory preprocessing phase in
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IEVS I, then eliminate them by local trajectory splitting and
global location suppression.

1) TRAJECTORY PREPROCESSING
Trajectory preprocessing first removes trajectory users’ IDs
from trajectory dataset T , then creates the set of sensitive
locations SL, the set of sensitive values SA, and the set of
trajectory users respecting nonsensitive locations TO. TO is
described as

TO = ∪TOnsl = ∪{〈i, tm〉|〈i, t, s〉 ∈ T , 〈nsl, tm〉 ∈ t}

where nsl is a nonsensitive location in T , TOnsl is the set
of trajectory users ever visiting nsl, and tm is the timestamp
reflecting when the user associating Record#i visited nsl.
The purpose of establishing the trajectory user set in the

preprocessing phase is to improve the efficiency of the algo-
rithm for MVST identification. If we directly visit trajectory
dataset T to compute the number of a subtrajectory in T ,
we must traverse all trajectories of T , which results in high
time cost.While by visiting the trajectory user set correspond-
ing to each nonsensitive location in T , scanning T is avoided.
Therefore, the runtime of the MVST identification algorithm
is decreased.

2) IDENTIFYING MVST
We need to identify all the MVST that are (i) composed
of nonsensitive locations of up to length L, and (ii) not
satisfied with K -anonymity or sensitive location α-privacy.
Algorithm Iden-MV (Algorithm 1) shows the details of iden-
tifying the MVST set.

Algorithm 1 inputs: (1) trajectory user set TO generated in
trajectory preprocessing; (2) sensitive location sets respecting
each trajectory record i, SL = 〈i, SLi〉; (3) thresholds K ,
α, and L. Algorithm 1 outputs the MVST set B violating
K -anonymity or sensitive location α-privacy.
In Algorithm 1, Cm, Bm, and Um represent the candidate

MVST set, MVST set, and non-violating subtrajectories of
lengthm respectively. Algorithm 1first sets the value ofm to 1
and initializesC1 with all nonsensitive locations to identify all
MVST of length 1 (line 1). Then for each trajectory st∈Cm,
Algorithm 1 gets all trajectory users TOst who ever visited
the locations in st sequentially by computing the intersection
of trajectory user sets of all locations in st (line 4). If st exists
in the trajectory record dataset (line 6), we calculate |TOst |,
the number of users visiting st , and |TOst (sl)|

|TOst |
, the percentage

of users containing sensitive location sl in TOst . If st satisfies
both K -anonymity and α-constraint respecting each sensitive
location sl, i.e., |TOst | ≥ K and |TOst (sl)|

|TOst |
≤ α, st is added to

Um for creating candidate MVST set Cm+1, otherwise, st is
added to Bm (lines 7-11). Next, the candidateMVST setCm+1
of length m+ 1 is generated in two steps (lines 14-20). First,
the Cartesian product of Um and Um (denoted as Um×̃Um in
Algorithm 1) is conducted with the consideration of temporal
sequentiality. Second, all the super trajectories of the identi-
fied MVST are deleted from Cm+1.

Algorithm 1 Iden-MV
Input: Trajectory user set TO, sensitive locations SL, thresh-

olds K, α and L
Output: MVST set B violating K -anonymity or sensitive

location α-privacy
1: C1←distinct locations in TO, B1 = U1 = ∅, m = 1;
2: while m≤L and Cm 6=∅ do
3: for each trajectory st∈Cm do
4: Compute TOst , i.e., ∩TOl , for every nonsensitive

location l∈st;
5: Compute |TOst (sl)|, for every sl∈SL i where i is a

user in TOst ;
6: if |TOst |>0 then
7: if |TOst |<K or |TOst (sl)|

|TOst |
>α then

8: Bm←st;
9: else
10: Um←st;
11: end if
12: end if
13: end for
14: m++;
15: Cm←Um−1×̃Um−1;
16: for each trajectory st∈Cm do
17: if st is a super sequence of st∗ where st∗∈Bm−1 then
18: Remove st from Cm;
19: end if
20: end for
21: end while
22: return B = B1∪B2∪. . .∪BL ;

For example, given K = 2, α = 0.5, L = 2, SL = {f , g},
the MVST set of length 1 generated from Table 1 B1 = {e}.
So all nonsensitive locations except location e are put intoU1
to generate the candidate MVST C2 by U1×̃U1. The result
MVST set B = {e, a→ b, c→ d, b→ a}.

3) ELIMINATING MVST
To eliminate the MVST set B, the anonymity technique of
trajectory splitting is preferentially applied. The principal
idea of splitting is that each problematic trajectory containing
an MVST is segmented at a certain location so that the result
trajectories after segmentation no longer include the MVST.
For example, in Table 1, if b → d → c is an MVST,
the corresponding problematic trajectory, Record# 3, can be
split into two trajectories b and d → c at location b or b→ d
and c at location d , to eliminate the MVST b→ d → c.
When we eliminate an MVST bt in dataset T , we can

split the problematic trajectories T (bt) at any location except
the last one of bt . The locations except the last one are the
candidate split positions of T (bt) respecting bt . However,
can all these candidate split positions be used as the split
ones? If so, how to determine the most suitable position? The
discussion of these two considerations is followed in turn.
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Every splitting operation separates each original prob-
lematic trajectory into two trajectories, which causes the
loss of some subtrajectories of the original trajectory. The
number of these subtrajectories thus reduces. As a result,
the remaining number of them in the dataset may be fewer
than K or the identification probabilities about the sensitive
locations associating with them may be higher than thresh-
old α. Therefore, these subtrajectories become new violating
subtrajectories. For example, if Record# 3 in Table 1 is split
at location b, a new MVST b → c generates because of
violating K -anonymity assuming that K = 2 (the number of
b→ c becomes 1 after splitting).
Assuming that we split the problematic trajectories T (bt)

in dataset T to eliminate an MVST bt , Tr represents the
remaining trajectories in T , i.e., Tr = T −T (bt), and the lost
subtrajectories, composed of up to L nonsensitive locations,
are denoted as CQ. For a sequence q ∈ CQ, if q doesn’t
belong to B or doesn’t contain any of the sequence of B,
i.e., q /∈ B ∧ q′ 6= sub(q) (where q′ is a sequence of B),

and q satisfies: Tr (q) < K or |Tr (sl)∩Tr (q)|
|Tr (q)|

> α (where sl is a
sensitive location of Tr (q) on the premise of Tr (q) > 0), q is
a new MVST of dataset T .
When splitting at a certain location causes the generation

of the newMVST, it cannot guarantee to eliminate all MVST
in |B| iterations. To preserve the effectiveness of trajectory
anonymization, the location can’t be used as a split posi-
tion. This is what we adopt to determine if a candidate split
location can be a split position. Next it comes to the second
problem.

If there exists more than one split location, the anonymity
gain metric is defined to find the optimal split position for
balancing between privacy and data utility.

From the respect of privacy protection, when the prob-
lematic trajectories are split at location p, the more the num-
ber of instances of eliminated MVST, the better the effect
of trajectory anonymization. Thus, the metric of privacy
protection gain, denoted as PGspt (p), is described as

PGspt (p) = NUMspt (1)

where NUMspt represents the number of instances of elim-
inated MVST after the problematic trajectories are split at
location p.

From the respect of information loss, splitting a trajectory
can preserve all the locations of it, but would affect the
co-appearance of distinct locations in the original trajectory,
which causes the information loss of count queries and fre-
quent patterns. These two are the bases for utility metrics
in many related works [32], [33]. To measure this distortion,
we use ILspt (p), the number of lost subtrajectories of length 2,
after a trajectory t is split into t1 and t2 at location p, for
information loss metric, defined as

ILspt (p) = NUMb − NUMa (2)

where NUMb is the number of subtrajectories of t with
length 2, NUMa is the sum number of subtrajectories of
t1 and t2 with length 2.

We compute the anonymity gain AGspt (p) to find the
optimal split position by

AGspt (p) =
PGspt (p)
ILspt (p)

=
NUMspt

NUMb − NUMa
(3)

Obviously, a greater PGspt (p) denotes larger privacy pro-
tection gain and a less ILspt (p) denotes lower information
loss.

If there is no split position to separate problematic trajecto-
ries for the elimination of an MVST, location suppression [9]
is applied as the complement to trajectory splitting. The main
idea of location suppression is removing all the instances of a
location in an MVST from the dataset such that the MVST
is eliminated. For an MVST with a minimum length of 2,
more than one location can be selected as the suppression
location to remove. When all the instances of a location p in
an MVST are removed from dataset T , the more instances of
removed MVST and the fewer amounts of removed instances
of location p bring optimal trajectory anonymization. So the
anonymity gain metric for optimal location suppression
AGsup(p) is defined by

AGsup(p) =
NUMsup

NUM ′b
(4)

where NUMsup is the number of instances of eliminated
MVST in B if p is removed in the dataset, and NUM ′b is the
number of instances of location p.
The Elim-MV algorithm (Algorithm 2) depicts the details

of eliminating MVST. It inputs MVST set B and the original
trajectory dataset T , thresholds K , α, and L. It outputs the
anonymized dataset T ′ satisfying K -anonymity and sensitive
location α-privacy.

Algorithm 2 first eliminates all the MVST of length 1 in
B by removing all the instances of locations in B from T
(lines 1-2). Next, for every remaining trajectory bt in B,
the Check-SP algorithm (Algorithm 3) is called to get the
split position pwith maximal anonymity gain when trajectory
splitting is done on T (bt) (line 7). If p doesn’t exist (i.e., split-
ting trajectories in T (bt) at any nonsensitive location in bt
lead to the generation of the new MVST), location suppres-
sion is applied to eliminate bt (lines 8-11). In particular, line
9 first computes the suppression location p′ with maximal
anonymity gain when location suppression is done on T (bt),
and then line 10 deletes all instances of p′ in T . bt is thus
eliminated by removing it from B in line 11. Otherwise, each
trajectory in T (bt) is split into two segments t1 and t2 at
location p, and the sensitive attribute value respecting t is
added to t1 and t2 respectively to form two new trajectory
records (line 14). In the end, bt is deleted from B (line 18).
The anonymized trajectory dataset T ′ is thus achieved.
We design the Check-SP algorithm (Algorithm 3) to

find the optimal split location for eliminating an MVST.
Algorithm Check-SP inputs MVST bt , the MVST set B and
original dataset T , thresholds α, K , L. It outputs the split
position p with maximal anonymity gain.
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Algorithm 2 Elim-MV
Input: Dataset T, MVST B, sensitive locations SL, sensitive

values SA, thresholds K, L, α
Output: The anonymized dataset T ′ satisfyingK -anonymity

and sensitive location α-privacy
1: Remove the instances of all size-one MVST in B, from
T ;

2: Remove all size-one MVST from B;
3: for each bt∈B do
4: if T (bt) = ∅ then
5: B = B

/
{bt};

6: else
7: p=ISLA(bt, B, T );
8: if p = NULL then
9: Compute suppression location p′ in bt by For-

mula (4);
10: Remove all instances of p′ from T ;
11: Remove the MVST containing p′ from B;
12: else
13: for each t∈T (bt) do
14: Split t at p into t1 and t2 and add SA(t) to t1

and t2;
15: end for
16: end if
17: end if
18: B = B

/
{bt};

19: end for
20: T ′←T ;
21: return T ′;

In Algorithm 3, all locations in bt except the last one are
put into the set of candidate split positions P first (line 1).
Next, each location p ∈ P, is checked whether it can be
as the split position or not, that is, whether a new MVST
generates when splitting trajectories at p, which details in the
next two steps. We compute the new candidate MVST CQ
in the first step. Specifically, for each problematic trajectory
t ∈ T (bt), we compute the lost trajectory sequences CQt
when t is split at p (line 4). Then we delete the two types
of trajectories, the trajectories in B and the super trajecto-
ries respecting trajectories in B, from CQt (line 5). Next,
we merge all CQt into CQ and count the number of each
distinct trajectory in CQ by num (lines 6-9). In the second
step, for each sequence cq in CQ, we check if the number of
cq and the identification probability of cq in the trajectories
are more than K and less than α respectively. If not, p cannot
be as a split position (lines 11-12). Otherwise, the anonymity
gain of p is calculated (line 15). We return the split position
p with the maximum anonymity gain or NULL if none of the
locations in bt is a split position (lines 18-22).

For example, we eliminate the MVST a → d → c in
the trajectory record dataset T of Table 1 (given L = 3). The
problematic trajectory T (a → d → c) is Record#5 where
location e, theMVSTwith length 1, has been removed. So the

Algorithm 3 Check-SP
Input: An MVST bt, dataset T, MVST set B, sensitive loca-

tions SL, thresholds K, L and α
Output: Split position p of bt;
1: P←all locations of bt except the last one;
2: for each p∈P do
3: for each trajectory t∈T (bt) do
4: CQt←the lost subtrajectories composed of up to L

nonsensitive locations in t after splitting t at p;
5: Remove all trajectories, together with their

super sequences, in B from CQt ;
6: for each cq∈CQt do
7: CQ = CQ ∪ cq;
8: cq.num++;
9: end for
10: end for
11: if (|T (cq)|−cq.num) < K or P(sl,T (cq)−cq.num) >

α for any cq ∈ CQ then
12: AGspt (p) = −1;
13: Go to line 2;
14: else
15: Compute AGspt (p) by Formula (3);
16: end if
17: end for
18: if AGspt (p) = −1 for any p∈P then
19: return NULL;
20: else
21: return the p with the maximum AGspt (p);
22: end if

candidate split positions P = {a, d}. If Record#5 is split at
location a, the lost subtrajectories CQ = {a → d, a → c}.
Location a is the split position for neither of the sequences in
CQ is a new MVST. But location d cannot be a split position
because one of its lost subtrajectories d → c becomes a new
MVST if Record#5 is split at d .

C. IEVS II
In the IEVS II module, we need to eliminate all MVST
violating sensitive value α-privacy in dateset T ′ generated
after the execution of the IEVS I module. Different with
what we do in IEVS I, in IEVS II we adopt the method of
generalization to replace the sensitive values with inaccurate
values (i.e., the generalized values) to make the identification
probability of them no higher than the preset probability
constraint threshold α, thus achieving (α,K )L-privacy about
sensitive values. In this sense, the MVST respecting sensitive
values are eliminated. So we need first to find all the instances
of sensitive values which are identified with the probability
of higher than α by the adversary with nonsensitive loca-
tion sequences of up to length L. Then we generalize them
according to a predefined generalization tree of the sensitive
attribute.
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To find the instances of sensitive values to be general-
ized, we should identify the subtrajectories violating sensitive
value α-privacy in T ′. The instances of sensitive values,
which are contained in the same trajectory records with these
subtrajectories, are what we need to generalize. To iden-
tify all MVST violating sensitive value α-privacy in T ′,
we reconstruct the trajectory user set TO′ respecting non-
sensitive locations in T ′ and modify the Iden-MV algorithm
as follows. First, the user set TO is replaced with TO′, and
sensitive value set SA is added into the input. Second, line 5
is modified as ‘‘Compute |TO′st (s)|, for each s ∈ SA;’’.
Third, line 7 is modified as ‘‘if |TO

′
st (s)|
|TO′st |

> α then’’. The
modified Iden-MV algorithm is denoted by Iden-MV′. The
output is the MVST violating sensitive value α-privacy in T ′,
denoted as B′.
Next, a taxonomy tree is built up for all values of the

sensitive attribute to generalize the sensitive values identified
with the probability of higher than α. The relevant concepts
are defined as follows.
Definition 10 (Taxonomy Tree for Sensitive Attribute):

Given the sensitive attribute S in a trajectory dataset T , D(S)
represents the domain of S. A taxonomy tree GT for D(S) is
defined as a 2-tuple, GT = 〈N , h〉, where

• N is the set of all nodes of GT . There are two types of
nodes in GT : leaf node and internal node. The set of leaf
nodes is D(S). For any node n in N , if n is not a leaf node,
it must be an internal node. The set of internal nodes is
denoted as IN which represents the set of generalized
values.

• h: IN → D(S) denotes a reflection between internal
nodes and leaf nodes. Given an internal node inode,
h(inode) represents all the leaf nodes that can be gen-
eralized to inode, and |h(inode)| denotes the number of
them.

Definition 11 (Replacing Node): Given two nodes n1, n2
in N , n2 is called a replacing node of n1 and denoted as n2 =
r(n1) iff h(n1) ⊂ h(n2).
Definition 12 (Generalization Level): Given two nodes

n1, n2 in N and n2 = r(n1), if n1 is a leaf node, the length
of the shortest path from n2 to n1 is the generalization level
when n1 is generalized to n2, denoted as l(n1, n2).
For example, a taxonomy tree for the sensitive attribute

Disease in Table 1 is shown in Fig. 2. respiratory infection
and immune system disease are the replacing nodes of
flu. The generalization level of respiratory infection and
immune system disease are 1 and 2, respectively.

We then give the notion of guarding node, which is used
as a generalized value to replace the corresponding sensitive
value.
Definition 13 (Guarding Node): Given a trajectory data-

set T , the sensitive attribute S in T , a taxonomy tree GT for
the domain of S D(S), N is the set of all nodes in GT , SA is the
sensitive values to be generalized. For ∀s ∈ SA, if ∃n ∈ N,
n = r(s) ∧ 1

h(n) ≤ α, and the value of l(s, n) is the minimum,
n is said the guarding node of s.

FIGURE 2. A taxonomy tree for sensitive attribute Disease.

Algorithm 4 Gen-SA
Input: Trajectory dataset T ′, taxonomy tree GT and thresh-

old α
Output: The anonymized trajectory dataset T ∗ meeting

(α,K )L-privacy
1: Construct the trajectory user set TO′ respecting T ′;
2: B′← all MVST violating sensitive value α-privacy in T

generated by calling Iden-MV′);
3: Gs← {s|

|TO′st (s)|
|TO′st |

} > α, for every s∈SA and every st∈B′};

4: for each s∈Gs do
5: Visit GT to find the guarding node gn of s;
6: Replace s with gn;
7: end for
8: The modified trajectory dataset T ′ is denoted as T ∗;
9: return T ∗;

The algorithmGen-SA (Algorithm 4) describes the process
of sensitive value generalization. It inputs the result dataset
T ′ output by Algorithm 2, the predefined generalized tree
GT and threshold α. It outputs (α,K )L-privacy of trajectory
dataset T ∗.
Gen-SA first identifies B′, MVST set violating sensitive

value α-privacy in trajectory set T ′ (lines 1-2) and puts the
sensitive values that need to be generalized into Gs (line 3).
Then Gen-SA replaces every s ∈ Gs with its guarding node
gn by traversing taxonomy treeGT (lines 4-7). T ∗ is the result
trajectory dataset meeting with (α,K )L-privacy requirement.

D. COMPLEXITY ANALYSIS
In the first module IEVS I, the sub-module of trajectory pre-
processing constructs the trajectory user set TO respecting
nonsensitive locations, which needs to scan the dataset once.
So the cost is O(|T | · |t|), where t is a trajectory in the
trajectory dataset T . In the sub-module of identifying MVST,
all sequences in each Ci (1 ≤ i ≤ L) are checked. The
size of C1 is the number of distinct nonsensitive locations
in T . The upper limit of it is not more than |d |, the number
of dimensions of T . The worst cost of checking locations of
C1 is O(|d | · |TOnsl |), where TOnsl is the trajectory user set
respecting a nonsensitive location nsl in T . For C2, the upper
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bound of its size is not more than |d | · (|d | − 1)/2 due to the
Cartesian product of U1 and U1 and the pruning process in
Algorithm 1. When we execute an intersection on the trajec-
tory user sets respecting the two locations of a sequence in
C2, to count the number of the same users in the two sets, we
first merge the two sets into one, then sort it and then count the
number. So the cost is approximatelyO(|TOnsl |2). The cost of
checking sequences of C2 is approximatelyO(|d |2 · |TOnsl |2).
When i ≥ 3, the worst cost of checkingCi isO(|d |i ·|TOnsl |2).
So the worst computational cost of sub-module identifying
MVST is O(|d |L · |TOnsl |2). In the third sub-module of elim-
inating MVST, the most costly operation is to check if the
MVST in B can be eliminated by trajectory splitting. For each
MVST in B, we call Algorithm 3 once, which has to visit all
records in T . The number of MVST in B is also bounded
by |d |L . So the cost of eliminating MVST is bounded by
O(|d |L · |T |). Therefore, the cost is O(|d |L · |T |) in IEVS I
module. In the IEVS II module, the most costly operation is
to identify all MVST violating sensitive value α-privacy from
the user set TO′nsl respecting T

′ created by IEVS I module,
which is similar to the sub-module of identifying MVST in
IEVS I. So the worst cost is O(|d |L · |TO′nsl |

2). Our algorithm
has anO(|d |L · |T |) complexity time by incorporating the two
modules of trajectory anonymity.

V. EXPERIMENTS
In this section, we conduct a series of experiments to evaluate
the performance of IEVS in terms of data utility and execution
time.

A. EXPERIMENTAL SETUP
In our experiments, we use Brinkhoff generator [34], a road
network based generator of moving objects, to generate mov-
ing trajectories. The city road map of Oldenburg in Ger-
many is input to the generator. The city map is divided into
100 regions. When a user visits a region of the city, the cen-
troid of the region is used to represent the corresponding
location information of the user’s trajectory. A trajectory
dataset containing 20000 trajectories is generated with the
average length 4.7. Seven values of the sensitive attribute are
randomly associated with trajectory records and two of them
are set sensitive values. The experiments are performed on a
machine with Intel Core i7 CPU at 3.60GHz, 8GB RAM, and
the algorithms are implemented in VC++.
We use the method of changing the value of a parameter

and fixing those of the remaining parameters to conduct our
experiments several times on the dataset. After the compari-
son of the result dataset, the final parameter values are deter-
mined. The parameter settings involved in the experiments
are described as follows.
• Dataset size |T |. The default value of |T | is 20000.
When its value varies, the smaller datasets are created by
random selection of trajectory records from the original
dataset.

• K . The default value of K is 10. It varies in [5, 35] in the
experiment to evaluate its impact.

FIGURE 3. An example of COUNT(*) query.

• L. It is set to 2 by default. We change L from 2 to 5 to
assess its effect on our scheme.

• α. When we evaluate the effects of other parameters, its
default value is set to 0.5. When assessing the impact of
α on our scheme, we take the four values of 0.25, 0.33,
0.5, and 0.75 as the frequency threshold α and averagely
assigned to all records of the trajectory dataset.

• Sensitive value size |SA|. The domain size of the sen-
sitive attribute is 7. The 7 values are assigned to each
trajectory record randomly. Two of the 7 values are set
to the sensitive values.

• Sensitive location size. We randomly select 10 from
100 locations as the sensitive locations.

Theoretically, given the same values of thresholds K , L,
and α (C in (K ,C)L-privacy model), our (α,K )L-privacy
model can provide the same effect on privacy protection of
identity and sensitive values with (K ,C)L-privacy model.
Moreover, our model provide sensitive value protection,
which doesn’t refer to in (K ,C)L-privacy model. To evaluate
the data quality of (α,K )L-anonymized trajectory dataset,
we compare our scheme with the previous related work
KCL-global [9] and KCL-local [8].

B. DATA UTILITY
We first introduce Information Loss (IL) and Average Rel-
ative Error (ARE) as the metrics for data utility. Then
we compare our IEVS scheme with KCL-global [9] and
KCL-local [8] against dataset size, K , L, and threshold α,
in term of IL and ARE .

1) INFORMATION LOSS
Information loss is a basic metric for data utility. It has dif-
ferent forms of definition corresponding to different methods
of anonymization. When trajectory anonymization occurs,
the less information loss, the more data utility. In our method,
wemeasure information loss by calculating the changes in the
number of locations. Specifically, the trajectory information
loss ILt is measured by the ratio of the number of removed
locations in the anonymized dataset to original locations,
which is calculated as

ILt =
| LOCT | − | LOCT ∗ |

| LOCT |
(5)

where T ∗ is the (α,K )L-privacy of trajectory dataset with
respect to an original dataset T . |LOCT ∗ | and |LOCT | repre-
sent the total numbers of locations in T ∗ and T , respectively.

2) AVERAGE RELATIVE ERROR
Average Relative Error [32], [33], [35] measure is another
way to estimate data utility in many anonymity methods.
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FIGURE 4. Information loss versus dataset size, L, K and α.

Given a count query Q, the preserving levels of the original
dataset can be evaluated by comparison of the answers of
queries on the original and anonymized dataset. Generally,
more similar answers on both datasets imply higher data
utility of an anonymized dataset. To measure ARE, we design
a COUNT(*) query Q (the form of the queries is shown
in Fig. 3) on the original and anonymized dataset, which
randomly selects 500 different ordered location sequences LQ
with length 2. ARE is calculated as

AREQ =

∑
lq∈LQ

|T (lq)|−|T ∗(lq)|
|T (lq)|

| LQ |
(6)

where lq ∈ LQ, |T ∗(lq)| and |T (lq)| are the number of trajec-
tories that contain the location sequence lq in the anonymized
dataset T ∗ and the original dataset T , respectively.
We first compare our scheme with KCL-Global and

KCL-Local on trajectory information loss, in terms of dataset
size |T |, parameters K , L and α. For the equal conditions
of comparison, we don’t consider the temporal informa-
tion when conducting the algorithms of KCL-Global and
KCL-Local for trajectory anonymization, which is the same
as what we do in our scheme. Note that parameter C in
KCL-Global andKCL-Local is equivalent to α in our scheme.
Fig. 4 shows the algorithm performance respecting tra-

jectory information loss. On the same conditions in these
subgraphs of Fig. 4, the information loss of IEVS is very
low, which means trajectory splitting can almost eliminate
all MVST violating K -anonymity and sensitive location
α-privacy, and thus most of the locations can be published as
in the original dataset. The information loss of KCL-Global
and KCL-Local is much higher than that of IEVS because
KCL-Global and KCL-Local are exclusively based on loca-
tion suppression for trajectory anonymization. Moreover,
unlike suppression employed on trajectories in KCL-Global
and KCL-Local against attribute linkage attack (which aggra-
vates the information loss of trajectories), IEVS conducts the
method of generalization to protect sensitive values, which
relieves the distortion of trajectories. Besides, trajectory split-
ting in IEVS eliminates the MVST composed of nonsensi-
tive locations, instead of all locations in KCL-Global and
KCL-Local.

In Fig. 4(a) we observe that the information loss decreases
for larger dataset size, which means more trajectory data
records would not increase the number of MVST, it reduces
the number of MVST instead and thus, decreases trajectory
information loss. Figs. 4(b)-4(c) show that the information
loss increases with L and K . The reason is, in Fig. 4(b)
larger value of L indicates that more MVST generate. As a
result, more trajectories are required to be anonymized, which
causes more information loss consequently. In Fig. 4(c) the
increase of K improves the level of privacy preserving, which
creates more locations violating K−anonymity. So the infor-
mation loss increases. Fig. 4(d) shows that the information
loss reduces for the increasing value of α. The reason is that
larger α leads to less MVST and thus, less trajectories are
anonymized, which reduces the information loss.

Next, we test the ARE of our scheme and the algorithms of
KCL-Global and KCL-Local by varying |T |, K , L, and α.
Fig. 5 shows that our IEVS scheme has lower ARE than
KCL-Global and KCL-Local, which indicates trajectory
splitting preserves the number of published locations, while
location suppression has a greater impact on co-appearance
than splitting. In Fig. 5(a), ARE decreases gradually with
dataset size |T |. This is because as |T | increases, the instances
of subtrajectories increases in size, which improves the prob-
ability of the same subtrajectory in two trajectories. Next,
in Fig. 5(b) we observe that the ARE improves with the
maximum length of nonsensitive location sequences that the
adversary has, i.e., L. Increasing L causes more MVST and
more trajectories need to be anonymized, thus in higher ARE.
Then we evaluate ARE against K (Fig. 5(c)). Increasing K
leads to more MVST of length 1, so less subtrjaectories of
length 2 are preserved in the dataset, which brings higher
ARE. Finally the ARE, in Fig. 5(d), decreases against the
probability constraintα. The reason is that lessMVST created
with the increase of α, so lower number of anonymized
trajectories improves the co-occurrence probability of
locations.

C. EFFICIENCY
Fig. 6 presents the run time of IEVS, KCL-Global, and
KCL-Local against dataset size |T |, K , L, and probability
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FIGURE 5. Average relative error versus dataset size, L, K and α.

FIGURE 6. Execution time versus dataset size, L, K and α.

constraint threshold α. Increasing the dataset size |T |, which
means more trajectory records need to be evaluated, results
in higher time cost (Fig. 6(a)). More time cost is achieved for
the higher value of L (Fig. 6(b)), as more MVST generate
with the increasing of L. In Fig. 6(c), the time cost is less
when the value of K increases. Since more MVST of length 1
generate with the increase of k , the number of MVST of
length 2 reduces, so the time cost is lower. Finally in Fig. 6(d),
as expected, with the increasing value of α, the runtime is
decreased. KCL-Global is the fastest algorithm between the
three methods, as it eliminates MVST at each loop due to
employing global location suppression and is no need to
check whether new MVST are generated.

VI. CONCLUSION
People in ITS perform all their activities through advanced
information communication and technology, which makes it
difficult for people to hide their tracks. Personal private infor-
mation involved in trajectories thus may be leaked. In this
paper we study the problem of privacy-preserving trajec-
tory data publishing. To hold back the adversary who can
launch subtrajectory linkage attack to infer identities, sensi-
tive locations and values unknown to him, we propose a novel
anonymization scheme IEVS that employs trajectory splitting
and location suppression on trajectories and generalization

on sensitive values, to achieve higher data utility as well as
our proposed (α,K )L-privacy requirement. Our experimental
results demonstrate the effectiveness of our IEVS scheme in
term of data utility.
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