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ABSTRACT The most important part of sleep quality assessment is the classification of sleep stages, which
helps to diagnose sleep-related disease. In the traditional sleep staging method, subjects have to spend a
night in the sleep clinic for recording polysomnogram. Sleep expert classifies the sleep stages by monitoring
the signals, which is time consuming and frustrating task and can be affected by human error. New studies
propose fully automated techniques for classifying sleep stages that makes sleep scoring possible at home.
Despite comprehensive studies have been presented in this field the classification results have not yet
reached the gold standard due to the concentration on the use of a limited source of information such as
single channel EEG. Therefore, this article introduces a new method for fusing two sources of information,
including electroencephalogram (EEG) and electrooculogram (EOG), to achieve promising results in the
classification of sleep stages. In the proposed method, extracted features from the EEG and EOG signals,
are divided into two feature sets consisting of the EEG features and fused features of EEG and EOG. Then,
each feature set transformed into a horizontal visibility graph (HVG). The images of the HVG are produced
in a novel framework and classified by proposed transfer learning convolutional neural network for data
fusion (TLCNN-DF). Employing transfer learning at the training stage of the model has accelerated the
training process of the CNN and improved the performance of the model. The proposed algorithm is used
to classify the Sleep-EDF and Sleep-EDFx benchmark datasets. The algorithm can classify the Sleep-EDF
dataset with an accuracy of 93.58% and Cohen’s kappa coefficient of 0.899. The results show proposed
method can achieve superior performance compared to state-of-the-art studies on classification of sleep
stages. Furthermore, it can attain reliable results as an alternative to conventional sleep staging.

INDEX TERMS Convolutional neural network, data fusion, horizontal visibility graph, sleep stage classifi-
cation, transfer learning.

I. INTRODUCTION
We spend one-third of our lives in sleep. Sleeping is an
important process for the body to preserve its wellness and
health. Any abnormalities in the sleep cycle may cause
serious problems such as, extreme fatigue, lack of concen-
tration or metabolic problems such as diabetes and obe-
sity [1], [2]. Traditionally, physiological signals such as
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EEG, EOG, electromyogram (EMG) and respiration signals
are recorded in the sleep clinic or hospital for the scoring
sleep stages during overnight sleep, using a method called
polysomnography(PSG). The physician manually assigns a
specific sleep stage to every 30-sec epoch of signals. Ameri-
can Academy of Sleep Medicine (AASM) [3] or Rechtschaf-
fen and Kales (R&K) [4] rules are used to identify sleep
stages. In general, sleep stages include Wake (W), Rapid Eye
Movements (REM) and Non-Rapid Eye Movement (NREM)
stages. The NREM stage also consists of N1 (light sleep),
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N2 and N3 (deep sleep) according to the AASM rule. AASM
rule is a set of novel instructions, which describes physiologi-
cal signal characteristics in different sleep stages. AASM rule
is the modified version of R&K rule. In the AASM rule the
sleep stages are changed from S1, S2, S3, S4, REM to N1,
N2, N3 (merging S3 and S4), R and the transition between
different sleep stages is also considered in sleep staging [5].
The output of sleep scoring is a sequence of sleep stages over
a night that called hypnogram.

In manual sleep scoring, a sleep specialist is required to
evaluate the PSG signals epoch by epoch, which is time
consuming and complicated task and may be affected by
human misjudgment. Besides, subjects may have difficulty
falling asleep due to a change in the permanent sleeping place.
Computer-aided methods like machine learning algorithms
are used for sleep stage classification to solve described
problems. Recently many studies have developed machine
learning methods for sleep staging to achieve reliable and
practical results [6]–[8].

Traditional machine learning methods consist of two main
steps: 1. Extracting hand-crafted features according to the
characteristics of the signals in different sleep stages. Variety
of time domain, frequency domain and non-linear features,
which derived from EEG and EOG signals have been used in
sleep studies [9]–[11]. Decomposition of the EEG and EOG
by wavelet transform (WT) or empiric mode decomposi-
tion (EMD) is also useful for extracting hand-crafted features
in the sleep stage classification [12]–[14]. These features
because of their high discriminant properties for different
sleep stages are popular. 2. Using supervised learning algo-
rithms such as support vector machine (SVM) [15], random
forest (RF) [10], decision tree (DT) [16], k-nearest neighbor
(KNN) [17] and deep neural networks (DNN) [18] to classify
feature vectors that belong to different sleep stages.

Traditional classification methods are less flexible and
except for a few trainable parameters, the model cannot be
adjusted with input data during the training stage. In fact,
these models can classify the data according to the struc-
ture they are designed for. Hence, they are constrained in
achieving desired results. On the other hand, neural networks
with up to millions of training parameters are very flexible
and can be used for different type data. Neural networks can
achieve reliable results through the training of complex and
non-linear models for different classification problems [19].
Different types of neural networks have been developed for
various machine learning applications. For instance, recur-
rent Neural network (RNN) classifies the current input by
recalling computations of the previous input. It is well estab-
lished that RNN, e.g. long short-term memory (LSTM) [20]
is functional in sequential modeling tasks like sleep stage
classification [6], [21]. Convolutional neural network (CNN)
is developed for the processing of multidimensional data
such as 2D images. Multiple convolutional and pooling lay-
ers are used in CNN to create a deep network to ensure
recognition of high-level features in images. In recent years,
CNNs achieved outstanding results in classification tasks

by training convolutional networks with large numbers of
images, using nonlinear activation functions and new meth-
ods of regularization [22]. Besides, CNN can perform better
than humans in the classification of geometric shapes and
sketches [23]–[25]. Due to the complexity of sleep scor-
ing problem and the need for a nonlinear model, several
researches have been developed to use neural networks for
the classification of sleep stages [26]–[28].

More useful and comprehensive information can be
obtained by increasing the number of signals, which is used in
sleep staging [29], [30]. Using data fusion methods, plays an
important role in the sleep stage classification. Concatenation
of extracted features from different sources is commonly used
for fusing information of different signals. In manual sleep
scoring, PSG signals are used by the sleep expert to achieve
reliable results. Hence, methods that only use single-channel
signals for classification are less accurate and not highly
reliable compared to sleep expert results and not suitable for
practical implementation. Data fusion approaches are used
for fusing multiple signals to solve the problem of limited
information when using a single channel signal [31]. The
main purpose of data fusion in machine learning is to use
multiple information sources for classification and ensure
that important information from different sources does not
overlap with each other and redundant and duplicate infor-
mation is eliminated.

There are different levels of data fusion, including sig-
nal level, feature level and decision level. Many studies
have employed data fusion techniques to obtain comple-
mentary information from multiple PSG signals [32], [33].
Zhang et al. [34] after extracting features with sparse vari-
ant of the deep belief network from EEG, EOG and EMG
signals, used k-nearest neighbor (KNN), support vector
machine (SVM) and hidden Markov model (HMM) classi-
fiers for sleep staging. Then voting principle, based on clas-
sification entropy are used to fuse different classifiers results
in decision level. Chambon et al. [35] used different PSG
signals combinations for sleep stage classification. Through
the training of the CNNwith different numbers of EEG, EOG
and EMG signals, showed that using more sensors improves
performance of the model. Shi et al. [29] proposed two-stage
multi-view learning algorithm using multi-channel EEG sig-
nals for sleep staging. Collaborative representation (CR) and
joint sparse representation (JSR) methods used for extracting
features from EEG signals. Extracted features from JSR and
CRmethods are integrated and fed to multiple kernel extreme
learning machine for classification. Both feature level and
classifier level fusion are used for sleep scoring.

Despite of the positive outcomes achieved by the
multi-channel sleep staging methods, they still suffer from
some limitation as described in the following. Inmost of these
methods, selecting a large number of signals for classification
added redundant information to the problem and increased
the computational complexity without a substantial improve-
ment in sleep staging results. Besides, each selected signals
should add complementary information [36] to the problem
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which is not possible with incorrect choice of signals. On the
other hand, there are feature fusion methods based on feature
concatenation which do not apply post-processing on the
fused features. These methods due to the high number of
features, impose computational cost on the classifier, increase
training time of the model and prevent achieving optimal
results [37], [38].

The motivations of this work stem from the limitations of
previous studies which have not completely achieved reliable
and robust results compared to clinical sleep staging. These
issues include, use of the limited information source such as
single channel signal, lack in utilization of potential informa-
tion of extracted features and the use of the classifiers that can
not fully fit on input data. Therefore, in the proposed method,
we tried to resolve mentioned three issues through the use of
two sources of information for classification, post-processing
of the extracted features, and introducing a transfer learning
method for training CNN.

In this paper, we propose a method for fusing EOG and
EEG information for sleep stage classification. After decom-
posing EOG signal to sub-bands with wavelet transform
(WT), the hand-crafted features are extracted from EEG,
EOG and the wavelet coefficients of EOG. These features is
transformed into a horizontal visibility graph (HVG) in two
feature sets. Afterward, the HVGs are mapped to euclidean
space with certain rules and graph images are produced.
Finally, a novel CNN model, which pre-trained with transfer
learning (TL) is used to classify the images of HVGs. The
outline of the proposed algorithm is illustrated in Fig. 1.

The main contributions of this study are as follows.
a) A novel feature mapping framework is used to transform

fused features of EEG and EOG, and PSD of EEG into
two sets of HVGs. Then, 2D images of graphs gener-
ated for classification. Transforming the features vectors
into graphs, enables the use of connection information
between feature for classification.

b) A CNN structure with two pipelines in input for the
fusion and classification of HVG images is proposed.
Training of the model takes place in two stages using
transfer learning. First, each pipeline which consist of
a set of convolutional layers is individually pre-trained
in two subnetworks and then transferred to the main
model. Second, the main model trained for classifying
the sleep stages. With the use of transfer learning for
training CNN, overall classification results enhanced
and training time of the model is reduced sharply.

c) Recognition of the N1 sleep stage is difficult in sleep
staging due to the small number of the stage N1 data
samples and high correlation between features of the
REMandN1 stages. By using proposed transfer learning
method the recognition of the N1 and REM sleep stages
has improved.

d) Proposed sleep staging algorithm is used to classify
publicly available Sleep-EDF [39], [40] dataset with
PSG signals of 8 subjects and Sleep-EDFx dataset with
PSG signals of 20 subjects. The evaluation results show

FIGURE 1. Workflow of the proposed framework for the fusion and
classification of sleep EEG and sleep EOG.

significant improvement in the sleep stage classification
compared to state-of-the-art studies.

The remainder of the study is organized as follows.
In Section II, evaluation datasets is described and the
framework of the proposed method is explained in detail.
In Section III, the evaluation results of the proposed method
are compared with other studies and the performance of
the proposed method in various conditions is examined.
In Section IV, the proposed algorithm is discussed accord-
ing to the results. Section V draws a conclusion on this
study.

II. MATERIAL AND METHODS
A. DATASETS
Sleep-EDF and Sleep-EDFx datasets were used in this study,
which are available in the Public PhysioNet Database [40].
Sleep-EDF dataset contains recorded signals of 8 healthy
males and females, 21 to 36 years old, who did not take any
medication. The dataset consists of two group of subjects, 4
sleep cassette (SC) recording that collected in 1989 during
24 hours daily life at the home and 4 sleep telemetry (ST)
recording that collected in 1994 during overnight sleep in
the hospital from subjects who had mild difficulty falling
asleep. Sleep-EDFx is expanded version of Sleep-EDF, which
contains more PSG records, which also separated into two
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groups of participants, SC that obtained from healthy Cau-
casians aged between 25 and 101 years during two subse-
quent day-night, to study the effects of age on sleep and ST
obtained from 22 Caucasian healthy males and females for
the analysis of the effects of temazepam on sleep. We used
10 ST and 10 SC recordings of Sleep-EDFx dataset. Both
datasets include two EEG from Pz-Oz and Fpz-Cz channels,
a horizontal EOG and a submental chin EMG. EEG and
EOG signals have sampling rate of 100 Hz. Sleep stages are
manually scored by well-trained technicians in according to
R&K rule. The sleep stages are categorized into 8 stages
consisting of: Wake, S1, S2, S3, S4, REM, unscored and
movement time. We use the AASM criteria in this article,
therefore S3 and S4 stages are combined to the N3 stage
and unscored and movement time epochs are eliminated from
hypnogram and associated signals. In previous studies that
the Pz-Oz channel was used instead of the Fpz-Cz channel,
results showed improved performance in sleep staging [13].
Thus, in current study an EEG signal from the Pz-Oz channel
and a horizontal EOG are used for evaluation of proposed
algorithm.

B. FEATURE EXTRACTION
In the first step, the hand-crafted features, which contain-
ing the discriminant characteristics of signals for different
sleep stages are briefly introduced. Due to the complexity
of EEG and EOG signals different types of features such
as temporal, spectral and non-linear features are extracted
from signals. Each feature is derived from 30-sec epochs of
signal. The extracted features are depicted in the Table 1 in
detail.

1) POWER SPECTRAL DENSITY (PSD)
Since the frequency activity of the EEG varies with changes
in sleep stages, it will be useful to measure the frequency
content of the signal. According to the AASM rule, as sleep
deepens, high-frequency content of the EEG decreases and
the signal waves become slow. PSD is used as a popular
hand-crafted feature in sleep studies [41], [42]. The Welch
method [43] is used to estimate the power spectrum of a time
series. First, the signal is divided into overlapping segments.
Fast Fourier transform (FFT) is calculated for each segment
and then used to estimate the periodograms. Finally, Welch’s
PSD estimation is obtained by averaging the periodogram of
all segments.

For a time series (x) that divided into K segments, peri-
odogram can be calculated as,

Pk (f ) =
1
W
|Xk (f )|2 (1)

W =
M∑
m=1

ω2[m] (2)

where Xk (f ) is FFT of kth segment of signal, ω is window
function and M is number of data points in each segment.

TABLE 1. Extracted features from EEG and EOG for sleep staging.

Eventually, PSD can be calculated as,

Sx(ν) =
1
K

K∑
k=1

Pk (ν) (3)

In this study 27 data samples of PSD from 1.5 Hz to
42.5 Hz are selected as the features.

2) DISCRETE WAVELET TRANSFORM (DWT)
The wavelet transform is used for time-frequency decompo-
sition of signals. It represents a signal by the combination of
delation and translation of the scaled basic function, which
is a finite length signal known as mother wavelet. For imple-
mentation of DWT, a low-pass filter and a high-pass filter
are applied to the signal at each level of decomposition. The
signal is divided into two sub-bands, details and approxi-
mations, which include the high frequency and the low fre-
quency information of the signal. EOG decomposition by
DWT before extracting hand-crafted features has been shown
to be useful in sleep staging [14]. The wavelet transform is
applied to every 30-sec epoch of the EOG at 4 levels by the
Daubechies mother wavelet, thereby decomposing the EOG
into the set of the detail coefficients (D1,D2,D3,D4) and the
approximation coefficients (A4).

3) STANDARD DEVIATION
Standard deviation indicates dispersion of data around the
mean. For a time series, x,

std(x) =
√
Var(x) (4)

Var(x) = σ 2
=

1
N

N∑
n=1

(xn − x)2 (5)

4) MEAN ABSOLUTE AMPLITUDE
The amplitude of the brain signal varies with the change
in frequency activity of EEG. It also changes with the
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appearance of different brain waves like delta, theta, alpha
and beta, which are common at different sleep stages.

5) HJORTH PARAMETERS
Hjorth parameters are statistical features that related to the
variance of the signal and its derivative. It consists of three
parameters: activity, mobility and complexity. Mobility and
complexity are used in the proposed method.

Mobility =

√
Var(x′)
Var(x)

(6)

Complexity =
Mobility(x′)
Mobility(x)

(7)

6) KURTOSIS
Kurtosis is the measure of the data distribution. This feature
calculates the deviation degree of the data from gaussian
distribution.

Kurtosis =
m4

m2
2

(8)

where mn is nth central moment of the signal.

7) KOLMOGOROV COMPLEXITY
Andrey Kolmogorov has introduced an algorithmic approach
for the quantitative definition of information called Kol-
mogorov complexity (KC) [44]. KC of a signal, is the length
of the shortest computer binary program, which produces that
signal as output [45]. KC measures the information, which
related to the randomness of a signal.

C. FEATURE MAPPING
Before feature mapping, epochs with outlier features are
removed using the z-score method then all features are nor-
malized. The Z-score or standard score changes data distri-
bution to the normal distribution by centering the data and
dividing it by standard deviation. A threshold is then applied
to the data to eliminate outliers. All the extracted features are
divided into two feature sets. The first feature set contains
the PSD sample points of EEG and the second feature set
contains fused statistical and non-linear features of EEG,
EOG and EOG sub-bands.

1) HORIZONTAL VISIBILITY GRAPH (HVG)
Recently, transforming physiological signals into graphs such
as correlation graphs and visibility graphs has been consid-
ered for machine learning applications [46], [47]. Visibility
algorithms are usually used to transform a time series or a set
of data points to a graph [48]. A graph consists of nodes and
edges. Each node corresponding to a weight and each edge
indicates the relation between two nodes, which connected to
them. Each feature in the feature set is depicted as a node in
the corresponding HVG and the equation 5 that introduced
by Lacasa [49] is used to determine the connection between
nodes. The nodes, i and j are connected if:

i < n < j, xi, xj > xn (9)

where xn is nth feature in feature vector.

FIGURE 2. The transformation of the feature set (0.10, 0.50, 1.00, 0.75,
0.70, 0.20, 0.60, 0.80, 0.30, 0.95, 0.40) into HVG.

An example of the HVG is shown in Fig. 2. Further-
more, the geometric procedure for establishing connections
between nodes, based on the node values, is demonstrated in
the bar chart.

2) CONSTRUCTION OF HVG IMAGE
Graph kernels are commonly used for classifying graphs.
Despite the achievement of acceptable results using graph
kernels, they are subject to several limitations which dis-
cussed in the following. First, the classification of graphs
using graph kernels is based on the computing similarity
between each possible pair of graphs in the dataset, which has
a high computational complexity. As a result, as the size of the
dataset increases, the computational cost and training time
of the model increases at a much higher rate [50]. Second,
graph kernels compare two graphs based on the substructures
(trees, paths, etc) of the graphs. Therefore, local features of
the graphs are used as a criterion for the classification of
graph and the global features of the graphs are ignored [51].

These issues have led us to use CNN for graph classifi-
cation. On the other hand, graphs are defined in topological
space so that, they defined by nodes and connections and
they do not have specific shape. Therefore, we introduced a
framework for drawing graphs in 2D euclidean space with a
specific structure so that, the changes in graphs for different
classes can be recognized by the CNN. In constructing graph
images two key characteristics of the CNNs are considered.
1- Local receptive field of CNN layers guaranteed extracting
local features of image. Therefore, CNN is not sensitive
to the arrangement of nodes. 2- The relative positions of
extracted local feature are important for classification. There-
fore, the main structure of drawing should be preserved for all
of graphs. [52]

In introduced framework a circular graph is drawn for each
HVG and the following two parameters of circular graph
change as the weights of the nodes change.
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FIGURE 3. An example of constructed image from the HVGs. (a) HVG of
feature vector (0.25, 0.46, 0.68, 0.89, 1.10, 1.32, 1.53, 1.75)
(b) Transformed features of EEG, EOG and wavelet decomposed EOG
sub-bands. (c) Transformed PSD features of EEG.

a) Node position: All of the nodes are placed on circumfer-
ence of a circle, each node moves away from the center
of the circle on the radius by increasing its weight or
approaching the center as weight of the node decreases.

b) Node color: The color of the nodes changes with respect
to the weight of the nodes in the RGB spectrum.

For the implementation of feature mapping framework,
networkx [53] library of Python is used. An example of
obtained image from a sample HVG with 8 nodes is illus-
trated in Fig. 3a. As can be seen, in the corresponding graph,
the weights of the nodes are increased fromminimum tomax-
imum value. The dashed arrow shows the possible positions
of node 1 for different weights, and color of the nodes also
can also be changed by changing the weight of the nodes.
Furthermore, HVGs that obtained from a 30-sec epoch of
EEG and EOG are shown in Fig. 3. This framework can also
be used for feature level data fusion. As shown in Fig. 3b,
the generated graph is the result of concatenating non-linear
and statistical features of EEG and EOG signals. Fig. 3c
shows obtained graph from PSD features of EEG signal.

D. TRANSFER LEARNING CONVOLUTIONAL NEURAL
NETWORK FOR DATA FUSION (TLCNN-DF)
Network architecture: Two images constructed for clas-
sification of a 30-sec epoch of sleep signals. Therefore,
the structure of the CNN consists of two separate pipelines for
each image. One image for EEG features and another image
for fused EEG and EOG features. We first designed two

TABLE 2. Subnetworks architecture for the classification of the two
image sets.

subnetworks for classifying different image sets and then
combined them to develop the main CNN. The proposed con-
volutional neural network for data fusion (CNN-DF) receives
2 images with size of (64 × 64 × 3) at the input at the
same time to recognize corresponding sleep stage. Common
architecture pattern of CNN layers, which have recently
become popular are used for network design [54]. In such
a network, after passing the image through the input layer,
a set of convolutional filters with a specific size and trainable
coefficients is applied to the image. Convolutional filters are
slide across the entire image, forming feature maps to feed
the next layer. The convolutional layers, which are used in
the proposed architecture, followed by the rectified linear
unit (Relu) activation function. The pooling layer applied to
feature maps in order to reduce their spatial size and training
parameters. Thus, by using pooling layers the computational
cost and training time of the CNN decreases.

Two simple subnetworks are designed by repeating men-
tioned layer pattern with different size. Besides, softmax acti-
vation function is used as CNN classification stage. Table 2
shows the details of the parameters of the subnetworks, which
designed to classify two image sets individually. For con-
structing TLCNN-DF, in both subnetworks the outputs of the
pooling layers, before the fully connected (FC) dense layers,
are reshaped and concatenated into the 1-dimensional vector
and connected to FC layer in main network. TLCNN-DF is
shown in Fig. 4.

Training CNN: The key concept in training feed-forward
CNNs is to use back-propagation error to adjust the model
weights. For this purpose, gradient descent algorithm is used
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FIGURE 4. Architecture of transfer learning convolutional neural network for data fusion (TLCNN-DF).

to minimize the model error (loss function) by updating
weights of the model at each iteration [55].

Transfer learning: In machine learning methods, a part
of the information from a model that is trained before for a
specific task is transferred to a newmodel with related task to
improve the performance of new model [56]. In current study
the proposed transfer learning method for training the CNN
consists of two stages as described below:
• Stage1: Subnetwork 1 and subnetwork 2 as described in

table 2 are individual CNNs that can be trained by images
with size of (64 × 64 × 3). Each subnetwork is trained indi-
vidually by graph images that are constructed in the feature
mapping step. Therefore, the images that obtained from the
fused EEG and EOG features are used to train subnetwork 1,
and the images that obtained from the EEG features are used
to train subnetwork 2.
• Stage2: Each neuron in the neural network is charac-

terized by its trainable weight and bias (W, b). In the CNN,
the FC and convolutional layers are composed from neurons.
Therefore, model’s training are accomplished through updat-
ing weights and biases of the FC and convolutional layers.
The weights and biases of the convolutional layers, which are
trained in the stage 1, are transferred to the corresponding
convolutional layers in the TLCNN-DF. Then, the training
capability of the convolutional layers is switched off and two
images sets are fed to the TLCNN-DF. At this stage, only FC
dense layers can be trained. In other words, we extracted the
trained convolution layers from the subnetworks and merged
these layers together in the main network.

TABLE 3. Measures of performance assessment.

The algorithm was implemented in Python3.6. Further-
more, Tensorflow and Keras libraries were used for designing
and evaluating TLCNN-DF. All of the experiments, which are
explained in the following, were performed on the 2.4 GHz
quad-core CPU.

The results of the experiments are evaluated in terms of
accuracy andCohen’s kappa coefficient [57] in overall assess-
ment, and sensitivity, specificity, precision and F1-Score for
per-stage assessment. Table 3 describes the evaluation criteria
in detail.

III. EXPERIMENTS
A. EXPERIMENT 1: PERFORMANCE COMPARISON
BETWEEN TLCNN-DF AND CNN-DF
As mentioned before, training process is completed in two
stages. In the first stage, the weights of the convolutional
layers are trained in the subnetworks and transferred to the
main model. In the second stage, the training of the main
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FIGURE 5. Test accuracy and test loss curves of the TLCNN-DF and
CNN-DF during training of the models.

model begins. In this experiment, we are going to demon-
strate the advantages of transfer learning by evaluating out-
comes of the model that trained by two different learning
modes: conventional learning (CNN-DF) and transfer learn-
ing (TLCNN-DF). In transfer learning mode, the subnet-
works are trained in 30 epochs, afterwards in stage 2 the
main model is trained in 80 epochs. In conventional learn-
ing method the model is trained without transfer learning
and the entire model trained in 80 epochs. Performance of
the models are compared in terms of overall accuracy and
Cohen’s kappa also per-stage sensitivity, specificity, F1-score
and precision. Furthermore, accuracy and cost changes of the
models are illustrated during the training process. For fair
comparison, training data samples are exactly the same in
the two modes and models are evaluated on the same test
data.

Fig. 5 shows the test accuracy and the test cost of the mod-
els during the training process. As can be seen, TLCNN-DF
has reached an acceptable accuracy (higher than 92%) at the
first epoch. Besides, by increasing epochs the accuracy of
the model converges to the final value with smaller toler-
ance in comparison to CNN-DF. Consequently, the results
of TLCNN-DF are reproducible and consistent compared
to CNN-DF. As shown in Fig. 5 loss of TLCNN-DF is
reduced at a higher rate. It can be said that, in less than
20 training epochs, model is fully trained and loss function is
minimized.

For the analysis of the outputs of two classifiers, sensitivity,
F1-score, specificity and precision for 5 sleep stages are
shown in Table 4. As we can observe, the highest sensi-
tivities for sleep stages are obtained for Wake: 99.1%, N1:
60.9%, N3: 85.6% and REM: 92.2% by TLCNN-DF and
N2: 94.2% by CNN-DF. TLCNN-DF is classified the sleep
stages with an overall accuracy and Cohen’s kappa of 94.34%
and 0.912 respectively, which is a significant improvement
compared to CNN-DF with overall accuracy and Cohen’s
kappa of 93.19% and 0.894. For more detailed comparison
of the performance of the two classifiers see Table 4.

B. EXPERIMENT 2: TRAINING TIME COMPARISON
BETWEEN TLCNN-DF AND CNN-DF
The purpose of this experiment is to analyze the effect of the
transfer learning on the training time of the model. We are
also investigating that how the classification results change
for different number of training epochs in subnetworks. In
this experiment, the full training time of the models and the
accuracy changes during the main model’s training process
are considered.

Fig. 6 shows main model’s accuracy curves for the various
number of training epochs in subnetworks. The scenario is
such that the subnetworks are trained in 1, 5, 10, 15, 20,
25 and 30 epochs for different cases. next, the main network
is trained in 50 epochs and the test accuracy is monitored.
As can be seen, the accuracy curves for different epochs of
pre-training convolutional layers do not differ significantly
from each other. Accuracy curves in all of the charts fluctuate
between 93.5% to 94.5%. In fact, it can be said that in the first
time the training data has passed through the subnetworks
the convolutional layers are fully trained. Therefore, feeding
the training data once into the subnetworks is sufficient for
pre-training of the convolutional layers.

The total training time of the TLCNN-DF in the different
cases, which described earlier is shown in Table 5. 12092
30-sec epochs of the Sleep-EDF dataset are used for training
the model. As mentioned in Table 5, the CNN-DF is trained
faster without transfer learning. However, there is a notewor-
thy point in case 7, two subnetworks have been trained for
60 epochs (30 epochs each) in total, which means we had
60 more training epochs in case 7 compared to case 8, and
yet it can be seen that the training time of the models is close
to each other, 302 minutes for case 7 and 283 minutes for
case 8. The point is also more evident in case 1, by using
transfer learning, the training time of the model is almost
one-third of the training time of conventional training method
and performance of the model has improved significantly as
shown in the Fig. 6. On the other hand, in the test stage,
the TLCNN-DF is classified two input images of HVG in just
8 milliseconds.

Since the CNN is trained just once for the classification
tasks and training time of the network is not important in
sleep staging, we have trained each subnetwork in 30 epochs
to create a safe margin for CNN performance. Even though
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TABLE 4. Performance of the proposed CNN without transfer learning (CNN-DF) and with transfer learning (TLCNN-DF).

FIGURE 6. Test accuracy of TLCNN-DF for different pre-training epochs of convolutional layers in subnetworks.

training subnetworks in a single epoch has yielded promising
results.

C. EXPERIMENT 3: PERFORMANCE EVALUATION OF THE
PROPOSE ALGORITHM WITH BENCHMARK DATASETS
In small datasets like Sleep-EDF, selection of the test and
train data influences the results of the classification. Nev-
ertheless, it appears necessary to use Sleep-EDF dataset in
order to compare the results of this paper with other studies.
To overcome bias of sample selection issue, the dataset is
randomly divided into 5-fold train and test data and fed to
TLCNN-DF. Therefore, the final results are obtained by aver-
aging the model results in five runs. Consequently, obtained
results will be reliable, robust and reproducible. At each run,
at the first stage the weights of the convolutional layers are

trained in subnetworks in 30 epochs and transferred to the
main model (CNN-DF), then in the second stage CNN-DF is
trained for 50 epochs. In order to analyze the generalizability
of the proposed method it is necessary to evaluate its perfor-
mance on different datasets. Sleep-EDFx is a larger dataset
with 305 hours of overnight sleep signals. The results were
obtained in single run using the Sleep-EDFx dataset.

Table 6 and Table 7 show the normalized confusion matri-
ces for the Sleep-EDF and Sleep-EDFx datasets, respectively.
Per-stage numbers of 30-sec epochs, which used as test data
in algorithm are, Wake: 1603, N1: 117, N2: 723, N3: 254 and
REM: 327 for Sleep-EDF dataset and Wake: 4037, N1: 223,
N2: 1704, N3: 654 and REM: 714 for Sleep-EDFx dataset.
The diagonal elements of confusionmatrix which highlighted
in bold, indicate sensitivity of each sleep stage. Besides,
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TABLE 5. Training time of the proposed CNN in different cases.

TABLE 6. Classification results and normalized confusion matrix of
TLCNN-DF on Sleep-EDF dataset.

the specificity, precision and F1-score for each sleep stage in
Sleep-EDF and Sleep-EDFx dataset and the overall accuracy
and Cohen’s kappa coefficient are calculated and reported
in Table 6 and Table 7.

As can be seen, with the exception of the N1 stage, the sen-
sitivities and F1-scores are higher than 85.4% and 86.8%
for the Sleep-EDF dataset and higher than 85.6% and 85.7%
for the Sleep-EDFx dataset, respectively. Sensitivity of stage
N1 is lower than other stages and difficult to classify due to
the small number of epochs for training the model and the
poor distinguishing characteristics of the signal at N1 stage.
The 30-sec epochs in N1 stage are 4% of the total epoch in
Sleep-EDF dataset and 3.3% of total epochs in Sleep-EDFx
dataset. Hence, it is difficult for the model to recognize
the N1 sleep stage compared to other sleep stages. Overall
accuracies and Cohen’s kappa coefficients for Sleep-EDF
and Sleep-EDFx are 93.58%, 0.899 and 93.16%, 0.889 in
5 class sleep staging, respectively. The results show precise
and robust performance of the algorithm for various datasets.
Besides, obtained Cohen’s kappa coefficients show almost
perfect agreement [58] between clinical sleep staging and
proposed algorithm’s sleep staging.

Table 8 compares the performance of our proposed method
for sleep stage classification using the Sleep-EDF dataset
with recent state-of-the-art works in terms of overall accu-
racy and Cohen’s kappa. The highest accuracy and Cohen’s
kappa are highlighted in bold, which show the performance

TABLE 7. Classification results and normalized confusion matrix of
TLCNN-DF on Sleep-EDFx dataset.

of our proposed method. Similar results are observed in the
TLCNN-DF performance for classification of Sleep-EDFx,
as shown in Table 9. TLCNN-DF are yielded more promising
results compared to state-of-the-art works in the classification
of sleep stages on Sleep-EDF and Sleep-EDFx datasets.

Further comparison is made based on number of features
that used in different algorithms which is given in Table 8
and Table 9. As can be seen, using comprehensive and more
feature is an effective factor in achieving superior classifi-
cation performance. On the other hand, by increasing the
number of features, computational complexity for classifier
increases. In the proposed method by extracting 59 features
from EEG and EOG signals, the algorithm achieved higher
accuracy compared to Hassan et al. [13] and Jiang et al. [59]
studies which used higher number of features.

D. EXPERIMENT 4: PERFORMANCE COMPARISON
BETWEEN THE PROPOSED ALGORITHM AND
CONVENTIONAL CLASSIFICATION ALGORITHMS
In the classic data fusion methods, feature vectors from
different information sources are integrated into a feature
vector. Likewise, all the extracted features from the EEG and
EOG signals in this study, are combined into one feature
vector. The most commonly used classifiers in sleep studies
including support vector machine (SVM), decision tree (DT),
logistic regression (LR), linear discriminant analysis (LDA),
k-nearest neighbor (KNN) and random forest (RF) are used
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TABLE 8. Performance comparison of proposed algorithm with
state-of-the-art studies in 5-class sleep staging on Sleep-EDF dataset in
terms of accuracy and Cohen’s kappa. The number of utilized features
in different studies is indicated in the last column.

TABLE 9. Performance comparison between proposed algorithm and
state-of-the-art studies in 5-class sleep staging on Sleep-EDFx dataset
in terms of accuracy and Cohen’s kappa. The number of utilized
features in different studies is indicated in the last column.

for the classification of integrated feature vectors. 4 Scenar-
ios are considered for sleep staging in different number of
classes, including 2-class (Wake and sleep), 3-class (Wake,
REM and NREM), 4-class (Wake, REM, N1, N2+N3) and
5-class (Wake, REM, N1, N2, N3) cases. For a fair compar-
ison between classifiers, the train data and the test data for
evaluating classifiers are exactly the same. Hence the results
are not influenced by using different training and testing
epochs of signals for different classifiers.

Classification accuracy of different classifiers in different
modes are shown in the Table 10. In the two-classmode (sleep
and Wake), due to the fundamental differences in the charac-
teristics of sleep and Wake stages and the simplicity of the

TABLE 10. Performance of various classifiers on different number of
sleep stages in term of accuracy.

classification problem, the classifiers have been able to obtain
similar results, so that the lowest accuracy is 97.35%by SVM.
As the number of classes increases and the classification
problem becomes more complex, the performance of the
other classifiers starts to decline compared to TLCNN-DF.
In conventional classification methods, non-informative fea-
tures have a significant effect on classification result. How-
ever, in the proposed method the entire structure of HVGs
matters in image classification with CNN not only the fea-
tures themselves. The overall classification accuracy obtained
by TLCNN-DF for the different modes of classification is
as follows: 2-class: 98.77, 3-class: 96.77, 4-class: 95.1 and
5-class: 94.14. Results show improvement in the classifica-
tion accuracy and the robustness of the method for classify-
ing different number of classes. Furthermore, the proposed
algorithm is outperformed other conventional data fusion and
classification methods.

IV. DISCUSSION AND FUTURE WORK
The main subjects that we have tried to challenge and
improve in this study can be described as follows. Choosing
hand-crafted features for extracting discriminant character-
istics of EOG and EEG. Considering the numerous data
fusionmethods in different fields, this article proposes a novel
method for feature level data fusion using HVGs. The popular
architecture for fusing outputs of convolutional layers are
also employed in our model’s constructure [67], [68]. For
instance GoogLeNet [69] used concatenation to fuse outputs
of convolutional layers. Finaly, in order to enhance described
CNN-based fusion method, a novel transfer learning algo-
rithm is proposed for the pre-training of convolutional layers
of the model.

For feature extraction, we have tried to reduce the complex-
ity of the problem by selecting simple features. The frequency
domain features of the signal are the most useful hand-crafted
features, which are used for sleep staging. Considering that
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TABLE 11. True and false recognition of stage N1 epochs by TLCNN-DF
and CNN-DF.

EEG and EOG are active in different frequency bands for
Wake, N2 and N3 stages. These sleep stages can be well sepa-
rated by using the frequency characteristics of signal. Unlike
most studies that extract specific frequency bands power, such
as Delta (0 to 4 Hz), Theta (4 to 8 Hz) and Beta (15 to
32 Hz), in this work entire power spectrum used as a feature
set. In this way, frequency information of signal is obtained
with better resolution. Also, the EOG was decomposed by
the wavelet transform into different frequency bands, which
makes frequency information of EOG more prominent for
feature extraction. On the other hand, N1 and REM stages
have similar frequency behavior on EOG and EEG, therefore
statistical and nonlinear features have been extracted from the
signals to identify these sleep stages.

A well-known problem in sleep staging is the poor recog-
nition of the N1 stage by algorithms. Also, in the current
study, it was observed that the sensitivity of N1 stage is lower
than other stages, and it is usually misclassified with other
sleep stages, especially Wake, N2 and REM. As mentioned
earlier, this could be due to the small number of data samples
for N1 sleep stage for training the model. In fact, in the
case of unbalanced data sets, the trained classifier is biased
and as a result, the classifier cannot have promising perfor-
mance. Therefore, the class with small number of training
samples misclassified as other classes with more training
samples [70]. On the other hand, choosing the appropriate
classifier can also affect unbalance dataset problem. Table 11
shows the classified 30-sec test epochs of stage N1 for the
TLCNN-DF and CNN-DF. The rows of the table are expert
scored N1 epochs and the epochs on the columns are scored
by classifiers. As mentioned in table 11, CNN-DF is able
to correctly identify 46% of total N1 epochs, also N1 is
incorrectly classified to Wake, N2 and REM by 11.3%,
20.9% and 21.8%, respectively. By using transfer learning
for training the model, TLCNN-DF is correctly recognized
60% of N1 stage, and the false recognition is reduced to
10.4%, 14.8% and 13.9% for Wake, N2 and REM stages,
respectively.

As shown in the Experiment 1, transfer learning has also
improved overall accuracy, Cohen’s kappa coefficients and
per-stage classification performance in addition to improving
detection of the stage N1. On the other hand the training
time of the model is also reduced. The key idea of using
transfer learning in this algorithm stems from the disadvan-
tages of simultaneous training of the feature extraction part
(convolutional layers) and the classification part (FC layers)

of CNNs. As is clear, the optimization algorithm of CNN tries
to improve classification results by updating the weights of
all layers at the same time. Due to the fact that the number
of these weights is too many, the change in the weight of the
convolutional layers and the FC layers at the same time may
lead to sub-optimal result. As shown in Fig. 5 and Fig. 6 the
accuracy and loss for CNN-DF has high tolerance in compare
to TLCNN-DF. Besides, the deeper the model gets, the more
complex and non-linear it becomes, and it takes more time
to train. Thus, by separating the training process of the fea-
ture extraction and classification parts of the CNN, we can
achieve an enhancement in the classification performance of
the model.

Choosing sleep signals for automatic sleep stage classifica-
tion has always been a challenge. According to sleep studies,
the positive outcomes achieved in sleep staging with single
channel EEG or EOG, even though the expert scored sleep
stages still have a significant difference with algorithm scored
sleep stages [13], [14], [65]. This has led us to try to propose
a reliable method for fusing information of EEG and EOG
for automatic sleep stage classification. The proposed fusion
method was implemented in two stages, feature level fusion
and CNN-based fusion. The feature level fusion is based on
graph theory. All the features are transformed to HVGs in two
feature sets. One feature set includes PSD features of EEG
and the other feature set includes integrated EEG and EOG
features. Constructing HVG from feature sets caused to com-
prehensive relation information between features, appears in
the form of connections between graph nodes. Therefore,
the classification is also affected by the relations between
the features. With the introduced framework, it is possible to
visualize HVGs in Euclidean space as well as the possibility
of using CNN to classify HVGs.

In the following, we draw attention to the limitations of the
proposed method and highlight the potential future work in
this field. The feature mapping framework receives feature
sets as input and after transforming feature sets to HVGs,
constructs HVG images as output. As the number of nodes in
each image increases, the complexity of the image increases
and the need for deeper CNN with more complexity can be
felt for classification. For future research, it is important to
determine the maximum number of features in a feature set,
which can be illustrated in an image, which does not have a
negative impact on the performance of the CNN and the graph
nodes do not overlap with neighboring nodes.

Despite improvements in stage N1 recognition using trans-
fer learning, the obtained results are still not in perfect agree-
ment with expert scoring results. Therefore, it is necessary to
increase the sensitivity rate of the N1 stage by extracting the
proper features, which indicate the unique characteristics of
stage N1.

The process of mapping graphs into the Euclidean space
and generating its images has been done in a simple way in
our method. However, there are many different ways to draw
a graph. Changes in methods for drawing graphs can affect
the classifier performance. For instance, using grayscale or
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binary images significantly decrease the training time of the
model. However, its effect on the performance of the CNN
can be assayed. In addition, the use of other algorithms to
determine the graph connections instead of visibility algo-
rithms or drawing graphs in other shapes instead of circular
shape can be examined in future studies. Also, graph neural
network (GNN) are a new type of neural networks, which
have recently gained attention. GNNs take the graphs directly
as input. Therefore, the GNN can be used for classification
of HVGs without any requirement for mapping graphs into
euclidean space.

So far sleep studies have used a specific type of database
for the training and testing the classification algorithms,
so that they will have difficulty in classifying datasets with
different recording conditions. Therefore, providing a general
and comprehensive algorithm to classify new data, accurately
with one-time training is still an important challenge in auto-
matic sleep staging. On the other hand, our proposed method
has been tested on healthy subjects, so there may be limi-
tations in classifying the sleep stages of subjects with sleep
disorders. As a future work, we can evaluate the performance
of the TLCNN-DF in subjects with sleep problems.

V. CONCLUSION
In this paper, a novel algorithm is presented for sleep stage
classification using EEG and EOG. This article introduces a
new data fusion framework with transforming features into
HVG, so that after extracting the hand-crafted features from
the EEG and EOG, features are mapped into two image
sets related to EEG features and fused EEG, EOG features
and then, fed to TLCNN-DF with two specific pipelines for
each image set. The TLCNN-DF is trained in two stages
using transfer learning, in first stage convolutional layers
are pre-trained in two separate subnetworks with two image
sets and transferred to the main network. Then at the second
stage, only the FC layers are trained. The experimental results
indicated that the use of transfer learning in proposed CNN,
increases the training speed and performance of the network.
In addition, by comparing the TLCNN-DF with other state-
of-the-art studies on classifying Sleep-EDF and Sleep-EDFx
datasets, TLCNN-DF is able to improve the sleep stag-
ing in terms of accuracy and Cohen’s kappa. Due to the
obtained Cohen’s kappa coefficient there is perfect agreement
between the sleep expert and the proposed algorithm, which
shows the proposed algorithm has the potential for practical
use.
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