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ABSTRACT Two-streamConvolutional Neural Networks have shown excellent performance in video action
recognition. Most existing works train each sampling group independently, or just fuse at the last level,
which obviously ignore the continuity of action in temporal and the complementary information between
action fragments. In this paper, a temporal segment connection network is proposed to overcome these
limitations. On the one hand, the forget gate module of the long short-term memory (LSTM) network
is used to establish feature-level connections between each sampling group. This not only strengthens
the information transmission between the sampling groups to enhance the temporal connectivity, but also
extracts the complementary information between the sampling groups to enhance the overall representation
of the action. On the other hand, a bi-directional long short-term memory (Bi-LSTM) network is used to
automatically evaluate the importance weights of each sampling group based on the deep feature sequence.
The experimental results on UCF101 and HMDB51 datasets show that the proposed model can effectively
improve the utilization rate of temporal information and the ability of overall action representation, thus
significantly improves the accuracy of human action recognition.

INDEX TERMS Action recognition, convolutional neural network, two-stream, forget-gate connection
module, adaptive weighting module.

I. INTRODUCTION
Video-based action recognition attracts extensive attention
due to its applications in many fields like security and
behavior analysis. Hand-crafted features are mainly used in
early works to represent actions [1]–[5], but now the method
of automatic feature extraction based on deep-learning
has become the mainstream [6]–[10]. Among the deep
learning-based methods, the methods developed from the
two-stream network have excellent recognition effects and
promote action recognition to a new record [11]–[14].

Unlike image recognition, video action recognition
includes both spatial appearance information and temporal
motion information. Therefore, whether the spatiotemporal
information can be fully utilized is the key to improving the
performance of action recognition. Two-stream approaches
train two independent CNNs, one operating on the appear-
ance using RGB data, the other one processing motion based
on optical flow images. However, the original two-stream
convolutional neural network has some shortcomings.
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The original two-stream convolutional neural network can
combine spatial and temporal information, but it only focuses
on short-termmotion changes and does not capture long-term
information about the video. To address this issue, Wang and
Xiong [15] proposed a Temporal Segment Network (TSN) to
extract several sampling groups from a video to enhance the
long-termmodeling ability of the network. On the basis, some
researchers believe that a spatiotemporal interaction mecha-
nism should be added to the spatiotemporal networks to make
full use of the complementary information between them. For
example, Hao and Zhang [16] established dense connections
between spatiotemporal networks based on DenseNet [17],
and enhanced spatial information with temporal information
to improve the interactivity between spatial and temporal
networks. Zhang and Hu [18] added a spatiotemporal fusion
network to extract additional spatiotemporal fusion infor-
mation. However, each sampling group still trains indepen-
dently, which obviously destroys the temporal connectivity
and ignores the complementary information between the
sampling groups. When temporal connectivity is broken,
actions such as ‘‘stand up’’ and ‘‘sit down’’ may be misrec-
ognized. The amount of complementary information between
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sampling groups depends on the heterogeneity between them.
Themore heterogeneity between the sampling groups contain
more complementary information. Conversely, the more sim-
ilar the sampling groups are, the less complementary informa-
tion they contain. We believe that the sampling groups should
be fully utilized in order to express actions more globally.

To satisfy the abovementioned requirements, a temporal
segment connection network (TSCN) is designed to integrate
and connect sampling groups in temporal. The TSCN first
introduces a forget-gate connection module (FCM), which
establishes feature-level connections between each sampling
group to complete the transfer of information. Then an
adaptive weighting module (AWM) is used to automatically
evaluate the importance weights of each sampling group.

The contributions of this paper are summarized as follows:
• A novel Temporal Segment Connection Network
(TSCN) is presented for action recognition. The
feature-level forget-gate connections are established
between adjacent sampling groups, which can not
only enhance the temporal connection, but also extract
the complementary information between the sampling
groups.

• The strategy of endowing weights based on context
information is introduced, which can automatically
evaluate the importanceweights of each sampling group.

• Our model obtains promising performance in action
recognition on two benchmark datasets, including
UCF101 and HMDB51 respectively.

The rest of this paper is organized as follows. In Section 2,
related works are introduced. In Section 3, our TSCN is
described in detail. Experimental results are presented in
Section 4. Finally, in Section 5, we conclude the paper with
future works.

II. RELATED WORKS
Action recognition has been extensively explored in past
years [2], [8]. Previous related works fall into two categories:
1) video action recognition, 2) feature representation.

A. VIDEO ACTION RECOGNITION
Video action recognition has been extensively studied
in recent years. Early works focus on developing good
hand-crafted features for representation actions [1], [2], [5].
The performances of these methods are often restrained
due to the limited differentiation capability of hand-crafted
features.

With the development of deep learning, many deep
learning-based methods are proposed for action recognition,
which use ConvNets to automatically obtain the feature rep-
resentation for actions. Simonyan and Zisserman [7] pro-
posed a two-stream convolutional network which used two
ConvNets to extract spatial and temporal features from RGB
and Flow images respectively. The final action classification
score is obtained by fusing the scores of the two streams.
To further improve the action recognition performance, many
extensions of two-stream ConvNet are proposed. In [15],
Wang et al. proposed a Temporal Segment Network (TSN)

for action recognition, aiming to improve the long-term mod-
eling capabilities of two-stream network. Tu and Li [11]
designed an action-stage emphasized spatiotemporal vec-
tor of locally aggregated descriptors (ActionS-ST-VLAD)
method to aggregate informative deep features across the
entire video. By combining the traditional streams with the
novel human-related streams, a human-related multi-stream
CNN (HR-MSCNN) architecture was designed [13]. Huang
and Kuang [19] introduced an Optical Flow guided Feature
(OFF), which can replace optical flow to quickly extract
robust temporal information by convolutional neural net-
work. Chen and Bai [20] proposed a spatiotemporal hetero-
geneous two-stream network, which employs two different
network structures for spatial and temporal information.

On the other hand, 3D convolutional neural network can
simultaneously learn the appearance and temporal informa-
tion by using the 3D convolution operation [8]. Considering
the large scale of related calculations, Qiu and Yao [21]
reformed the 3D convolution and proposed Pseudo-3DResid-
ual Network (P3DResNet). P3DResNet replaces the 3×3×3
kernels with 1 × 3 × 3 kernels operating on spatial domain
and 3× 3× 1 kernels operating on temporal domain.
Encouraged by the recent success of LSTM [22] in speech

recognition, some researchers are trying to apply LSTM in
video action recognition. Shi and Chen [23] presented a
convolutional LSTM (ConvLSTM) network, which replaces
weight operations with convolution operations so that the spa-
tial features can be extracted. Then the Lattice LSTM [24] and
the Correlational Convolutional LSTM [25] were proposed
one after another, which both developed from ConvLSTM.

B. FEATURE REPRESENTATION
The previous action recognition works mainly used the
method of image recognition to extract monotonous fea-
tures to represent actions. Considering that video action
recognition contains extra temporal information, how to
improve the ability of action feature representation is the
key to improving the effect of action recognition. Hao et al.
proposed a Spatiotemporal Distilled Dense-Connectivity
Network (STDDCN), which builds block-level dense con-
nections between appearance and motion streams to enhance
the spatiotemporal interactive function of the network.
Zhang et al. presented a 3D Multi-Level Dense Fusion
(MLSF-3D) model, which adds an additional spatiotemporal
fusion stream to explore the potential relation of features
extracted from two-stream network. Moreover, to explore
more effective feature representation methods, [26] intro-
duced a spatiotemporal relation feature representation model
with only RGB input and [27] presented a pose motion rep-
resentation (PoTion) method with some semantic key points.

Our approach is similar to multi-stream interaction
methods, but with some differences: 1) The previous
works transmitted spatiotemporal information between
multi-stream networks. Comparatively, our approach estab-
lishes feature-level connections between sampling groups to
obtain a more global feature representation. 2) The previous
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FIGURE 1. Temporal Segment Connection Network (TSCN): One input video is divided into K segments and a sampling group is
randomly selected from each segment. Then, the sampling groups are input into a forget-gate connection module to calculate the deep
features and predict the action label of the input video. At the same time, an adaptive weighting module is applied to evaluate
importance weights of the sampling groups. Finally, the importance weights are combined with the predictions of each sampling group
to obtain the final video-level prediction.

works do not differentiate the importance of different sam-
pling groups. Comparatively, our approach introduces an
adaptive weighting module to automatically evaluate the
importance weights of each sampling group.

III. TEMPORAL SEGMENT CONNECTION NETWORK
The framework of the proposed TSCN is shown as Fig. 1.
TSCN is mainly composed of one forget-gate connection
module and one adaptive weighting module. The purpose of
TSCN is to strengthen temporal information and extract com-
plementary information between sampling groups to obtain a
more global representation of actions.

A. ARCHITECTURE
The architecture of the proposed TSCN is developed from
TSN, which aims at modeling long-term temporal structure.
TSN operates on a sequence of short snippets sparsely sam-
pled from the entire video instead of a single frame or frame
stack. Each snippet generates an action class prediction, and
finally gathers all predictions of sampling groups to obtain
the final video-level prediction.

Based on TSN, our model TSCN establishes feature-level
forget-gate connections between sampling groups to obtain
a more global representation of actions. Then TSCN further
introduces an adaptive weighting module to adaptively eval-
uate the importance of each sampling group. Specifically, our
backbone network is DenseNet.

Formally, given a video V , we divide it into K segments
{S1, S2, . . ., SK} with equal durations. The sampling group
si, i ∈ [1, K ] is randomly sampled from the correspond-
ing sequence segment Si. Then the sampling groups are
input into the forget-gate connection module to calculate the
deep feature and predict the action label of the input video.
At the same time, an adaptive weighting module is applied

to evaluate the importance weights of each sampling group.
Finally, the importance weights are combined with the pre-
diction of each sampling group to obtain the final video-level
prediction.

B. FORGET-GATE CONNECTION MODULE
An Forget-gate Connection Module (FCM) is introduced to
overcome the limitation that the entire video information is
hardly represented due to the independent training for each
sampling group. Instead of layer-to-layer feature connec-
tions, block-level feature connections are established between
adjacent sampling groups, which can not only enhance the
generalization ability of the network, but also increase the
propagation speed. In detail, the feature-level forget-gate con-
nections are established between adjacent sampling groups to
extract temporal information Gt , and then Gt is input to the
latter sampling group as the action supplement information
of the previous sampling group. Finally, the feature-level
forget-gate connections are established between all sampling
groups to complete the transfer of global action information.
Considering that the sampling groups are connected in the
same way on Flow and RGB, only the connection method of
RGB is shown here. The detailed structure of FCM is shown
as Fig. 2.

Concretely, the feature-level forget-gate connection can be
formulated as:

X i+1R+1 = p(X iR+1)+ G(p(X
i
R+1), p(X

i
R)) (1)

where X iR and X iR+1 represent the inputs for the ith block of
the adjacent RGB sampling groups. p(·) presents the original
function that transfers the input of the ith block to the (i+1)th

block in the correspondingConvNet. Operator+ indicates the
elementwise addition. G(·) denotes the forget-gate operation,
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FIGURE 2. The architecture of Forget-gate Connection Module (FCM). σ represents the feature-level forget-gate connection,
which is equivalent to the G(·) function in Eq. (1), and + represents the element-level addition.

which can be depicted as:

G(p(X iR+1), p(X
i
R)) = f ∗ (p(X iR+1) · p(X

i
R)) (2)

f = σ (WR+1· (X iR+1 +WR · p(X iR + bf ))) (3)

where · represents elementwise multiplication, ∗ represents
matrix multiplication. σ (·) presents the Sigmoid function,
WR+1, WR and bf represent weights and bias respectively.
After the Sigmoid function operation, f will get a matrix
whose elements range from 0 to 1. Then f is used to adjust the
amount of information input into the next sampling group.

Eq. (1) illustrates that the input of the (i + 1)th block of
the current sampling group is the combination of the output
of the ith block and the output of the ith block of the previous
sampling group. Based on the above formulas, the gradient of
the loss function L in backpropagation can be expressed as:

∂L

∂X iR

=
∂L

∂X i+1R

∂X i+1R

∂X iR
(4)

∂L

∂X iR+1

=
∂L

∂X i+1R+1

∂X i+1R+1

∂X iR+1

=
∂L

∂X i+1R+1

(
∂P(X iR+1)

∂X iR+1
+
∂G(P(X iR+1),P(X

i
R))

∂X iR+1

)
(5)

. . . . . . ,

∂L

∂X iR+k−1

=
∂L

∂X i+1R+k−1

∂X i+1R+k−1

∂X iR+k−1

=
∂L

∂X i+1R+k−1

×

(
∂P(X iR+k−1)

∂X iR+k−1
+
∂G(P(X iR+k−1),P(X

i
R+k−2))

∂X iR+k−1

)
(6)

where k indicates the number of sampling groups in the entire
video.

Based on these formulas, the propagation of the gradient
traverses all sampling groups, which improves the temporal
connection between the sampling groups and enhances the
transfer of complementary information.

C. ADAPTIVE WEIGHTING MODULE
In order to distinguish the discrimination ability of different
sampling groups, an Adaptive Weighting Module (AWM)
is introduced as shown in Fig. 3. The information of the
sampling group is extracted and transmitted to the next sam-
pling group, intuitively, the later sampling group contains
more information. In other words, the amount of information
contained in each sampling group is different. Therefore,
AWM is used to evaluate the importance weights of each
sampling group dynamically.

Specifically, the sampling groups are input into the FCM to
calculate the deep feature sequence {M1, M2, . . . , Mk}.
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FIGURE 3. The architecture of Adaptive Weighting Module (AWM). The
deep feature sequence {M1, M2, . . . , Mk } is input into Bi-LSTM to evaluate
the importance weights of each sampling group.

To capture the temporal relationship of sampling groups,
the deep feature sequence is input into Bi-directional
LSTM for evaluation. Compared with the naïve LSTM,
Bi-directional LSTM can utilize both the forward and back-
ward direction context information to obtain a more global
assessment. The specific formulation is defined as follows:

hft = tanh(W f
x xt +W

f
h h

f
t−1 + b

f
h),

hbt = tanh(W b
x xt +W

b
h h

b
t+1 + b

b
h),

ut = W t
uh

f
t−1 +W

b
u h

b
t+1 + bu

(7)

where hft is the forward propagation sequence, hbt is
the backward propagation sequence and ut is the output
sequence. Bi-direction LSTM computes hft , h

b
t , ut by iterating

the backward layer at time t .
Outputs of Bi-directional LSTM classifier are k

fixed-dimension vectors {u1, u2, . . . , uk} and the intermediate
vector u(k+1)/2 ∈ Rk is chosen as our proposal. Since the
Bi-directional LSTM is adapted, intuitively the intermediate
vector u(k+1)/2 can get the information from both directions.
Then our proposal u(k+1)/2 is input into a Softmax layer to
obtain a weight vector S. The weight vector S indicates the
importance of each sampling group. Finally, the importance
weights S are assigned to the deep feature sequence M to
obtain the final feature representation V and the prediction
result y, as shown:

V =
k∑
i=1

exp (S (i))
k∑
j=1

exp (S (j))

Mi (8)

y = W lV (9)

where W l is the parameter of linear transformation of
consensus feature V to final prediction result y.

IV. EXPERIMENT AND ANALYSIS
In this section, we first give a brief introduction of two
standard benchmarks used in experiments, namely HMDB51
[28] and UCF101 [29]. Then we present the implementa-
tion details of the proposed TSCN. Finally, we provide the

experimental results and compare our model with current
state-of-the-art models.

A. EVALUATION DATASETS
UCF101 is one of the most popular action recognition
datasets of realistic action videos. It contains of 13320 videos
taken from YouTube, which are divided into 101 action cat-
egories. Each category contains videos between [100, 200].
UCF101 is comparatively more challenging dataset due
to its large number of action categories from five major
types: 1) human-object interaction, 2) body-motion only,
3) human-human interaction, 4) playing musical instruments,
and 5) sports.

The HMDB51 dataset contains a variety of actions related
to human body movements including objects interaction
with body, facial actions, and human interaction for body
movements. It consists of 6766 action video clips, which
are divided into51 classes, each containing more than one
hundred clips. It is more challenging because the clips of
each category are collected for a variety of subjects with
different illuminations and 4 to 6 clips are recorded for each
subject performing the same action on different poses and
viewpoints.

We follow the evaluation scheme of the THUMOS13
challenge and adopt the three training/testing splits for eval-
uation. A few sample images from each action category are
given in Fig.4.

B. IMPLEMENTATION DETAILS
We first train the spatial network and temporal network
separately as describe in [15]. In our experiments, we use the
pretrained DenseNet169 on ImageNet [30] as the backbone
model of two-stream network. For the extraction of optical
flow images, we use the TVL1 optical flow algorithm imple-
mented in OpenCV with CUDA. During training, we first
scale the image size to 256×340 and then crop the image. The
width and height of the cropped region are randomly selected
from {256, 224, 192, 168}. Next, all of the cropped images
are resize to 224× 224.

The mini-batch stochastic gradient descent algorithm is
used to learn the network parameters, where the batch size
is set to 8 to fit the GPU memory and momentum is set to
0.9. Then a smaller learning rate is set in our experiments.
For spatial network, the learning rate is set as 0.001, which
reduces to its 1/10 after 15,000 and 30,000 iterations. The
maximum iteration is set as 50,000. For temporal networks,
the learning rate is initiated as 0.005 and decrease to its
1/10 after 95,000 and 150,000 iterations. The whole train-
ing procedure stops at 200,000 iterations. In order to avoid
over-fitting, typical data augmentation strategies are utilized,
including location jittering, scale jittering, horizontal flipping
and corner cropping.

C. EXPERIMENTAL RESULTS AND DISCUSSIONS
In order to verify the effect of the TSCN model on action
recognition, the basic model TSN is used for comparison on
HMDB51 and UCF101. The comparison results are shown
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FIGURE 4. Sample action categories of UCF101 and HMDB51 action dataset.

FIGURE 5. Class-wise accuracy of the proposed TSCN on UCF101 for action recognition.

TABLE 1. Comparison results of TSN and our TSCN on HMDB51 and
UCF101.

in Table 1. During the training phase, the number of seg-
ments is set to 3. In the test phase, the number of segments
is set to 24 instead of the original 25 to suit our network
structure. The ConvNet used here is DenseNet169. If not
stated, the basic ConvNet used in the following sections is
DenseNet169.

From Table 1, it is observed that the TSCN yields consis-
tent better results than TSN, which verifies the superiority of
TSCN in all splits of HMDB51 and the first split of UCF101.

In order to analyze the experimental results in more detail,
we first provide the class-wise accuracy of UCF101 dataset
on the test data, as shown in Fig. 5. The horizontal axis
represents categories and the vertical axis shows the accuracy
of the corresponding category. From results, it can be seen
that the results of most of the categories are greater than
80%; some of them reach 100%; and only one category has
accuracy less than 60%. The proposed method improved the
recognition rate on UCF101 dataset from 93.3% to 94.2%.
Then we provide a comparison chart of the accuracy of TSCN
and TSN on the test data of HMDB51 dataset, as shown
in Fig. 6. The horizontal axis represents categories and the
vertical axis shows the accuracy of the corresponding cat-
egory. It can be seen that the accuracy of 30 categories of
TSCN exceeds TSN, the accuracy of more than 10 categories
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FIGURE 6. Class-wise accuracy of the proposed TSCN and TSN on HMDB51 for action recognition.

TABLE 2. Comparison results of different positions and numbers of FCM
on UCF101.

is equal to TSN, and the accuracy of 10 categories of TSCN
is lower than TSN. The proposed method increased the
recognition rate on HMDB51 from 68.3% to 70.3%.

In order to further explore the influence of the position
and number of FCM insertion on the experimental results,
7 groups of experiments were compared as shown in Table 2.
Wherein ‘‘Block n’’ means adding FCM after the nth dense
block. ‘‘Block2-3-4’’ means insert FCM after the second,
third and fourth dense blocks respectively. Our basic network,
DenseNet169, contains 4 dense blocks in total. Though the
comparative experiment, two main phenomena are found.
One is that the FCM is inserted in different positions and the
experimental results have little difference. The other is that
the recognition accuracy will increase as the number of FCM
increases.

Then we visualize the block-level features in the network
structure to explore the effect of TSCN in more detail,
as shown in Fig. 7. For the sake of display, we only
show the features extracted from the second and fourth
blocks. Two different actions are compared, one is the action
‘‘ApplyEyeMakeup’’ with high similarity between the sam-
pling groups, and the other is the action ‘‘Flic_Flac’’ with
strong heterogeneity and more complementary information.
In Fig. 7 (a), the sampling groups are similar, so there is little
complementary information between the sampling groups.
In this case, the performance of our TSCN is similar to
that of TSN. In Fig. 7 (b), each sampling group has strong
heterogeneity and compact temporal connection. It can be
seen that compared with previous sampling group, the latter

FIGURE 7. Visualize the feature maps of the sampling groups on the
second dense block and the fourth dense block of TSCN.

sampling group contains more abundant and abstract infor-
mation. Rich information can improve the accuracy of action
recognition, so TSCN gets a better recognition result on the
action ‘‘Flic_Flac’’: 93.3% vs 76.7%. It shows that TSCN can
strengthen the temporal connection, improve the utilization
of complementary information, and have better recognition
results for the more heterogeneous actions.

Establishing feature-level connections between sampling
groups will result in different amounts of information con-
tained in different sampling groups, so we introduce an
AWM to automatically evaluate the importance weights of
each sampling group. To examine the effectiveness of our
AWM, the average weighting method (AVG) in TSN is used
for comparison as shown in Table 3. From Table 3, it can
be seen that the recognition accuracy using our AWM is
about 0.2% higher than the accuracy using AVG. In order
to show the effect of AWM more clearly, we visualize the
importance weight given to each sampling group, as shown
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FIGURE 8. Visualize the weight distribution of AWM to the sampling groups. Three situations (A), (B) and (C) are
used for comparative analysis to prove the effectiveness of our AWM.

TABLE 3. Comparison of methods with average weighting and adaptive
weighting.

in Fig. 8. In Fig. 8, three situations (A), (B) and (C) are used
for comparative analysis to prove the effectiveness of our
AWM. In Fig. 8(A), three sampling groups all give correct
predictions, and the results obtained by AWM are similar to
those obtained by AVG. In Fig. 8(B), two sampling groups
give correct predictions and one sampling group gives wrong
predictions. AVG made the correct prediction, and AWM
slightly strengthened the significance of the result to AVG.

In Fig. 8(C), one sampling group gives correct predictions,
and two sampling groups give wrong predictions. AVG made
the wrong prediction, while AWMgave the correct prediction

TABLE 4. Comparison of TSCN with different model depth on
HMDB51 and UCF101.

through adaptive weight distribution. It can be seen from
the experiment that AWM mainly plays a fine-tuning role.
The stronger the heterogeneity of sampling groups, the more
obvious the effect of AWM. It also proves that AWM can
dynamically assign different weights to different sampling
groups.

To assess whether TSCN can generalize well with
different model depth or not, the results of TSCN based
on DenseNet169 and DenseNet201 are presented as shown
in Table 4. Table 4 illustrates that the TSCN with deeper
architecture achieves uniformly better results, which verifies
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TABLE 5. Comparison with current state-of-the-art methods on
UCF101 and HMDB51.

the generalization capacity of TSCN in terms of model
depth.

D. COMPARISON WITH THE STATE-OF-THE-ART
At last, our model is compared with the state-of-the-art
methods on both UCF101 and HMDB51 datasets. The com-
parison results are summarized in Table 5. Compared with
TSN, under the same basic network DenseNet169, our model
can at least improve the accuracy by 1.8% on the HMDB51
dataset, and 0.9% on the UCF101 dataset. The superior
performance of our model demonstrates that it is necessary
to establish feature-level connections between the sampling
groups for a global action representation. However, com-
pared to the recently developed models, TSCN does not
show a significant advantage. We mainly summarize the
reasons in three points: First, TSCN shows advantages on
the more heterogeneous datasets, while the exiting datasets
have weak heterogeneity. Second, there is no doubt that
the establishment of feature-level connections between sam-
pling groups can improve the recognition accuracy, but
whether there is a better connection method is still worthy
of study. Third, TSCN is developed from TSN, so it is dif-
ficult for TSCN to break through the inherent bottleneck
of TSN.

V. CONCLUSION
This paper presents a novel Temporal Segment Connection
Network (TSCN) for action recognition. Our framework con-
sists of two key ingredients: 1) a Forget-gate Connection
Module, which extracts and integrates deep feature from
multiple sampling groups to obtain a more global feature
representation for actions. 2) an Adaptive Weighting Module
which learns to endow different weights for different sam-
pling groups.With this framework, we achieve promising per-
formance on both UCF101 and HMDB51 datasets. However,
our model is still not perfect. On the one hand, our model has
higher memory requirements; on the other hand, there is still
much room for improvement in the connection method of the
sampling groups. Future works will explore more effective
interaction strategies between sampling groups to improve
action recognition.
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