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ABSTRACT In this paper, a graph-based semi-supervised learning (GSSL) algorithm, greedy-gradient max
cut (GGMC), based fault diagnosis method for direct online induction motors is proposed. Two identical
0.25 HP three-phase squirrel-cage induction motors under healthy, single- and multi-fault conditions were
tested in the lab. Three-phase stator currents and three-dimensional vibration signals of the two motors were
recorded simultaneously in each test, and used as datasets in this study. Features for machine learning are
extracted from experimental stator currents and vibration data by the discrete wavelet transform (DWT).
To validate the effectiveness of the proposed GGMC-based fault diagnosis method, its classification
accuracy using binary classification and multiclass classification for faults of the two motors are compared
with other two GSSL algorithms, local and global consistency (LGC) and Gaussian field and harmonic
function (GFHF). In this study, the performance of stator currents and vibration as a monitoring signal
is evaluated, it is found that stator currents perform much better than vibration signals for multiclass
classification, while they both perform well for binary classification.

INDEX TERMS Fault diagnosis, discrete wavelet transform, inductionmotors, graph-based semi-supervised
learning, greedy-gradient max cut, stator current, vibration.

I. INTRODUCTION
Induction motors are most widely used electric machines
in various industrial applications. According to a survey for
0.75 kW to 150 kW induction motors, the following faults
regularly occur in induction motors: 7% broken rotor bar
faults, 21% stator winding faults, 69% bearing faults, and
3% shaft/coupling and other faults [1]. To improve reliability
of critical industrial processes and reduce operational down-
time, effective diagnosis for electrical and mechanical faults
in induction motors is essential.

Induction motor fault diagnosis methods reported in the
literature can be divided into three categories:

1) signature extraction-based approaches, where fault sig-
natures in time and/or frequency domain are extracted from
recorded signals, such as voltage, current, vibration and leak-
age flux, and are employed to diagnose faults. The Motor
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Current Signature Analysis (MSCA) method is one of
the most popular techniques in an industrial environment,
and most successful in detecting broken rotor bars or end
rings [2], [3]. However, the false fault indication is a common
issue using MSCA [3], [4].

2) model-based approaches, which relies on the machine’s
mathematical modeling under fault conditions [5]–[7].
However, precise motor models are often difficult to develop.

3) knowledge-based approaches, where artificial intelli-
gence techniques are increasingly used for fault diagnosis
in complex time-varying and non-linear systems [8]. The
knowledge-based approaches are data-driven-based, and do
not require creating machine models for faulty conditions.
Recent advancement of signal processing and artificial intel-
ligence has attracted renewed interests of induction motors
fault diagnosis using machine learning [9]–[11]. Supervised
learning [9] is the most commonly used method; semi-
supervised learning [10] and deep learning [12] are also
reported in the literature in this area.
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Machine learning needs datasets recorded from field mea-
surements or lab experiments. Although collecting data in
industrial processes is not difficult as condition data are
continuously monitored, labeling data samples is a time-
consuming and cost-prohibitive task, and requires the expert
intervention [13], [14]. Large quantities of labeled sam-
ples are required for supervised learning and deep learning.
In this regard, semi-supervised learning (SSL) has advantages
because only a small amount of labeled data are required to
train a classification model from a vast amount of unlabeled
data [13], [14].

SSL techniques have been employed to improve efficiency
and accuracy of different fault diagnostic systems [14]–[17].
A differential evolution-based positioning optimization algo-
rithm is proposed in [14] to label unlabeled data by a repeti-
tive self-labeling process. Modified kernel semi-supervised
locally linear embedding is proposed in [17] for electrical
fused magnesia furnace fault diagnosis. SSL has also gained
more popularity in the field of induction motors fault diag-
nosis [10], [12], [16], [18], [19]. The published methods
include semi-supervised smooth alpha layering for bearing
fault diagnosis [10], semi-supervised label consistent dictio-
nary learning framework for machine fault classification [16],
semi-supervised deep learning for induction motor gear
fault diagnosis [12], manifold regularization-based semi-
supervised learning for bearing fault diagnosis [18], and a
deep SSL method for motor planetary gearbox fault diag-
nosis [19]. All SSL-based induction motors fault diagnosis
methods reported in the literature use vibration signals, and
mostly deal with an individual fault detection [10], [16], [18].

However, in real life, faults in electric machines might
occur in a cascade sequence, a fault at one location in the
machine may cause a fault at other location. Therefore, single
fault or several different types of faults occurred simultane-
ously inside the machine are potential scenarios that must be
considered for fault diagnosis. The existing SSL methods did
not cover this aspect. We will tackle this issue in this paper
by considering single- and multi-fault conditions of induction
motors through binary classification (an individual fault vs.
the healthy case), and multiclass classification (several types
of faults and the healthy case).

As one of the main families of transductive semi-
supervised techniques, the graph-based semi-supervised
learning (GSSL) is among the most popular and most effec-
tive semi-supervised learning strategies [14], [20]. GSSL can
exploit connectivity patterns between labeled and unlabeled
samples to improve classification performance through the
nearest neighbor graph, which is built to capture the manifold
of the data, the classification is then performed by propagat-
ing the information from labeled to unlabeled samples along
the edges of the graph [14], [20]. Research using GSSL has
been reported in [21]–[25]. GSSL is implemented in the fault
detection and classification in PV arrays in [13]. Three GSSL
algorithms, local and global consistency (LGC), Gaussian
random field (GRF), and graph transduction via alternat-
ing minimization (GTAM), are compared using simulated

and benchmark datasets in [21]. A greedy-gradient max cut
(GGMC)-based bivariate formulation strategy for GSSL is
proposed in [22], and the extension of this strategy for mul-
ticlass problems is shown in [23], [25]. Multi-label GSSL-
based residential load monitoring is proposed in [24].

Although GSSL is considered among the most popular
and most effective SSL, to the authors’ best knowledge, its
application in induction motors fault diagnosis has not been
investigated. To fill in this research gap, for the very first
time, we propose a GGMC-based direct online induction
motors fault diagnosis method in this paper. The datasets used
in this study are experimental stator current and vibration
signals recorded in the lab for two identical 0.25 HP three-
phase squirrel-cage induction motors under healthy, single-
and multi-fault conditions. To validate the effectiveness of
the proposed method, binary classification and multiclass
classification are conducted for faults of the two motors, and
the results are compared with other two GSSL algorithms,
LGC and Gaussian field and harmonic function (GFHF).

The main contributions of this paper include:
1) propose an effective GGMC-based direct online induc-

tion motors fault diagnosis approach using experimental sta-
tor current or vibration signals;

2) consider single- and multi-electrical and mechanical
faults in the fault profile, and conduct both binary clas-
sification and multiclass classification to classify faults of
the motors using the proposed approach to evaluate its
performance;

3) compare the performance of the proposed GGMC-based
approach with other GSSL algorithms, LGC and GFHF; and

4) evaluate the effectiveness of experimental stator cur-
rents or vibration as a monitoring signal for the proposed fault
diagnosis approach.

The paper is organized as follows: the proposed GGMC-
based fault diagnosis method, an overview of the basic prin-
ciple of GSSL, together with introduction of GGMC, LGC
and GFHF algorithms, are provided in Section II; the experi-
mental setup for the two 0.25 HP induction motors connected
direct online is explained in Section III; feature extraction
using Discrete Wavelet Transform (DWT) and sample fea-
tures are demonstrated in Section IV; the result analysis
is conducted in Section V; and conclusions are drawn in
Section VI.

II. THE PROPOSED METHOD AND FUNDAMENTAL
THEORY OF GSSL
The proposed GGMC-based fault diagnosis method for direct
online induction motors in this paper can be implemented in
the following three steps:

Step 1: Data acquisition through either experiments in
a lab or field measurements. The proposed fault diagnosis
approach is based on machine learning, and relies on datasets
representing various healthy and faulty machine conditions
for the fault classification training purpose. To obtain suit-
able datasets, in this paper, experiments were conducted in a
lab for two three-phase 0.25 HP squirrel-cage direct online
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induction motors subjected to healthy, single- and multi-
fault conditions under different motor loadings. The three-
phase stator currents and three-dimensional vibration signals
at the axial (x-axis), vertical (y-axis) and horizontal (z-axis)
directions were recorded simultaneously in each test. The
monitoring signal selection is essential for fault diagnosis,
as not all signals work equally well. In this paper, we choose
stator currents and vibration as the monitoring signals and
their experimental data serve as the datasets for machine
learning. Their effectiveness is evaluated and compared in
Section V. The details of the experimental set-up for data
acquisition are provided in Section III.

Step 2: Feature extraction through DWT for the stator cur-
rent and vibration datasets obtained in Step 1. The extracted
features are later used in machine learning in Step 3. DWT is
suitable for computerized implementation of wavelet trans-
form (WT) of an input signal due to the following advantages:
1) the original signal is decomposed into approximation
(low-frequency components) and detail (high-frequency
components) levels through the multi-resolution analysis
(MRA); 2) decomposition levels contain sufficient informa-
tion of the original signal with significantly less computa-
tional time; and 3) scale and shift parameters of WT can
be discretized. The DWT of a signal can be represented as
follows [26]:

DWT (j, k) = |sj|
−1/2

∑
k
x|k|ψ(

t − kτ sj

sj
) (1)

where ψ(t) is the wavelet function; x|k| is the input signal;
s and τ are the scale and shift parameters, respectively; j and k
are positive integers. The details of feature extraction using
DWT are discussed in Section IV.

Step 3: Binary classification and multiclass classification
usingGGMC to detect faults of inductionmotors. Binary clas-
sification deals with an individual fault vs. the healthy case;
while multiclass classification classifies faults among differ-
ent single- and multi-faults and the healthy case. They are
equally important as similar situations might appear in real
life duringmotor operation. The proposedGGMC-based fault
diagnosis approach can be fully evaluated through binary
and multiclass classifications. To validate the performance
of the proposed approach, other two state-of-the-art GSSL
algorithms, LGC and GFHF, are compared with GGMC. The
fundamental theory of GGMC, LGC, andGFHF is introduced
in this section. The performance of the proposed method is
demonstrated in Section V.

The flowchart of the proposed fault diagnosis approach is
shown in Fig. 1.

A. FUNDAMENTAL THEORY OF GSSL
The GGMC algorithm belongs to the family of GSSL. Before
introducing GGMC, we first introduce the basic principle of
GSSL. Assuming that a dataset has both labeled and unla-
beled data, the GSSLmethod approximates a weighted sparse
graph from the total input data and provide an estimate of
unknown labels using known labels. The actual labels are

FIGURE 1. The flowchart of the proposed fault diagnosis approach.

determined later on by optimizing a fitness function chosen
appropriately. G= {X , E ,W} is assumed to be the undirected
graph generated from the input data, where the set of vertices
is X = {xi} (each sample xi is a vertex), the set of edges is
E= {eij}, and the weight matrix is W= {wij}. The weight of
edge eij is wij, the weights for edges are used to construct
the weight matrix W. The vertex degree matrix D = diag
([d1,. . . , dn]) is defined as di =

∑n
j=1 wij. The graph Lapla-

cian is defined as 1 = D − W, and the normalized graph
Laplacian can be represented as follows [22]:

L = D
−1/21D

−1/2 = I − D
−1/2WD

−1/2 (2)

where 1 is the standard graph Laplacian quantity.
The smoothnessmeasurement of the function space f using

L over a graph is defined by [25]:

〈f ,Lf 〉 =
∑

i

∑
j
wij

∥∥∥∥∥ f (xi)√d i − f (xj)
√
d j

∥∥∥∥∥
2

(3)

A label matrix is formed as Y = {yij}, which contains the
label information: yij = 1 if xi is associated with label j
for j ∈ {1,2,. . . , c}(c is the number of classes); otherwise,
yij = 0. Let F = f (X ) be the classification function over
the dataset X . The GSSL algorithms use W and the known
labels to minimize a fitness function defined on the graph G
and retrieve a continuous classification function F .

The graph can be formulated in two typical ways: 1) the
ε-neighborhood graph connecting samples within a distance
of ε, and 2) the kNN graph connecting k-nearest neighbors.
In practice, a kNN graph is more robust to scale variation and
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FIGURE 2. Experimental test bench.

abnormalities in the data density [27]. Therefore, the kNN
neighborhood graphs are adopted in this paper.

There are two schemes mostly considered for graph edge
reweighting: binary edge weighting and fixed Gaussian ker-
nel edge weighting [21]. In this paper, both edge weighting
schemes are used in the chosen GSSL algorithms.

B. THREE GSSL ALGORITHMS: GGMC, LGC, AND GFHF
In this paper, three GSSL algorithms are involved: GGMC.
LGC and GFHF. GGMC is used in the proposed approach,
the effectiveness of the proposed approach is further validated
by comparing with LGC and GFHF.

For LGC and GFHF algorithms, a fitness function Q is
defined by involving two penalty terms: the global smooth-
ness Qsmooth and the local fitting accuracy Qfit . The final
classification functionF is obtained byminimizing the fitness
function Q by [28]

F∗ = arg min
F∈Rn×c

Q (F) = arg min
F∈Rn×c

(Qsmooth (F)+ Qfit (F))

(4)

For LGC, the objective function is formulated by [19]

Q (F) = ‖F‖2G +
µ

2
‖F − Y‖2 (5)

where the first term ‖F‖2G represents the function smoothness
over the graph G, ‖F − Y‖2 in the second term estimates
empirical losses of the given labeled samples, and the coef-
ficient µ in the second term provides a balance between the
global smoothness and the local fitting terms. If µ = ∞ and
the standard graph Laplacian quantity 1 for the smoothness
term is implemented, Eq. (4) is reduced to GFHF by [29]

Q (F) = tr(FT1F) (6)

The optimization problem in LGC and GFHF can be bro-
ken down into separate problems as additive terms [30].
However, such decomposition method may result in biases if

input labels are not balanced proportionally, whichmay cause
inconsistent classification results.

To solve this problem, GGMC was created through a
bivariate formulation that explicitly optimizes over both
the classification function F and the label matrix Y as
follows [14]:

Q (F,Y ) =
1
2
tr
(
FTLF + µ (F − Y )T (F − Y )

)
(7)

In GGMC, unlabeled vertices are assigned to labeled vertices
in a way that lowers the value of the fitness function Q
along with the steepest descent direction in the greedy step.
To avoid biases, imperfect graph-cuts, the outliers’ effect,
the weighted connectivity among all unlabeled and labeled
vertices are defined to minimize the label imbalance over
different classes. In this study, the above formulations are
extended to multiclass classification [22], [23], [31].

III. EXPERIMENTAL SETUP
Machine learning datasets used in this paper are obtained
through experiments in the lab by testing two direct online
induction motors. The experimental set-up is shown in Fig. 2,
which contains a direct online induction motor and its load.
Each of the two identical three-phase squirrel-cage induc-
tion motors used in the testing is rated at 0.25 HP, 4-pole,
208-230/460 V, and 1725 r/min (Model LEESON-101649).
Since the two motors are identical in their nameplate ratings,
themodel and themanufacturer, they are treated as sister units
and named ‘‘Motor 1’’ and ‘‘Motor 2’’. A dynamometer was
coupled to the motor shaft through a belt pulley, serving as
the load of the motor.

An eight-channel power quality analyzer, PQPro by
CANDURA Instruments, is used to record three-phase stator
currents of the tested motor. A tri-axial accelerometer with a
four-channel sensor signal conditioner mounted on top of the
motor near the face end is used to record x-, y-, and z-axes
vibration signals. The stator currents and vibration signals
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FIGURE 3. Implementation of different faults in the laboratory test
bench: (a) One BRB; (b) Two BRBs; (c) Three BRBs; (d) BF; and (e) UNB.

weremeasured simultaneously for each testing. The sampling
frequency for stator currents is 15.38 kHz, and for vibration
signals is 1.3 kHz.

The purpose of the testing is data acquisition. Therefore,
each induction motor must be tested under healthy and var-
ious faulty conditions. To create faulty conditions, the two
motors were subjected to different types of single- and multi-
faults in the lab.

Motor 1 was mainly used to test different mechanical
faults, these faults were created by physically damaging the
motor. Five single- and multi-faults were created for Motor
1 and the motor was tested under the following six states:
1) healthy (H); 2) unbalance shaft rotation (UNB); 3) bearing
fault (BF); 4) a multi-fault by combining BF and UNB faults
(BF+UNB); 5) a multi-fault by combining BF and one bro-
ken rotor bar (BRB) faults (BF+ 1BRB), and 6) a multi-fault
by combining BF, UNB, and unbalanced voltage (UV) con-
dition from the three-phase power supply (BF+UNB+UV).

Motor 2 was mainly used to test different electrical faults,
these faults were also created by physically damaging the
motor. Five single- and multi-faults were created for Motor
2 and the motor was tested under the following six states:
1) healthy (H); 2) UV from the three-phase power supply
(UV); 3) one BRB fault (1BRB); 4) two BRBs fault (2BRB);
5) three BRBs fault (3BRB); and 6) a multi-fault by combin-
ing UV and three BRBs faults (UV + 3BRB).

A BRB fault was created by drilling a hole of a 4.2 mm
diameter and 18 mm depth in the rotor bar. One hole was
drilled for one BRB fault (Fig. 3a); two and three holes with
90◦ separations were drilled for two and three BRBs faults,
respectively (Figs. 3b and 3c). A sandblasting process was
used to realize a general roughness type of BF in the motor,
and the outer and inner raceway of the bearing became very
rough as shown in Fig. 3d. The UNB was created by adding
extra weight on the part of the pulley (Fig. 3e). A UV con-
dition was produced by adding extra resistance at the second
phase of the motor power supply.

Each motor had 6 states during testing, either healthy or
faulty as defined previously. For each motor state, six dif-
ferent motor loadings (10, 30, 50, 70, 85, and 100%)
were tested, which leads to 36 testing per motor. A total
of 72 tests were conducted for the twomotors to cover various
healthy or faulty states and motor loading conditions. Only
the measured stator currents at the 2nd phase and the vibration
at z-axis were used for feature extraction through the DWT.

In this study, the recorded stator current and vibration
datasets were selected uniformly with 90,000 data points for
each testing of the two motors. The datasets were further par-
titioned into a fixed window size of 9,000, resulting in 10 data
windows for each dataset.

For binary classification, only the healthy and one faulty
cases are considered, which lead to 2 class labels for each
motor within a data window; since there are 10 data windows
for a dataset under each motor loading, it leads to a total
of 2 × 10 = 20 class labels for a dataset. For multiclass
classification, Motors 1 and 2 each has the healthy and five
faulty cases, so there are 6 class labels for each motor within
a data window; since there are 10 data windows for a dataset
under each motor loading, it leads to a total of 6 × 10 = 60
class labels for a dataset.

IV. FEATURE EXTRACTION
The DWT inMATLAB’sWavelet Analyzer toolbox is imple-
mented to process the sample data in each data window for
feature extraction. Among wavelet families, the Daubechies
wavelet with four vanishing moments as db4 is chosen as the
mother wavelet with up to the 6th level of decomposition.
The following ten time-domain statistical features extracted
through DWT for the datasets are selected in this paper: the
maximum value of the data window, the minimum value of
the data window, mean, median, median absolute deviation,
mean absolute deviation, L1 norm, L2 norm,maximum norm,
and standard deviation.

Figs. 4 and 5 show the DWT processed vibration and stator
current signals for Motor 1 with a BF under 85% and 10%
motor loading, respectively, where s denotes the actual signal,
a6 and d1-d6 are approximation and detail levels, respectively.
Tables 1 and 2 show samples of features extracted by

DWT. Table 1 is for the z-axis vibration signal for Motor 1
with a BF fault under 85% motor loading. Table 2 is for the
stator current signal measured at the second phase, I2, for
Motor 1 with a BF fault under 10% motor loading. Every
set of ten features in each row of the tables, such as s1 at
the first row of Tables 1 and 2, is processed using DWT by
choosing a data window containing 9,000 sample points from
the vibration or stator current datasets. Similarly, other nine
sets of features (from s2 to s10) are determined by taking sam-
ple points from nine different data windows. The sample of
features in each table is extracted based on 10 data windows
containing a total of 90,000 sample points as mentioned in
previous section.
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TABLE 1. The sample of features extracted by DWT using z-axis vibration signal (Motor 1, BF, 85% loading).

TABLE 2. The sample of features extracted by DWT using stator current I2 (Motor 1, BF, 10% loading).

FIGURE 4. The DWT processed vibration signal for Motor 1 (BF and 85%
motor loading).

V. RESULT ANALYSIS
In this section, classification accuracy of the proposed
GGMC-based fault diagnosis approach is compared with
LGC and GFHF through binary and multiclass classification.

FIGURE 5. The DWT processed stator current signal for Motor 1 (BF and
10% motor loading).

As previously defined, each of the two motors has six
states, either healthy or faulty, which are defined as six
classes in machine learning. The set of six classes is
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different from Motor 1 to Motor 2: for Motor 1, they
are ‘‘H’’, ‘‘UNB’’, ‘‘BF’’, ‘‘BF+UNB’’, ‘‘BF + 1BRB’’,
and ‘‘BF+UNB+UV’’; for Motor 2, they are ‘‘H’’, ‘‘UV’’,
‘‘1BRB’’, ‘‘2BRB’’, ‘‘3BRB’’, and ‘‘UV+3BRB’’.

GGMC, LGC and GFHF are implemented in MATLAB
and all run with 100 independent folds with random sam-
pling using the graph construction procedure mentioned in
Section II. It is found that GGMC, LGC and GFHF require
very similar run-time to output a prediction. For the edge
weighting schemes, binary and fixed Gaussian kernel edge
weighting are used for the algorithms in the paper. The
sparsification is performed using the kNN approach. For the
kNN graph construction, k = 2 is used uniformly for binary
classification for cases between ‘‘healthy’’ and one individual
fault; while k = 4 is used for multiclass classification for
cases with healthy plus five faulty states for each motor. For
GGMC and LGC, the value of hyper-parameter µ = 0.01 is
used across all cases.

Table 3 shows the parameter settings of the three algo-
rithms, GGMC, LGC and GFHF, used in this work.
Table 4 lists the user-defined parameters used to compare the
performance of these algorithms.

TABLE 3. Parameter settings of the GSSL algorithms.

TABLE 4. User-defined parameters for the GSSL algorithms.

A. BINARY CLASSIFICATION FOR MOTOR 1
For binary classification for Motor 1, GGMC, LGC and
GFHF need a random stratified selection of 2 known labels
to ensure at least one representative instance from the two
different classes is chosen. The number of known labels
gradually increases up to 10 in each case, denoting half of the
dataset are labeled. The fault classification performance of
GGMC, LGC and GFHF for one individual fault diagnosis of
Motor 1 under 50% loading (with 10 known and 10 unknown
labels) is shown in Tables 5 and 6 using stator current and
vibration, respectively.

In Table 5 using stator currents, the lowest average classi-
fication accuracy is 92.5% by LGC and GFHF for a multi-
fault (BF+1BRB) vs. healthy case. The highest average
classification accuracy is 100% by GFHF and GGMC for the
following three faults: a multi-fault (BF+UNB) vs. healthy
case, a multi-fault (BF+UNB+UV) vs. healthy case, and a
single-fault (UNB) vs. healthy case.

In Table 6 using vibration signal, the lowest average clas-
sification accuracy is 96.6% by LGC with the fixed Gaussian
kernel edge weighting for a single-fault (UNB) vs. healthy
case. The highest average classification accuracy is 100% by
GFHF and GGMC for the two faults: a single-fault (BF) vs.
healthy case; and a multi-fault (BF+UNB+UV) vs. healthy
case.

Tables 5 and 6 indicate that all three GSSL algorithms
performwell in general using either stator current or vibration
data for individual fault diagnosis, but GGMC consistently
perform better than LGC and GFHF.

B. MULTICLASS CLASSIFICATION FOR MOTOR 1
When the multiclass classification is performed for all five
faults and the healthy case for Motor 1, there are six different
class labels. GGMC, LGC and GFHF were tuned to com-
mence from a random stratified choice of 6 known labels to
ensure one representative instance from six classes is chosen.
In this case, the number of known labels gradually increases
up to 30, denoting half of the dataset are labeled.

Table 7 shows multiclass classification accuracy using sta-
tor currents and vibration signals for Motor 1 (with 30 known
and 30 unknown labels). From Table 7, using vibration data
leads to very low multiclass classification accuracy for all
three algorithms, and the highest value is 59% from GGMC
with binary edge weighting. However, the classification accu-
racy is much better using stator currents, and the highest
accuracy is 92.53% using GGMCwith fixed Gaussian Kernel
edge weighting and stator currents.

Fig. 6 shows the multiclass classification accuracy vs. the
number of labels using the threeGSSL algorithmswith binary
and fixed Gaussian kernel edge weighting. Both stator cur-
rents and vibration data are used for Motor 1 at 50% loading.

From Fig. 6, it is found that the number of labels does
not have significant effect on classification accuracies of
GGMC, LGC and GFHF, the curves in Fig. 6 appear to be
flat throughout a range of number of labels from 6 to 30.
This demonstrates the advantage that the chosen graph-based
semi-supervised learning algorithms are able to achieve a
consistent accuracy using a small amount of labeled data,
and this consistency remains true when using both stator
current and vibration signals and using both binary and fixed
Gaussian kernel edge weighting schemes. GGMC has the
highest accuracy compared to LGC andGFHF throughout the
range of number of labels from 6 to 30, this proves that our
selected method, GGMC, indeed performs better than LGC
and GFHF for multiclass classification.

On the other hand, classification accuracies for GGMC,
LGC and GFHF using vibration signals shown in dashed
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TABLE 5. Binary classification accuracy of GGMC, LGC and GFHF using stator current for motor 1 at 50% loading (with 10 known and 10 unknown labels)
(one individual fault vs. healthy case).

TABLE 6. Binary classification accuracy of GGMC, LGC and GFHF using vibration signal for motor 1 at 50% loading (with 10 known and 10 unknown
labels) (one individual fault vs. healthy case).

TABLE 7. Multiclass classification accuracy of GGMC, LGC and GFHF using stator current and vibration for motor 1 at 50% loading (with 30 known and
30 unknown labels) (five faults and healthy case).

TABLE 8. Binary classification accuracy of GGMC, LGC and GFHF using stator current for Motor 2 at 85% loading (with 10 Known and 10 Unknown Labels)
(one fault vs. healthy case).

lines in Fig. 6 are much lower than that using the stator
current shown in solid lines. Because the accuracies using
vibration signals are too low, below 60%, vibration signals are
not desirable for multiclass classification for electrical and
mechanical faults in induction motors, although they work
well for binary classification. From the data acquisition point
of view, recording vibration signals from an induction motor
requires sensors to be installed on the machine, while the sta-
tor currents of the motor can be remotely monitored through
the motor control center in a noninvasive way. Therefore, if

multiclass classification is desired, the stator current signal is
recommended to serve as a monitoring signal.

C. BINARY CLASSIFICATION FOR MOTOR 2
For binary classification of individual fault diagnosis for
Motor 2, GGMC, LGC and GFHF were designed to initiate
from a random stratified selection of 2 known labels, and the
number of known labels was gradually increased up to 10 per
dataset. The binary classification performance of GGMC,
LGC and GFHF are tabulated in Tables 8 and 9 for Motor 2 at
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FIGURE 6. Multiclass average classification accuracy vs. the number of
labels (for all five faults): Motor 1 at 50% loading.

85% loading (with 10 known and 10 unknown labels) using
stator currents and vibration data, respectively.

In Table 8, the lowest average classification accuracy
is 89.3% from LGC with the fixed Gaussian Kernel edge
weighting for 1BRB vs. healthy case; while the highest
average classification accuracy is 100% using GGMC, LGC
and GFHF with both edge weighting schemes for the three
faults: 2BRB vs. healthy case, 3BRB vs. healthy case, and
(3BRB+UV) vs. healthy case.

In Table 9, the lowest average classification accuracy
is 61.7% using LGC with the binary edge weighting for
3BRB vs. healthy case; while the highest average classifica-
tion accuracy is 95.6% using GGMC and GFHF with both
edge weighting schemes for the two faults: (3BRB+UV) vs.
healthy case, and UV vs. healthy case.

Tables 8 and 9 indicate that all three GSSL algorithms
perform well when using stator currents, but they do not
perform very well in most cases when using vibration signals.
GGMC, however, consistently perform better than LGC and
GFHF for all cases.

D. MULTICLASS CLASSIFICATION FOR MOTOR 2
For multiclass classification for Motor 2, there are six dif-
ferent class labels, GGMC, LGC and GFHF were adjusted
to start from a random stratified choice of 6 known labels

FIGURE 7. Multiclass average classification accuracy vs. the number of
labels (for all five faults): Motor 2 at 85% loading.

to ensure one representative instance from each class label.
The number of known labels to the algorithms was gradually
increased up to 30 per dataset.

Table 10 shows multiclass classification accuracy of
GGMC, LGC and GFHF for Motor 2 at 85% loading (with
30 known and 30 unknown labels) using stator currents and
vibration data. From Table 10, using vibration data leads
to very low multiclass classification accuracy for all three
algorithms, and the highest accuracy is 60.57% using GGMC
with the binary edge weighting. Using stator current leads
to much higher multiclass classification accuracy: the lowest
accuracy is 90.27% using LGC with the binary edge weight-
ing, and the highest accuracy is 98.27%usingGGMCwith the
fixed Gaussian Kernel edge weighting. GGMC consistently
perform better than LGC and GFHF.

Fig. 7 shows multiclass classification accuracy for GGMC,
LGC, and GFHF using stator currents and vibration signals
vs. the number of labels for Motor 2 at 85% loading.

Similar to multiclass classification for Motor 1 in Fig. 6,
from Fig. 7, it is found that the number of labels does
not have significant effect on classification accuracies of
GGMC, LGC and GFHF for Motor 2, the curves in Fig. 7 are
flat throughout a range of number of labels from 6 to 30,
showing consistent accuracies for all three algorithms. This
further proves through Motor 2 that the chosen graph-based
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TABLE 9. Binary classification accuracy of GGMC, LGC and GFHF using vibration for Motor 2 at 85% loading (with 10 Known and 10 Unknown Labels)
(one fault vs. healthy case).

TABLE 10. Multiclass classification accuracy of GGMC, LGC and GFHF using stator current and vibration For Motor 2 at 85% loading (with 30 Known and
30 Unknown labels) (five faults and healthy case).

TABLE 11. Influence of the number of Features on Binary classification accuracy of GGMC, LGC, and GFHF using stator current for Motor 1 at 50% loading,
a multi-fault (BF+UNB+UV) vs. the healthy case (with 10 Known and 10 Unknown Labels).

semi-supervised learning algorithms are able to achieve a
consistent accuracy using a small amount of labeled data.
GGMC has similar or slightly better accuracies than GFHF in
this case, but significantly better accuracies than LGC. Stator
currents show much better performance than vibration as a
monitoring signal for multiclass classification for Motor 2.

Based on Tables 5 – 10 for both motors, stator currents
perform well for binary classification and multiclass classi-
fication, while vibration signals perform well only for binary
classification.

E. INFLUENCE OF THE NUMBER OF FEATURES
ON CLASSIFICATION
To evaluate the influence of the number of features on binary
classification and multiclass classification accuracy using
the proposed GGMC-based fault diagnosis method, the fol-
lowing six cases are considered with different number of
features:
• Case 1: 4 features (mean, median, L1 norm, and standard
deviation).

• Case 2: 5 features (mean, median, mean absolute devia-
tion, L1 norm, and standard deviation).

• Case 3: 6 features (mean, median, median absolute devi-
ation, mean absolute deviation, L1 norm, and standard
deviation).

• Case 4: 7 features (mean, median, median absolute devi-
ation, mean absolute deviation, L1 norm, L2 norm, and
standard deviation).

• Case 5: 8 features (mean, median, median absolute
deviation, mean absolute deviation, L1 norm, L2 norm,
maximum norm, and standard deviation).

• Case 6: 10 features (the maximum value of the data
window, the minimum value of the data window, mean,
median, median absolute deviation, mean absolute devi-
ation, L1 norm, L2 norm, maximum norm, and standard
deviation). Case 6 is the chosen method in this study.

GGMC, LGC and GFHF-based binary classification and
multiclass classification using stator currents are conducted
for the above six cases with different number of features, and
their results are compared as shown in Tables 11–14 for the
two motors. Tables 11 and 12 are for binary classification:
Table 13 is for a multi-fault (BF+UNB+UV) vs. the healthy
case for Motor 1 at 50% loading, while Table 14 is for a
single-fault (2BRB) vs. the healthy case for Motor 2 at 85%
loading. Tables 9 and 10 are for multiclass classification for
five faults and the healthy case for Motor 1 at 50% loading
and Motor 2 at 85% loading, respectively.

It is found that GGMC shows the best performance com-
pared to LGC and GFHF among all six cases. Case 6 has
the highest classification accuracy for all three algorithms
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TABLE 12. Influence of the number of Features on Binary classification accuracy of GGMC, LGC, and GFHF using stator current for Motor 2 at 85% loading,
a single-fault (2BRB) vs. the healthy case (with 10 Known and 10 Unknown Labels).

TABLE 13. Influence of the number of Features on Multiclass classification accuracy of GGMC, LGC, and GFHF using stator current for Motor 1 at 50%
loading (all five faults and healthy case) (with 30 Known and 30 Unknown Labels).

TABLE 14. Influence of the number of Features on multiclass classification accuracy of GGMC, LGC, and GFHF using stator current for Motor 2 at 85%
loading (all five faults and healthy case) (with 30 Known and 30 Unknown Labels).

compared to Cases 1-5. GGMC has more stable performance
when subjected to the variation of the number of features than
LGC and GFHF, while LGC performs the worst.

Therefore, it is recommended that the number of features
should maintain at either Case 5 or Case 6 to achieve a
good classification accuracy for the proposed GGMC-based
method.

VI. CONCLUSION
In this study, an effective GGMC-based direct online
induction motors fault diagnosis approach is developed.
Experimental stator currents and vibration data recorded in
the lab for two identical 0.25 HP induction motors under
various healthy and faulty states and motor loadings are used
as datasets for GGMC. To validate its effectiveness, binary
classification andmulticlass classification using the proposed
GGMC-based approach are conducted and the results are
compared with other two GSSL algorithms, LGC and GFHF.

It is found that the proposed GGMC-based approach con-
sistently perform better than LGC and GFHF. Stator currents
and vibration data perform well for binary classification, but
using vibration data leads to very low multiclass classifica-
tion accuracy for all three GSSL algorithms, therefore, stator
currents are recommended to serve as an effective monitoring
signal. GGMC is also more robust than LGC and GFHF
when subjected to different number of features. The results

of the study demonstrate that an excellent fault classifica-
tion accuracy can be achieved by the chosen graph-based
semi-supervised learning algorithms using a small amount of
labeled data.
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