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ABSTRACT In this article, a novel method to design the observer for a class of uncertain Lipschitz
nonlinear parabolic partial differential equations (PDE) systems is investigated. First, the observer and
the dynamic errors with undetermined parameters for the parabolic PDE systems subject to appropriate
boundary conditions are presented. The conditions of the designed observer are involved. Then the analysis of
asymptotic stability andH∞ performance conditions for the observer design of uncertain nonlinear parabolic
PDE systems are studied and presented in terms of matrix inequalities based on the Lyapunov stability theory.
Finally, the effectiveness of the proposed method is validated by a numerical parabolic PDE system.

INDEX TERMS Parabolic PDE,H∞ observer design, uncertain input, asymptotic stability.

I. INTRODUCTION
The higher requirements in reliability and safety are often
put forward in the more and more complicated construction
of industrial systems. Unfortunately, unexpected deviation of
characteristic properties or uncertainties produced by external
disturbances (such as, pulse interference, noise influence,
temperature change, and so on) and internal disturbances
(such as, measurement errors, device degradation, inaccurate
modeling, et al.) which may degenerate the performance or
even lead to instability of the system, always occur inherently.
In order to cope with these uncertain systems which are
costly task or not be able to be measured, it is paramount to
estimate the state variables as they are helpful in the system
analysis and synthesis. In this scenario, state estimation has
been an important problem in the field of modern control
theory and appealed to many researchers for a long time. The
estimation of the state variables serves as a powerful tool to
improve the realization about the system concerned. Thus,
system state reconstruction will be seriously affected once
these unexpected signals are not processed correctly. Over
the last few decades, various methods were developed for
the observer design of systems with uncertainties. See, for
example, [1]–[6] and the references therein.
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Moreover, H∞ control problem is usually associated with
the observer design and used to analyze the robustness of the
observer for the system in the presence of unknown input. For
example, Darouach et al. [7] investigated the H∞ observer
design strategy for Lipschitz nonlinear singular systems by
using the parameterization of the algebraic constraints which
are derived from the estimation errors. References [8]–[10]
were concerned with the H∞ filtering problems for fuzzy
systems, discrete-time systems, and linear systems in the
present of uncertainties. For more researches, one can refer
to [11]–[13] and the references therein.

In science and engineering fields, such as fluid heat
exchangers, thermal diffusion processes, and dissipative
dynamical systems etc. [14], [15], these process models can
be frequently expressed by PDE with boundary conditions.
Moreover, multidimensional dynamical systems depend on
space inherently, so the properties of these systems depend
on spatial position as well as time variable, which is able to
be frequently formulated by nonlinear parabolic PDE or evo-
lutionary type equations. Generally, the model of parabolic
PDE control system in mathematical could be modeled as:

∂x(s, t)
∂t

= A1(s)
∂2x(s, t)
∂s2

+ A2(s)
∂x(s, t)
∂s

+ f (x(s, t), s)+ G(s)u(t)+ D(s)w(t), (1)

where t and s are the time and spatial position variable,
x(·, t) = [x1(s, t) x2(s, t) · · · xn(s, t)]T ⊆ D represents
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the system state, u(t) denotes the control input, ω(t) is an
exogenous disturbance which contains both system and mea-
surement noise, A1(s),A2(s),G(s) andD(s) are known matrix
functions of s, f (x(s, t)) is a sufficiently smooth nonlinear
function and is assumed to be differentiable, D is a given
domain which contains the equilibrium state of system, ∂x(s,t)

∂s

and ∂2x(s,t)
∂s2

are respectively the first order partial derivatives
and the second order partial derivatives of x(s, t) with respect
to s.

Parabolic PDE, a significant branch of PDE that can be
found in [16]–[19] and so on, has been deeply studied by the
researchers in the last few decades. These research achieve-
ments certainly promoted the progress of human research,
and also provided the theoretical basis both for the applica-
tions in real-world and further research. With development
of mathematical theory and the applied mathematics, many
scholars devote themselves to research the observer design
method for system (1). The difficulty to design the observer
for parabolic PDE systems lies in the second order partial
derivatives respect to the spatial position variable which is
hard to cope with. Generally, the main design methods in
these existing literatures can be divided into two types: by
replacing the partial derivatives of parabolic PDE system
to other forms which are easy to handle with by using
the mathematical techniques (such as, with the aid defin-
ing a linear unbounded operator A satisfies Ax(s, t) =
A1(s)

∂2x(s,t)
∂s2
+ A2(s)

∂x(s,t)
∂s , a Luenberger-type PDE observer

was initial developed to exponentially track the state of linear
distributed parameter system in [20]; boundary control for
a kind of semi-linear parabolic PDE systems in [21]; the
design of robust adaptive neural observer was investigated
for parabolic PDE systems which contain unknown nonlin-
earities and bounded disturbances by the technique of modal
decomposition in [22]; for more researches, we recommend
our readers to see [23], [24]), or design the observer directly
(such as, based on the description of ODE (ordinary differ-
ential equation)-PDE model, adaptive observer which relies
on the constraints of a first order hyperbolic that without
parameter uncertainty of the PDE was presented for diffusion
parabolic PDE system in [25]; [26] presented online estimates
strategy for the state vector of a finite-dimensional ODE
which is nonlinear with the structure of strict-feedback and
the infinite-dimensional state of a linear parabolic PDE with
the technic of boundary measurement sampling; Wang et
al. [27] investigated the H∞ state estimation for the T-S
fuzzy model of a class of nonlinear PDE system with the
technic of spatially local averaged measurements, which can
guarantee the exponential stability and satisfy an H∞ per-
formance for the estimation error fuzzy PDE system; and
[28] proposed an interval parabolic PDE observer with the
constraint of nonnegative values of boundary and initial con-
ditions, estimator-basedH∞ sampled-data fuzzy control and
observer-based fuzzy fault-tolerant control can be respec-
tively seen in [29], [30] for nonlinear parabolic PDE systems;
for more researches, one can refer to [31], [32]). The above

findings are significant in the field of observer design and
inspire other scholars to new insight and perspective in the
more in-depth studies.

Motivated and inspired by the achievements mentioned
above, the purpose of this paper is to investigate the observer
design method for a class of parabolic PDE systems with
unknown input or disturbance. Meanwhile, we dedicate to
derive the sufficient conditions of asymptotic stability for
the design method. The contributions of this paper can be
identified as the following parts:

1) A novel method to design the observer for a class
of uncertain nonlinear parabolic PDE systems is presented.
The conditions of the existence and asymptotic stability of
observer is studied under w(t) = 0.
2) H∞ observer design is investigated for the uncer-

tain nonlinear parabolic PDE systems with w(t) = 0 and
‖e(s, t)‖2 < µ‖w(t)‖2 for w(t) 6= 0. Asymptotic stability
are explored and design conditions is also derived in the form
of matrix inequalities.

The remaining parts of this article is organized as:
Section II describes the model of the Lipschitz nonlinear
parabolic PDE system with unknown inputs, and introduces
the assumptions and lemmas which are needed in this paper;
Section III gives the observer design method and sufficient
conditions of the existence of the observer for PDE system
with unknown inputs; H∞ observer design for the proposed
systems with ‖e(s, t)‖2 < µ‖w(t)‖2 for w(t) 6= 0 is studied
and sufficient design conditions are also derived in the form
of matrix inequalities in Section IV; A numerical example is
developed to show themerit and effectiveness of the proposed
design method in Section V; Section VI concludes the paper.
Notations: Some necessary notations are needed in this

paper.R,R+ Rn andRm×n stand for the set of all real num-
bers, positive numbers, n-dimension Euclidean space, and all
real matrices of dimension m× n. Matrix (vector) AT denote
the transpose of the matrix (vector) A. W1,n̄([0, l];Rn) is
a Sobolev space of absolutely continuous vector functions
g(x) : [0, l] → Rn with the property of square inte-
grable derivatives d n̄g(x)/dx n̄ of the order n̄ ≥ 1 and the

norm ‖g(·)‖W1,n̄ =

√∫ l
0
∑n̄

i=0
dgT (x)
dx ·

dg(x)
dx dx. ‖ · ‖2 means

the Euclidean norm of vectors or matrices. Identity matrix
is denoted by I with appropriate dimension. A symmetric
matrix A > (<,≤)0 means that A is positive definite (nega-
tive definite, negative semi-definite). The symbol ‘‘∗’’ is used
for standing the symmetry part of a matrix, e.g.,[
A+ [B+ C + ∗] D

∗ E

]
,

[
A+ [B+ C + BT + CT ] D

DT E

]
.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this section, we shall introduce the Assumption and
Lemma which are needed, and the systems studied in this
paper.
Assumption 1: Let X be a normed space and K ⊂ X be a

nonempty subset. Then an operator f : K → K is said to be
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Lipschitz constraint if there exists a constant γ > 0 such that

‖f (u)− f (v)‖2 ≤ γ ‖u− v‖2, ∀u, v ∈ K . (2)

Remark 1: The value of γ in Assumption 1 is called the
Lipschitz constant of f . Contractive operators are sometimes
called Lipschitzian operators. If the above condition is instead
satisfied for γ ≤ 1, then the operator f is said to be nonex-
pansive.

Then, consider the Lipschitz nonlinear parabolic PDE sys-
tem with unknown inputs in the form of:

xt (s, t) = Axss(s, t)+ f (x(s, t))
+Gu(t)+ Fv(t)+ D1w(t),

y(t) = C
∫ l

0
x(s, t)ds+ Ku(t)+ Hv(t)+ D2w(t), (3)

where s is the spatial position variable, t is time variable,
x(s, t) ∈ D ⊆ Rn, x(·, t) = [x1(s, t) x2(s, t) · · · xn(s, t)]T

is the state variable of the system, A,G,F,D1,C,K ,H and
D2 are known constant matrices, f (x(s, t)) is an unknown
Lipschitz continuous nonlinear function with the property of
sufficiently smooth and satisfies Assumption 1, u(t) is the
control input, and D is a given local domain which contains
the equilibrium profile. The following Neumann boundary
conditions are considered for system (3)

xs(0, t) = xs(l, t) = 0, t > 0. (4)

The following Lemma is necessary to derive our results.
Lemma 1.( [33]) For a matrix 0 < R ∈ Rn×n and the

differentiable function z(·) ∈W1,2([0, l]) subject to z(0) = 0
or z(l) = 0, the inequality as follows can be satisfied:∫ l

0
żT (s)Rż(s)ds ≥

π2

4l2

∫ l

0
zT (s)Rz(s)ds. (5)

III. OBSERVER DESIGN AND STABILITY ANALYSIS
This section will present the observer design method and
sufficient conditions of the existence of the observer for
system (3). To estimate the state of (3), the observer is
designed as:

zt (s, t) = Bzss(s, t)+Mf (x̂(s, t))+ Ḡu(t)+ Ly(t),
x̂(s, t) = Tz(s, t)+ Su(t)+ Ey(t), (6)

with the following Dirichlet boundary conditions,

z(0, t) = Mx(0, t), z(l, t) = Mx(l, t) (7)

where zt (s, t) ⊆ Rn, x̂(s, t) is the estimate of x(s, t), the
matrices B,M , Ḡ,T , S,E are to be determined such that the
error dynamics between x̂(s, t) and x(s, t) converge to zero
asymptotically. Motivated by [13], defining the error between
z(s, t) and Mx(s, t),

σ (s, t) = z(s, t)−Mx(s, t), (8)

and the error dynamics,

e(s, t) = x̂(s, t)− x(s, t). (9)

FIGURE 1. Block diagram of observer design.

Fig. 1 describes the block diagram of the observer design
method in this paper.

Then

σt (s, t) = zt (s, t)−Mxt (s, t)

= Bzss(s, t)+Mf (x̂(s, t))+ Ḡu(t)+ Ly(t)
−M [Axss(s, t)+ f (x(s, t))+ Gu(t)
+Fv(t)+ D1v(t)]

= Bzss(s, t)−MAxss(s, t)
+ (LD2 −MD1)w(t)

+ (LK + Ĝ−MG)u(t)+ (LH −MF)v(t)

+M [f (x̂(s, t))− f (x(s, t))]+
∫ l

0
LCx(s, t)ds

= B[zss(s, t)−Mxss(s, t)]+ BMxss(s, t)

−MAxss(s, t)+
∫ l

0
LCx(s, t)ds

+M [f (x̂(s, t))− f (x(s, t))]

+ (LK + Ĝ−MG)u(t)

+ (LH −MF)v(t)+ [LD2 −MD1]w(t)

= Bσss(s, t)+ [BM −MA]xss(s, t)

+

∫ l

0
LCx(s, t)ds+M [f (x̂(s, t))− f (x(s, t))]

+ (LK + Ĝ−MG)u(t)

+ (LH −MF)v(t)+ (LD2 −MD1)w(t), (10)

and state estimation error,

e(s, t) = x̂(s, t)− x(s, t)

= Tz(s, t)+ Su(t)− x(s, t)

+E[C(s)x(s, t)+ Ku(t)+ Hv(t)+ D2w(t)]

= T [z(s, t)−Mx(s, t)]+ TMx(s, t)

+ECx(s, t)− x(s, t)+ Su(t)

+EKu(t)+ EHv(t)+ ED2w(t)

= Tσ (s, t)+ [TM + EC − In]x(s, t)

+ [S + EK ]u(t)+ EHv(t)+ ED2w(t). (11)

If there exist matrices B,M , Ḡ,T , S,E that satisfy

BM −MA = 0,

LK + Ḡ−MG = 0,

LH −MF = 0,
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TM + EC − In = 0,

S + EK = 0,

EH = 0,

LC = 0, (12)

then the error dynamics become,

σt (s, t) = Bσss(s, t)+M1f + [LD2 −MD1]w(t),

e(s, t) = Tσ (s, t)+ ED2w(t), (13)

where 1f = f̂ (x̂(s, t))− f̂ (x(s, t)).
When w(t) = 0, e(s, t) = Tσ (s, t). Then the asymptotic

stable conditions of e(s, t) are given in the following theorem.
Theorem 1: Consider the system (3) and the observer (6),

for the Lipschitz constant γ > 0, if there exist proper
matrixes T ,M and P > 0 satisfy (12) and the following
conditions:

0 < I ,

[
−
π2

4l2
[PB + ∗]+ γ 2T TT PM

∗ −0

]
< 0, (14)

then the observer estimation error e(t) is asymptotically stable
to 0.

proof: Consider the Lyapunov candidate function
V (t) =

∫ l
0 σ

T (s, t)Pσ (s, t)ds, where P is a positive definite
matrix. By taking the time derivation of V (t) along σ (s, t) in
error dynamics (13), we obtain

V̇ (t) =
∫ l

0

[
σ Tt (s, t)Pσ (s, t)+ σ

T (s, t)Pσt (s, t)
]
ds

=

∫ l

0

[
σ T (s, t)PBσss(s, t)+ σ T (s, t)PM1f

+ σ Tss (s, t)BTPσ (s, t)+1f TMTPσ (s, t)
]
ds. (15)

Considering the boundary conditions (7), Lemma 1 and
integrating by parts, we obtain,∫ l

0
σ TPBσssds =

∫ l

0
σ TPBdσs

= σ TPBσs|s=ls=0 −

∫ l

0
σ Ts PBσsds

= −

∫ l

0
σ Ts PBσsds

≤ −
π2

4l2

∫ l

0
σ TPBσds. (16)

Moreover, if 0 ≤ I , by Assumption 1, we have

1f 01f ≤
(
f̂ (x̂(s, t))− f̂ (x(s, t))

)T
×

(
f̂ (x̂(s, t))− f̂ (x(s, t))

)
≤ γ 2(x̂ − x)T (x̂ − x)
= γ 2eT e = γ 2σ TT TTσ. (17)

Then

V̇ (t) ≤
∫ l

0

[
−
π2

4l2
σ T [PB + ∗]σds

+ σ TPM1f +1f TMTPσ
]
ds

=

∫ l

0

[
−
π2

4l2
σ T [PB + ∗]σds+ σ TPM1f

+1f TMTPσ +1f T01f −1f T01f
]
ds

≤

∫ l

0

[
σ T [(−

π2

4l2
)[PB + ∗]+ γ 2T TT ]σ

+ σ TPM1f +1f TMTPσ −1f T01f
]
ds

=

∫ l

0

[
σ T 1f T

]
4

[
σ

1f

]
ds, (18)

where

4 =

[
−
π2

4l2
[PB + ∗]+ γ 2T TT PM

∗ −0

]
. (19)

One can easily obtain V̇ (t) < 0 if 4 < 0, which implies
e(s, t)→ 0 as t →∞. This completes the proof. �

IV. H∞ DESIGN
In this section, we investigate the stability and sufficient
condition for (13) with w(t) = 0 and ‖e(s, t)‖2 < µ‖w(t)‖2
for w(t) 6= 0.
Theorem 2: Consider the observer (6) for system (3).

If there exist appropriate matrices B,L,M ,T ,E and P > 0
satisfying the following inequalities:

0 < I , 8 =

 a11 a12 a13∗ −0 0
∗ 0 a33

 < 0, (20)

where
a11 = − π2

4l2
[PB + ∗]+ (1+ γ 2)T TT ,

a12 = PM ,
a13 = P(LD2 −MD1)+ (1+ γ 2)T TED2,

a33 = (1+ γ 2)DT2 E
TED2 − µ

2I .
Then the state estimation error (13) which is produced by

observer (6) asymptotically tends to 0 with w(t) = 0 and
‖e(s, t)‖2 < µ‖w(t)‖2 for w(t) 6= 0.

proof: Based on the proof of Theorem 1, let w(t) 6= 0,
we have

V̇ (t) =
∫ l

0

[
σ Tt (s, t)Pσ (s, t)+ σt (s, t)Pσ

T (s, t)
]
ds

=

∫ l

0

[
σ T (s, t)PBσss(s, t)+ σ T (s, t)PM1f

+ σ Tss (s, t)BTPσ (s, t)+1f TMTPσ (s, t)

+ σ T (s, t)P(LD2 −MD1)w(t)

+wT (t)(LD2 −MD1)TPσ (s, t)
]
ds. (21)

Adding and subtracting
∫ l
0 1f

T01fds −
∫ l
0 1f

T01fds = 0
to the right-hand of (21), we obtain

V̇ (t) =
∫ l

0

[
σ T (s, t)PBσss(s, t)+ σ T (s, t)PM1f

+ σ Tss (s, t)BTPσ (s, t)+1f TMTPσ (s, t)
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+ σ T (s, t)P(LD2 −MD1)w(t)

+wT (t)(LD2 −MD1)TPσ (s, t)

+1f T01f −1f T01f
]
ds. (22)

From (16) and (17), we arrive at

V̇ (t) ≤
∫ l

0

[
σ T [(−

π2

4l2
)[PB + ∗]]σ + σ TPM1f

+1f TMTPσ + σ TP(LD2 −MD1)w

+wT (LD2 −MD1)TPσ

+ γ 2eT e−1f T01f
]
ds. (23)

By (13),

eT e = σ TT TTσ + σ TT TED2w

+wTDT2 E
TTσ + wTDT2 E

TED2w (24)

Defining ϒ =
[
σ 1f w

]T , then the following inequality
is obtained,

V̇ (t)+
∫ l

0
[eT e− µ2wTw]ds

≤

∫ l

0

[
σ T [(−

π2

4l2
)[PB + ∗]+ (1+ γ 2)T TT

]
σ

+ σ TPM1f +1f TMTPσ + σ T [P(LD2 −MD1)

+ (1+ γ 2)T TED2]w+ wT [(1+ γ 2)D2ETT

+ (LD2 −MD1)TP]σ −1f T01f
]
ds

+wT [(1+ γ 2)DT2 E
TED2 − µ

2I ]w

= ϒT8ϒ (25)

Then

V̇ (t) ≤
∫ l

0
[µ2wTw− eT e]ds, (26)

if 8 < 0.
By integrating both side of (26) from 0 to∞ respect to t

yields

V (s,∞)− V (s, 0) =
∫ l

0
[µ2
‖w(t)‖22 − ‖e(s, t)‖

2
2]ds. (27)

From zero initial values, we have

V (s,∞) ≤
∫ l

0
[µ2
‖w(t)‖22 − ‖e(s, t)‖

2
2]ds, (28)

which results ‖e(s, t)‖22 < µ2
‖w(t)‖22. This completes the

proof. �
Remark 2: Note that the matrix inequalities presented in

Theorem 1 and Theorem 2 can not directly solved with the
LMI toolbox of MATLAB. By defining PB = P̂ and PM =
P̄, and applying Schur complement to the matrix inequalities
in Theorem 1, then the parameters P̂, P̄ and T can be derived.
Then apply the derived parameters to (12), the parameters
B,M ,L, Ḡ, S and E can be derived.
Remark 3: It is noticed that when the Dirichlet boundary

conditions (7) is changed as Neumann boundary conditions,
Theorem 1 and Theorem 2 can also be derived.

FIGURE 2. The system state x1 when w(t) = 0.

V. SIMULATIONS
In this section, we provide a numerical example to illustrate
the effectiveness of the proposed design methods for system
(3) based on Theorem 1. Consider the Lipschitz nonlinear
PDE system in the form of (3) with

A =
[
1 0
0 1

]
, G =

[
2
2

]
, F =

[
1
−1

]
,

C =
[

1 −1
−1 1

]
, D1 =

[
1
1

]
, D2 =

[
1
1

]
,

K =
[

1
−1

]
, H =

[
1
1

]
.

For simulation purposes, the control input is assumed as
u(t) = −

∫ l
0 x(s, t)ds, and the initial states x1(s, 0) = 0.4 +

0.3coss, x2(s, 0) = 0.2 + 0.4coss with the spatial position
variable s ∈ [0, π]. When the exogenous disturbance w(t) is
0, by solving the matrices equality with the constraints of (12)
and the matrices inequalities of (14), we have

B =
[
1 0
0 1

]
, Ḡ =

[
1
1

]
, M =

[
2 0
0 2

]
,

L =
[

1 1
−1 −1

]
, T =

[
−

1
2 1
−1 3

2

]
,

S =
[
−2
−2

]
, E =

[
1 −1
1 −1

]
,

according to the error dynamics in (9), the evolution pro-
files of state x̂(s, t) estimated errors e(s, t) are described in
Figs. 2–7. It’s obvious that the estimated errors e(s, t) for
the estimation error PDE system are asymptotically stable
to 0. When the exogenous disturbance w(t) is assumed to be
e−4−10tsint , by solving the matrices equalities (12) and the
matrices inequality of (20), the evolution profiles of estimated
error are described in Figs. 8–13. And the estimated errors
e(s, t) for the estimation error PDE system are asymptotically
stable to 0. Moreover, the H∞ performance ‖e‖2 < µ‖w‖2
for w 6= 0 is satisfied. According to the simulation results,
it is easy to find that the observer design method proposed in
this paper is feasible and effective to estimate the state of the
uncertain Lipschitz nonlinear PDE systems.
Comparative Explanations: The presented observer

design method in this paper provides an effective way in
the new form for the state estimation of a class of uncertain
Lipschitz nonlinear parabolic PDE systems. In contrast to the
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FIGURE 3. The state estimation x̂1 when w(t) = 0.

FIGURE 4. The system state x2 when w(t) = 0.

FIGURE 5. The state estimation x̂2 when w(t) = 0.

FIGURE 6. The estimated error e1 when w(t) = 0.

available achievements, the main advantages of the design
strategy presented could be summarized in these aspects
listed as follows:

(1) Compared with the approaches of state estimation
proposed in [20]–[24], we developed a novel method to
design the observer for the uncertain Lipschitz nonlinear PDE
systems without introducing other operators to replace the
parabolic PDE system.

(2) Different from [26], [27], [29], the proposed observer
design method is given without pointwise measurements and

FIGURE 7. The estimated error e2 when w(t) = 0.

FIGURE 8. The system state x1 when w(t) 6= 0.

FIGURE 9. The state estimation x̂1 when w(t) 6= 0.

FIGURE 10. The system state x2 when w(t) 6= 0.

FIGURE 11. The state estimation x̂2 when w(t) 6= 0.

other constraints on system structure. Thus, the method can
be applied to the system which the system information in
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FIGURE 12. The estimated error e1 when w(t) 6= 0.

FIGURE 13. The estimated error e2 when w(t) 6= 0.

the plant is difficult to be sampled or system deviation is
intolerable due to sampling techniques.

VI. CONCLUSION
TheH∞ observer for a class of uncertain Lipschitz nonlinear
parabolic PDE systems is developed in the new form in this
article. The form of observer and the dynamic errors with
undetermined parameters for the parabolic PDE systems sub-
ject to appropriate boundary conditions are designed under
w(t) = 0. Sufficient conditions of the designed method
with the consideration of asymptotic stability are involved.
Then H∞ performance of the observer is studied, and the
analysis of asymptotic stability and sufficient conditions with
w(t) = 0 and ‖e(s, t)‖2 < µ‖w(t)‖2 for w(t) 6= 0 are given
in terms of matrix inequalities. The simulation results of a
numerical example indicate the effectiveness of developed
design method. However, the conditions presented in (12) are
rather restrictive. In the future, we will focus our attention
on the less conservative conditions for the observer design
of uncertain systems, and the fuzzy observer-based filtering
problems for nonlinear parabolic PDE systems by using the
technic of quantization.
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