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ABSTRACT Nowadays electric cars are in the spotlight of automotive research. In this context we consider
data based approaches as tools to improve and facilitate the car design process. Hereby, we address the
challenge of vibration load prediction for electric cars using neural network based machine learning (ML),
a data-based frequency response function approach, and a hybrid combined model. We extensively study
the challenging case of vibration load prediction of car components, such as the traction battery of an
electric car. We show using experimental data from Fiat 500e and VWeGolf cars that the proposed ML
approach is able to outperform the classical model estimation by means of ARX and ARMAX models.
Moreover, we evaluate the performance of a hybrid-ML concept for combination of ML and ARMAX. Our
promising results motivate further research in the field of vibration load prediction using machine learning
based approaches in order to facilitate design processes.

INDEX TERMS Automotive engineering, machine learning, time series analysis, vibration measurement.

I. INTRODUCTION
Traction batteries with high energy densities which power
electric cars are a focus area in automotive research and
development. This dynamic developmentmotivates to rethink
and improve the car design process. The battery mass usu-
ally exceeds several hundred kilograms. Hence, the battery
replaces the traditional combustion engine as the heaviest
single component. Recently, Ruiz et al. presented an exten-
sive survey [1] on existing international and national test-
ing standards and regulations for battery systems in electric
and hybrid electric vehicles. The authors group mechanical
testing into classes covering mechanical shocks, drops, pen-
etration, immersion, crush/crash, roll-over, and vibrations.
Interestingly, nearly all classes target event-based fail-safe
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behavior e. g. after accidents, rather than long-term durability
which is covered by vibration testing.

However, vibration loads on the traction battery caused
by the vehicle can be significant when driving on rough
road surfaces or during highly dynamic maneuvers. Thus,
it must be ensured that the battery can sustain these vibration
loads, as damaged battery cells can lead to hazardous fire
scenarios caused by thermal runaways [2]. Vibration tests can
proof whether a system, e. g. the traction battery, is reliable
against a random vibration induced by rough road driving
as well as internal vibration of the power train. The main
failures to be identified by this test are component break-
age and fracture resulting in the loss of electrical energy.
Hence, vibration load prediction is of major importance in
the design process. Vibration fatigue analysis is a part of the
mechanical reliability evaluation to ensure safety and satisfy
the required lifetime. The evaluation involves usually a lot
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of measurement at vehicle level and component level as well.
A detailed analysis starts often with measurements on vehicle
level. Therefore, acceleration sensors are going to bemounted
on global locations, e.g. mounting points of the battery sys-
tem. The vehicle measurements can be performed as a driving
scenario on conventional roads with different portions of city
roads, rural roads and highway, depending on the use case
of the vehicle. Another option is an accelerated test under
more severe conditions with a shorter testing time. For this
case a rough road track can be used with significantly higher
excitation amplitudes. However, the measurement gives a
feedback about the effective vibration energy on the compo-
nent, which was transferred from the road surface over the
wheels, suspension and frame to the battery. The measured
signals need to be extrapolated to higher testing times to reach
a damage level which is equal to the defined lifetime of the
component. Here, the extrapolation factor strongly depends
on the measured scenario. Finally, an end of life test can be
performed by taking the vibration profile and the extrapola-
tion factor into account. These tests are usually performed on
shakers with input data from the vehicle measurement. The
vibration reliability test is usually stopped in case of failure
or if the defined lifetime limit was reached. This study is
aimed to significantly reduce the amount of vehicle testing
by describing the vibration transfer path from the road to
the component. This is achieved by identifying a suitable
simulation model from data. Existing vibration test standards
show considerable variations of the vibration profiles over a
wide range of frequencies and amplitudes. It is worth men-
tioning that vibration profiles in these standards are often
derived from generic measurements on conventional vehicles
at locations appropriate for mounting traction batteries in
electric vehicles.

So far and in accordance with [1] only very few work
has been published on vibration profiles designed specifically
for electric and hybrid electric vehicles. This is supported
by Hooper and Marco [3], [4] pointing out that many of the
vibration profiles described in the ISO-standards represent
only a short term abuse rather than a mechanical durabil-
ity test to represent a battery life cycle. Moreover, existing
studies [5], [6] mainly focus on the individual battery
cell’s resiliency and performance drops due to loss of electric
energy.

Consider the load propagation pipeline starting from an
external excitation towards the individual cell within the
traction battery pack. A gap exists covering the vibration
load prediction from the source of excitation (e. g. tire on
a bumpy road) towards the traction battery pack. However,
the load profiles available in standards and regulations such
as in [7] show a considerable variation and might be con-
fusing for responsible design engineers. This leads to an
over-engineered battery pack with high weight and cost that
is prohibitive for successful vehicle integration. From the reli-
ability point of view it would be helpful to have a simplified
method to approximate vibration profiles in an early design
process. In this context the early design process means that

a vehicle class is defined and the size, position and rough
design of the battery is known. A detailed design state of
the (new) car is usually not available at this time, especially
for suppliers. Due to this fact, a simplified prediction model
could give a first impression of the expected load data on the
battery system.

The prediction model has to be both, versatile and effi-
cient, since the design process persists of multiple iteration
cycles. Moreover, the integration of prediction models into
simulation frameworks may allow automated optimization
procedures to generate optimized results for various design
parameters e. g. the battery’s positioning andmountingwithin
the car body.

Fatigue damage spectrum (FDS) is a widely used method
to estimate fatigue processes and component damages from
external excitation and can be determined in closed form from
acceleration data [8]. Thus, the corresponding acceleration of
the respective component, e. g. the traction battery, has to be
either known or simulated to be used in a subsequent fatigue
analysis.

A standard procedure is the synthesis of sophisticated
mechanical models of the real-word system using gray-box
identification techniques in order to estimate dynamic loads
on individual components. In a first step, a mechanical mod-
eling is carried out. The corresponding parameters are then
identified in a second step. Thereby, the modeling step is
subjected to simplifications and assumptions being made by
the engineer in order to limit the model complexity. While
complex models might capture a detailed system behavior,
they cannot guarantee a satisfactory match with the systems
real-world behavior. Note that, as described before, complex
models often suffer from a lack of detailed information about
the real-world system, such as detailed material parameters
and CAD-models which are usually only available to the
OEM-company.

The absence of detailed prior system data requires exten-
sive system identification experiments in order to obtain
information on the real-world system behavior. Exten-
sive resources are required to obtain information-rich data
for gray-box identification techniques. Therefore, recent
advances in the field of data-driven prediction models make
the transfer of machine learning methods to the problem of
vibration load prediction attractive.

The concept of artificial neural networks (NN) as a uni-
versal function approximator can be traced back to the fifties
and sixties [9]. However, the advances in computing power
within the last decade paved the way for NNs. While the
original boost came from the field of image classification
various deviates of NNs have been developed to meet the
needs of specific problem categories. Convolutional neural
networks (CNN) form a subgroup within the large class of
feed-forward NN which map input data directly on their
output [9]. In contrast, recurrent neural networks (RNN)
consider data sequences as an input and have been shown
to be suitable for data series prediction. However, RNNs
face the problem of vanishing gradients which renders their
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training challenging. This was targeted by long-short-term
memory (LSTM) RNNs which were originally introduced
in [10] and are nowadays commonly used for a wide range
of applications. Examples include speech recognition [11],
time series prediction [12], and material fatigue fault pre-
diction [13], [14]. Moreover, identification of transport flow
from data is studied in [15] using neural networks, in [16]
using LSTM, in [17], [18] using fuzzy neural networks aswell
as in [19] using support vector machine and data denoising
schemes. Another approach focuses on using a periodic func-
tion in order to improve model prediction performance [20].
In addition, we refer to Sec. IV for a more detailed discussion
of NN concepts for system identification.

The contribution of this work is three-fold. We use acceler-
ation measurements from two battery-electric vehicles driven
over a bumpy road with constant speed in order to learn the
vehicle model. Therefore, we, first, study the suitability of
various data-driven vibration load prediction concepts. The
approaches include, ARX, ARMAX as well as LSTM neural
networks. Second, we propose a novel hybrid approach based
on LSTM neural networks and an ARMAX model. Third,
we evaluate and critically discuss the algorithms’ prediction
performance based on a real-world data set recorded on a
rough road track with two experimental platforms, namely,
VWeGolf and Fiat 500e electric cars.

The remainder of this work is structured as follows.
In Sec. II we give a brief overview on vibration measure-
ments on electric cars. In Sec. III we present a data based
frequency response function approach to system identifica-
tion. Section IV covers the nonlinear system identification,
using a pure neural network approach and a combined error
estimation approach respectively. Then we evaluate the per-
formance of our concepts in real-world experiments using a
Fiat 500e and a VWeGolf as test platforms on rough bumpy
road. Finally, we summarize our results and draw conclusions
in Sec. VII

II. VIBRATION MEASUREMENTS ON AN
ELECTRIC VEHICLE
Experimental data are required to parameterize and validate
the vehicle model. For this study a Fiat 500e passenger car
was used with a performance of 87 kW, as depicted in Fig. 1.
The vehicle is equipped with tri-axial accelerometers on
the traction battery system, chassis and wheel hubs. A total
of 13 accelerometers have been installed on the four wheel
hubs and chassis. The installation position of the accelerom-
eter at the front left wheel carrier is shown in Fig. 2. Fur-
ther measurements were conducted on the traction battery,
as shown in Fig. 3.
At the wheel carriers, the acceleration sensors T356A02

from PCB were used, which are suitable for measuring at
a frequency range of 1 – 5000 Hz. At the wheel hubs and
the battery, the acceleration sensors 4524B from B&K with a
frequency range of 0.25 – 3000 Hz were used.

The measurements were performed on a rough road track
that consists of sections of regularly distributed humps.

FIGURE 1. Fiat 500e test car. Sensor positions A1, A3 (wheel carrier),
A5 (dome bearing), A7 (top of shock absorber).

FIGURE 2. Accelerometer at front left wheel carrier.

FIGURE 3. Accelerometer positions at the traction battery.

Those lead to section-wise periodic excitation when the car is
driven with constant speed. The rough road track is depicted
in Fig. 4. For data-based model synthesis, an ‘‘information-
rich’’ data set is preferable. Such a data set might be created
by taking measurements of the system under different con-
ditions. Regarding the given situation, this was achieved by
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FIGURE 4. Depiction of the standardized rough road track.

FIGURE 5. Recorded acceleration time series at left front wheel carrier for
v = 40 km/h.

FIGURE 6. Recorded acceleration time series at front left of the battery
for v = 40 km/h.

driving the car on the track with constant speeds of 20 km/h,
30 km/h, 40 km/h, and 50 km/h, respectively. An exem-
plary measurement extract from those experiments is shown
in Figs. 5 and 6. They depict some part of the accelerometer
time signals measured at 40 km/h vehicle velocity at the front
left wheel carrier (Fig. 5) and the front left of the battery
system (Fig. 6), as the test car drives on the rough road track.
The data from the experiment were measured at a sampling
frequency of 12000 Hz. This results in about 108000 sample
points for v= 20 km/h, 72000 sample points for v= 30 km/h,
54000 sample points for v = 40 km/h and 43200 sample
points for v = 50 km/h. However, these data were resampled
to 3000 Hz, in order to match the frequency range of the
acceleration sensors.

For the design of vehicle components, the occurring accel-
erations and the corresponding power spectra are of impor-
tance. Thereby, the power spectrum S(f ) is a function with
respect to frequency f . The power spectra of the acceleration

FIGURE 7. Power spectra of the acceleration at the front left of the
battery for different velocities in detail.

at the front left of the battery are exemplary plotted in Fig. 7
for different velocities of the Fiat 500e. From the spectral
densities other measures like variance var , mean upcrossing
rate ν+0 , or spectral moments mi can be obtained. These are
given by

mi =
∫
∞

0
f iS(f )df , var = m0, ν

+

0 =
1

2π
√
m0/m2

. (1)

For this reason, we present our results in terms of spectral
densities and time series of the acceleration.Moreover, power
spectra of relevant data and results are provided for download
from the publisher. Often access to a sufficiently detailed
vehicle model is not available for the determination of the
occurring accelerations. Of particular interest are the acceler-
ations occurring at the batteries of electric cars, since these are
comparatively new and less well investigated components.

One approach is to create a model of the vehicle based
on measured data in the form of transfer functions between
relevant measuring points. For this purpose, linear transfer
function models for linear system behavior and neural net-
works for nonlinear system behavior are used.

To reduce the effort for the collection of the measurement
data necessary for system identification a good knowledge of
the requiredmeasurement data is important. Thereby, both the
position of the accelerometers, the number of required mea-
surements, and the relevant frequency range are of interest for
system identification.

The aim of this work is to determine which methods are
suitable for the prediction of vibration loads on the basis of
experimental data from vehicle tests.

III. DATA BASED STATE SPACE MODEL
A. TRANSFER FUNCTIONS
A widely used framework for linear system identification
is the prediction error method [21]. The general model
structure of the prediction error method with the input sig-
nal u, the output signal y and an unknown disturbance e is
shown in Fig. 8. The most widely used models based on
the prediction error method are the ARX [21, p. 81] and the
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FIGURE 8. General model structure of the Prediction Error Method
according to [21, p. 85].

ARMAX-model [21, p. 83]. These are discussed in detail as
multi-input-single-output (MISO) models in the Appendix.

B. ARX AND ARMAX FITTING PROCEDURE
Wehave used a data set with one time series for each of the car
velocities 20 km/h, 30 km/h, 40 km/h, and 50 km/h. One part
of the car velocities is used for training and the left out part is
used for validation. This additionally shows the interpolation
capabilities of the identified models. Because the rough road
our data set was recorded on consists of several barriers with
decreasing distance in order to excite different frequencies,
splitting each of the time series into a training and a validation
part is not reasonable. For system identification, acceleration
values measured at a vehicle speed of 20, 30 and 50 km/h
are used in the training set. In the identification procedure for
each of the data sets in the training set a separate transfer func-
tion is identified. Finally, these transfer functions are merged
in order to obtain a single model. For merging, the transfer
functions are weighted with their inverse covariance matrices
as described in [21, p. 464 f.]. For validation acceleration
values at a vehicle speed of 40 km/h are used. As output signal
the battery acceleration front left (Bat_FL) is considered
exemplary. As input signal different combinations of signals
measured at the wheel carriers are examined. The data is
filtered with a lowpass filter at a cutoff frequency of 1500 Hz
and a sampling rate of 3000 Hz.

1) RESULTS
In Fig. 9 and Fig. 10 the mean squared error of the estimation

MSE =
1
N

N∑
k=1

(
y(k)− ypred.(k)

)2 (2)

on the validation set for a vehicle speed of 40 km/h is dis-
played for different polynomial orders and exemplary input
signal combinations. In these figures combinations of the
acceleration signals of the wheel carriers at the front left (FL),
front right (FR) and at the back left (BL) are considered as
input signals. The best prediction result can be achieved using
the signals from the front and the rear wheel carriers as input
signals. If using only the front input signal, the estimation
is much worse. Using more than two input signals does not
result in a big improvement anymore.

For the input signal combinations (FL) and (FL, FR) with
small and moderate polynomial orders the estimation error

FIGURE 9. Estimation error: Influence of ARX model order for different
input signals.

FIGURE 10. Estimation error: Influence of ARMAX model order for
different input signals, na = nc = 30.

decreases slightly for higher polynomial orders and increases
for high polynomial orders. For the input signal combina-
tions (FL, BL) and (FL, BL, FR) the simulation result of
the ARX-model strongly improves for increasing polynomial
orders until a polynomial order of 300 is reached. For higher
polynomial orders the simulation result deteriorates. For the
ARMAX-model only a slight improvement of the simulation
result for higher polynomial orders can be observed.

The increasing estimation error on the validation set for
increasing polynomial orders at high polynomial orders
can be explained by overfitting for both the ARX and the
ARMAX-model. Additionally, very high polynomial orders
can lead to problems in the optimization which then con-
verges to a not satisfactory local minimum. Especially the
ARMAX-model can become unstable and therefore has to be
stabilized during optimization.

For high polynomial orders of the ARMAX-model, espe-
cially for high polynomial orders of the C-polynomial, a sta-
bilization is very difficult and often leads to comparatively
bad local minima. Therefore, the polynomial orders na and nc
are limited to 30. For polynomial orders na and nc as high
as 60 no improvement of the simulation result could be
achieved. Even higher polynomial orders do not lead to a
stable result. For both models the order of the polynomial B
has the biggest influence on the prediction error.
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For lower polynomial orders better results can be achieved
with the ARMAX-model. For high polynomial orders the
results of the ARX-method are better because of the better
convergence properties.

In the following polynomial orders of na = nb =
300 for the ARX-model and polynomial orders of na =
nc = 30, nb = 100 for the ARMAX-model are used.

FIGURE 11. ARX prediction for 40 km/h.

FIGURE 12. ARMAX prediction for 40 km/h.

The simulation results of the ARX and the ARMAX-
method for the vertical acceleration of the battery at the front
left, using the wheel carrier acceleration at the front left
and the back left as input signals, are shown in Fig. 11-14
exemplary for a vehicle speed of 40 km/h. The time domain

FIGURE 13. Power spectrum of prediction for 40 km/h.

comparison between measured and simulated acceleration
is shown in Fig. 11 and Fig. 12. The power spectrum of
the measured and predicted acceleration signal is displayed
in Fig. 13 and Fig. 14. The acceleration spectral density is a
measure for the energy distribution of an acceleration signal
over the frequency. A direct numerical computation of the
power of an acceleration signal is often unreliable because of
drifts caused by the numerical integration of the acceleration
signal.

FIGURE 14. Power spectrum prediction for 40 km/h in detail.

It follows from Fig. 13 that the energy of the acceleration
signal is mainly concentrated in the frequency range much
lower than 200 Hz. Especially the frequency range from
10 − 60 Hz dominates the energy of the acceleration signal.
For low frequencies up to 20 Hz both methods estimate the
power of the acceleration signal very accurate. The power of
the acceleration signal in a frequency range of 20 − 60 Hz
is underestimated, which leads to an underestimation of the
energy of the acceleration signal.

This can be seen in Fig. 11 and Fig. 12 as well. While
the lower frequencies of the acceleration signal are simulated
well the acceleration peaks, which are dominated by higher
frequency signal components, are clearly underestimated.
Thus the higher frequency components are important for
simulating the maximum amplitude of the acceleration, but
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FIGURE 15. LSTM structure according to [24], [25].

only have a minor influence on the energy of the acceleration
signal.

The higher discrepancy of the measured and simulated
acceleration spectral density for very high frequencies above
200 − 400 Hz in Fig. 13 has only a minor influence on the
simulation result because the power of the signal in that signal
range is much lower than the power for lower frequencies.

IV. SYSTEM IDENTIFICATION WITH NEURAL NETWORKS
For the identification of nonlinear systems, classical
feed-forward networks and recurrent neural networks (RNNs)
are particularly suitable [21]. In contrast to feed-forward net-
works, recurrent networks allow a bidirectional information
flow. In the context of time series prediction, this means that
the output of such a network serves as part of the input to the
same network in the next time step. This allows a good repre-
sentation of time-dependent system dynamics. In this paper,
we use a specific class of recurrent neural networks, the Long-
Short-Term-Memory networks (LSTMs) [10], in order to
predict the loads on the battery cell. We provide a brief
overview in the following.

A. LSTMS
LSTM networks efficiently address the problem of RNNs
regarding long-term dependencies [22]. Their capability of
solving such problems is based on their special structure,
that is depicted in Fig. 15. It consists of an input gate i(k),
an output gate o(k), a forget gate f (k) and the cell state
C(k). Thereby, x(k) denotes the input vector and h(k) the
output vector. Every gate is a neural network itself and
contains the weights and biases that are optimized during
training.

The crucial part of the LSTM is its cell state, that stores
information from previous inputs. The input gate controls,
based on the current input, which information is added to a
cell state from the input itself. In contrast to that, the forget
gate controls, which information from the old cell state is
conserved and transferred to the new state. The output vector
h(k) is generated based on the new cell state and the output
of the output gate, that the input vector is fed into.

The neural networks used in this paper are implemented in
Python 3 using TensorFlow [23].

FIGURE 16. Structure of the considered neural network.

B. DIRECT ESTIMATE OF THE OUTPUT SIGNAL
The most common method of nonlinear system identification
is the direct estimation of the output signal of the system
from the input signals of the system. In this work, we use a
neural network with a hidden LSTM layer and a dense layer
as output layer. The model structure of the neural network
is shown in Fig. 16. Compared to other tested model struc-
tures, this model structure achieved the best results in this
study. In particular, better results were obtained with a hidden
LSTM layer than with a hidden dense layer.

As the input signals the accelerations at the wheel carriers
front left and rear left are used. As the output signal accelera-
tion at the front left of the battery is considered. As described
in section III-B for the ARX and the ARMAXmodel we have
used acceleration values measured at 20, 30 and 50 km/h for
training and values measured at 40 km/h for validation. In the
following parameter study, the MSE error on the validation
set is considered. The considered measurement series and the
input and output signals are listed in Tab. 1.

TABLE 1. Measurement data used in the parameter study.

Before the network is trained, the batch size nbatch and the
number of time steps ntimesteps, which the LSTM neurons can
store, has to be set. Also the number nepoch of epochs must be
specified, in which the neural network is trained.

1) STORED TIME STEPS OF THE LSTM NEURONS
An important parameter for LSTM neurons is the number of
stored time steps ntimesteps. With the sampling interval T of
the training and validation data, this can be converted into the
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more descriptive storage time

tLSTM = Tntimesteps. (3)

In order to determine the optimal number of stored time steps,
the neural network is trained in 200 epochs for a batch size
of 500 and 1000, whereby the number of stored time steps is
varied.

FIGURE 17. Influence of the storage time tLSTM of the LSTM neurons on
the prediction error.

A higher number of stored time steps leads to a lower
prediction error. This is shown in Fig. 17, where the same
trend for both chosen batch sizes can be seen. The number of
trainable parameters of the neural network does not depend
on the storage time. The required computing time and the
required GPU memory increase linearly with the number of
stored time steps.

2) BATCH SIZE
In order to determine an optimal batch size, the neural net-
work is trained using tLSTM = 0.1 s and nepoch = 200 for
different batch sizes. In Fig. 18 the influence of the batch
size on the simulation error and the computing time is shown.
For lager batch sizes a better result can be achieved. The
maximum batch size is limited by the memory of the GPU
used for training. Very small batch sizes lead to convergence
against bad local minima which leads to very different results
depending on the random initialization of the neural network.

3) NUMBER OF EPOCHS
Another important parameter for the training of neural net-
works is the number of epochs. If the number of epochs is too
small, underfitting occurs. Thereby, large errors occur both
on the training set and on the validation set. If the number
of epochs is selected too large, the error on the training set
is minimized, but the generalization and thus the error on the
validation set becomes worse. This is called overfitting.

In order to determine the influence of the number of epochs
for training the neural network, it is trained for tLSTM = 0.1 s
and different batch sizes, while the number of epochs is
varied. In Fig. 19 the error on the validation set is plotted
over the number of epochs for different batch sizes. For small
number of epochs the error reduces with increasing number
of epochs. If more than 50 epochs are used, the prediction
error on the validation set increases due to overfitting. Using

FIGURE 18. Influence of the batch size of the neural network.

FIGURE 19. Influence of the number of epochs on the prediction error for
tLSTM = 0.1 s.

a dropout-layer between the LSTM-layer and the dense-layer
does not improve the result. The results in Fig. 19 also show
that up to about 100 epochs, the influence of the chosen batch
sizes is negligible. The number of required epochs is closely
related to the training set size. Using a larger training set
size with unchanged batch size leads to more iterations per
epoch. Consequently the number of epochs can be reduced to
achieve a comparable training result.

C. SIMULATION RESULTS
The parameters of the neural network used in the following
are listed in Tab. 2. The resulting simulation results are pre-
sented below.

The comparison between measured and simulated vertical
acceleration is shown in Fig. 20 exemplary for a vehicle speed
of 40 km/h.
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TABLE 2. Neural network parameters for training on rough road track
data.

FIGURE 20. LSTM neural network prediction for 40 km/h.

FIGURE 21. Power spectrum of LSTM neural network prediction for
40 km/h.

With the direct prediction of the system response with
neural networks a much better result can be achieved than
with the prediction with the ARX or ARMAX-model from
Sec. III. Especially the power spectrum shown in Fig. 21
and Fig. 22 is simulated much better. It should be noted that
nonlinear systems in the frequency domain are only consid-
ered in a linearized way. Here measurement and simulation
agree very well. It follows that the energy of the acceleration
signal is also simulated well. The higher discrepancy of the
measured and simulated acceleration spectral density for high
frequencies above 200− 400 Hz in Fig. 21 has only a minor
influence on the simulation result because the power of the
signal in that signal range is much lower than the power for
lower frequencies.

V. HYBRID COMBINATION OF NEURAL NETWORKS
AND THE ARMAX-MODEL
A disadvantage of neural networks is the difficulty to vali-
date them. Neural networks usually have to be considered

FIGURE 22. Power spectrum of LSTM neural network prediction for
40 km/h in detail.

as black box models. The generalization properties of neu-
ral networks can usually only be checked on the basis of
validation data. A direct verification of the properties of the
identified system based on the model structure and the iden-
tified model parameters is generally not possible. The vali-
dation of neural networks is currently the subject of research
in various disciplines and limits the applicability of neural
networks [26], [27].

An avoidance of this problem is possible by combining
neural networks with linear transfer functions. Due to the
good understanding of linear transfer functions, identified
linear transfer functions can be validated comparatively eas-
ily and reliably. By combining neural networks with linear
transfer functions, their higher accuracy can be used with-
out having to give up the understanding of linear transfer
functions completely. This approach is particularly suitable
for weakly nonlinear systems, which can already be mapped
comparatively well with linear transfer functions.

Here, two different approaches are possible. One approach
is to identify both a linear transfer function and a nonlinear
transfer function represented by neural networks. For the
simulation the results of both transfer functions are compared.
If the deviation between the simulation results is too large,
the simulation result is rejected.

Another approach, which is used here, is to estimate the
simulation error of an identified linear transfer function with
neural networks. For this purpose, a linear transfer function
is first identified with the training data, for example with
the ARMAX model. Afterwards a prediction for all output
signals in the training set is calculated using this transfer
function. This data can be used to train a neural network in
order to estimate the prediction error of the transfer func-
tion. The result is an improved estimation. This approach is
referred here as the hybrid-model and is examined in more
detail below.

1) PARAMETER
For the difference estimation the network structure and
the parameters of the neural network for the direct esti-
mation of the output signal are taken from section IV-B.
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TABLE 3. Parameters and signals used for difference estimation.

However, the output signal is not the battery acceleration,
but the difference between simulated and measured battery
acceleration. Exemplary, the output signal of the ARMAX
model is used for the simulated battery acceleration. Tab. 3
lists the parameters and input and output signals used for the
difference estimation.

2) SIMULATION RESULTS
The results show a significantly better performance compared
to the ARMAX results. However they are still worse than the
neural network results. As can be seen by comparison of the
power spectra from Figs. 22 and 25, as well as from the results
in Figs. 20 and 23. The advantage of using a combination
(of an established model and a machine learning approach) is
that a part of the dynamical behavior is already predicted by a
well-known model, which is here the ARMAX model. Then,
the neural network model has to predict a smaller part of the
considered dynamical system.

FIGURE 23. Acceleration prediction with difference estimation
for 40 km/h.

3) COMPARISON OF SIMULATION RESULTS
In order to compare the performance of the different identi-
fied models the prediction error of the power spectrum of the
simulation is introduced. It is defined by

PSD error =
∫ fmax.

f=0
|PSD(ymeas, f )− PSD(ysim, f )|df (4)

FIGURE 24. Power spectrum of acceleration prediction with difference
estimation for 40 km/h.

FIGURE 25. Power spectrum of acceleration prediction with difference
estimation for 40 km/h in detail.

FIGURE 26. Comparison of the relative PSD errors of the ARX model
( ), the ARMAX model ( ), the neural networks ( ) and the
combination of the ARMAX model with the difference estimation ( )
for different vehicle velocities.

with the measurement data ymeas, the simulation ysim and
fmax. chosen as the sampling frequency of the simulated data.
As we are not interested in an exact simulation of the time
domain response, but in the frequency domain, this error
allows a better representation of the performance of the iden-
tified model compared to classical error representations in
time domain, like the mean square error. For different vehicle
velocities the errors of the identificationmethods examined in
this paper are shown in Fig. 26. As can be seen from the power
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FIGURE 27. ARX prediction for 50 km/h on Golf data.

FIGURE 28. ARMAX prediction for 50 km/h on Golf data.

FIGURE 29. LSTM neural network prediction for 50 km/h on Golf data.

spectral density plots, too, the best result can be achieved
using the LSTM-method. The difference estimation results in
a slightly larger error while the ARX and the ARMAXmodel

TABLE 4. Parameters and signals used for estimation.

FIGURE 30. Hybrid-model prediction for 50 km/h on Golf data.

FIGURE 31. Power spectrum of different estimation methods for 50 km/h
on Golf data.

lead to the largest errors. It can be clearly seen from Fig. 26
that the largest error occurs with a vehicle speed of 40 km/h in
the validation set. In order to demonstrate conservative results
for the Fiat 500e test car, we have chosen this speed in the
figures from sections III and IV.

VI. RESULTS WITH ANOTHER VEHICLE
For validation we additionally applied the examined methods
to acceleration data of a VW eGolf. The experimental setup
to obtain the acceleration data was the same as for the Fiat
500e, but different vehicle velocities were used. The used
training parameters are given in Tab. 4. They are identical to
the parameters used with the Fiat 500e data. Only the vehicle
velocities of the data sets are different.
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FIGURE 32. Power spectrum of different estimation methods for 50 km/h
on Golf data in detail.

The simulation results in time domain for the different
methods are shown in Figs. 27-30. The power spectra of the
simulation results are compared in Fig. 31 and in Fig. 32
in detail. The simulation results on the eGolf data are com-
parable to the results of the Fiat 500e data. This shows that
the examined methods as well as the chosen parameters can
be used on different data sets corresponding to different
vehicles. On new data sets the parameters used here are good
initial values. However, a variation of parameters can be
useful in order to improve the results.

VII. SUMMARY AND CONCLUSION
Different methods of predicting the load on the battery of
electric vehicles were investigated on the basis of experi-
mental vehicle measurements. For the system identification a
neural networkwith a hidden LSTM layer and a dense layer as
starting layer was used. Furthermore, a system identification
with ARX and ARMAX models based on the Prediction
Error Method was used. First, suitable model parameters for
the transfer functions were determined. Thereby, the results
of the ARMAX model were better compared to results of
the ARX model. However, the parameters must be carefully
determined if using the ARMAX model, since unfavorable
parameter combinations can lead to unstable system behavior
or convergence against comparatively poor local minima. The
ARX model is much more robust and is always stable and
does not converge against local minima.

Furthermore, a hybrid-model consisting of an LSTM neu-
ral network and the ARMAX model was studied, whereby
the LSTM neural network was used to estimate the error
between the ARMAX model results and the measurement
data. It turned out that direct prediction of the system behavior
by means of LSTM neural networks led to significantly better
results than using linear system identification by means of
ARX or ARMAX models. We have also obtained results
for the hybrid-model, which has shown a slightly less well
performance compared to the direct use of LSTM neural
networks.

Every investigated method has some advantages and dis-
advantages that restrict its usage. An example for this is the

missing flexibility of LSTM networks regarding the sam-
ple rate of the measured signals. The network is trained on
time series with a fixed step size. This cannot be changed
afterwards, as well as the hyperparameters of the network
as discussed in Sec. IV-A, which can prevent additional
training of the network if available data is sampled with
another rate. Another limitation of the shownmethods is their
black-box character. The models might predict the occur-
ring accelerations at certain points of the car (where sig-
nals were measured) but not on the whole structure (which
is possible with sophisticated approaches from the area of
multibody dynamics). A solution to this problem might be
interpolation between the predicted signals, which yet has to
be investigated. In Tab. 5 the advantages and disadvantages
of the examined methods are summarized. The ARX and
the ARMAX model have a well understood structure and
therefore can be easily and reliably validated. However, only
linear system behavior can be modeled. Due to the better
simulation results, direct estimation of the output signal by
means of LSTM neural networks is recommended. However,
the comparison of ARX and LSTM are useful for validation
of LSTM neural network results.

TABLE 5. Advantages and disadvantages of the examined methods.

APPENDIX
1) ARX
One of the simplest methods of the prediction error method is
the ARX model where AR refers tor autoregressive and X for
an exogenous input signal respectively. In the ARX model,
the polynomials C(z−1), F(z−1) and D(z−1) from Fig. 8 are
assumed to be one.

The system dynamics in discrete form are given by

y(k) =
B(z−1)
A(z−1)

u(k)+
1

A(z−1)
e(k) (5)

with

A(z−1) = 1+ a1z−1 + · · · + anaz
−na (6)

and the matrix polynomial

B(z−1) = z−nk
[
bnk + bnk+1z

−1
+ · · · + bnk+nb−1z

−nb+1
]
.

(7)
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The one-step-ahead prediction ŷ(k) of the measured value
y(k) thus results in

ŷ(k|k − 1, θ) = B(z−1)u(k)+
[
1− A(z−1)

]
y(k). (8)

Since no poles occur here, the one-step-ahead prediction
for any polynomial coefficients is stable.

With the parameter vector

θ =
[
a1 . . . ana bTnk . . . b

T
nk+nb−1

]T
(9)

and the regression vector

ϕ(k, θ ) =
[
−yk−1 · · · − yk−na uk−nk . . . uk−nk−nb

]T (10)

the one-step ahead prediction of the system dynamics can be
written as

ŷ(k|k − 1, θ ) = ϕ(k)T θ (11)

and the prediction error as

ε(k|k − 1, θ ) = y(k)− ϕ(k)T θ . (12)

From the mean squared error of the prediction the cost
function

VÑ
(
θ ,Z Ñ

)
=

1
2N

Ñ∑
k=p

ε(k|k − 1, θ )2, (13)

p = max{na, nb}, (14)

N = Ñ−p (15)

is derived. For the ARX-model the minimization of this cost
function can be simplified to the solution of the linear system
of equations

Rθ = f (16)

with

R =
1
N

N∑
k=p

ϕ(k)ϕT (k) (17)

and

f =
1
N

N∑
k=p

ϕ(k)y(k) (18)

[21, p. 203]. This system of equations is uniquely solvable
if the input signal u(k) is persistently exciting of sufficient
order [21, p. 412].

2) ARMAX
An extension of the ARX model is the ARMAX-model
after [28]. The polynomials D(z−1) and F(z−1) are chosen
to be one, as with the ARX-model, but C(z−1) is not. This
allows a more complex model for the external disturbance v.
The system dynamics of the ARX-model from equation (5)

are extended to

y(k) =
B(z−1)
A(z−1)

u(k)+
C(z−1)
A(z−1)

e(k) (19)

with

C(z−1) = 1+ c1z−1 + · · · + cncz
−nc . (20)

The one-step-ahead prediction thus results in

ŷ(k|k − 1, θ) = B(z−1)u(k)+
[
1− A(z−1)

]
y(k)

+

[
1− C(z−1)

]
ε(k). (21)

This can also be written as

C(z−k )ŷ(k, θ ) = B(z−k )u(k)+ [C(z−k )− A(z−k )]y(k).

(22)

The zeros of the nominator polynomial C(z−1) are poles of
the ARMAX-model. To ensure stability, they must lie outside
the unit circle. With the parameter vector

θ =
[
a1 . . . ana bnk . . . bnk+nb−1 c1 . . . anc

]T (23)

and the regression vector

ϕ(k, θ ) =
[
−yk−1 · · · − yk−na uk−nk . . .

uk−nk−nb εk−1,θ . . . εk−nc,θ )
]T (24)

the one-step-ahead prediction and the prediction error can be
written as

ŷ(k|k − 1, θ ) = ϕT (k, θ )θ (25)

and

ε(k|k − 1, θ ) = y(k)− ϕ(k, θ )T θ . (26)

For an efficient solution of the optimization problem mini-
mizing the cost function from equation (13)-(15) the calcula-
tion of the gradient ψ(k, θ ) of ϕ(k, θ ) is necessary.
According to [21, p. 329 ff.] the gradient results from

equation (22) with

C(z−1)
∂

∂ai
ŷ(k, θ ) = −z−iy(k) (27)

C(z−1)
∂

∂bi
ŷ(k, θ ) = −z−i−nku(k) (28)

z−iŷ(k, θ )+ C(z−1)
∂

∂ci
ŷ(k, θ ) = −z−iy(k) (29)

in

ψ(k, θ) = C−1(z−1)ϕ(k, θ ). (30)

With this gradient the optimization problem according to
[21, p. 327] can be solved with the Levenberg-Marquardt
algorithm [29, p. 111 ff.].
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