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ABSTRACT The automobile companies are focusing on recent technologies such as growing Hydrogen
(H2) and Fuel Cell (FC) Vehicular Power Train (VPT) to improve the Tank-To-Wheel (TTW) efficiency.
Benefits, the lower cost, ‘Eco’ friendly, zero-emission and high-power capacity, etc. In the power train of
fuel cell vehicles, the DC-DC power converters play a vital role to boost the fuel cell stack voltage. Hence,
satisfy the demand of the motor and transmission in the vehicles. Several DC-DC converter topologies have
proposed for various vehicular applications like fuel cell, battery, and renewable energy fed hybrid vehicles
etc. Most cases, the DC-DC power converters are viable and cost-effective solutions for FC-VPT with
reduced size and increased efficiency. This article describes the state-of-the-art in unidirectional non-isolated
DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application. The paper presented the
comprehensive review, comparison of different topologies and stated the suitability for different vehicular
applications. This article also discusses the DC-DC MPC applications more specific to the power train of a
small vehicle to large vehicles (bus, trucks etc.). Further, the advantages and disadvantages pointed out with
the prominent features for converters. Finally, the classification of the DC-DC converters, its challenges, and
applications for FC technology is presented in the review article as state-of-the-art in research.

INDEX TERMS DC-DC converter, fuel cell vehicles, multistage power converter, non-isolated, power
electronics, unidirectional converters, vehicular power train.

I. INTRODUCTION
These days, the fossil fuel system, dwindling to excessive
utilization and burning of fossil fuels for the vehicular appli-
cation, which leads to emission of Green House Gases (CHG)
[1]–[6]. Many researchers claim that the Pure Electric Vehi-
cles (PEVs) and the Hybrid Electric Vehicles (HEVs) are
the alternative solutions to Internal Combustion Engine (ICE)
due to lesser utilization of fossil fuel. However, the PEVs and
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HEVs are less ‘eco’ friendly when compared to ICE vehicles
if the electricity is generated from coal and other resources
to charge the battery. In such cases, CHG emission is high
compared to ICE vehicles. Hence, the fuel cell becomes an
alternative solution to power electric train vehicles. Both
the Fuel Cell Vehicles (FCVs) and HEVs technologies are
gaining more attention in research, and they are going to
play a vital role for the next decades [7]–[11]. The average
temperature of the earth is increasing slowly due to human
activities, by transportation, deforestation, etc., responsible
for the emission of CHG [12]–[14]. The statistic presented

178130 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3147-2532
https://orcid.org/0000-0003-0386-3138
https://orcid.org/0000-0003-3212-2750
https://orcid.org/0000-0001-8311-7412
https://orcid.org/0000-0002-5165-0754
https://orcid.org/0000-0003-2332-8095


M. Sagar Bhaskar et al.: Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in FC Vehicles

by the International Energy Agency (IEA) in 2016 states that
37% of the Total Energy Consumption (TEC) of the world
is from petroleum, 29% from natural gases, 15% from coal,
9% from nuclear and 10% via renewable energy sources
[15]. Estimated that the temperature of the earth’s surface
increases as early as 2050 if no initiatives were taken to con-
trol the present emission rate of CHG. The Energy Informa-
tion Administration (EIA) anticipated that the transportation
sector contributed 55% of the TEC of the world and reported
in 2016 [16]. Various policies and schemes like energy taxes
on fuel are initiated by many nations to reduce the emission
of CHG and to maintain a clean environment. This reason for
many researchers throughout the world to find new strategies
for power train and develop new energy sources to reduce
CHG and to improve the performance of power train of
the vehicles [17]–[21]. The power train of Battery Electric
Vehicles (BEVs), Hybrid Electric Vehicles (HEVs) and Fuel
Cell Vehicles (FCVs) provide a feasible solution to overcome
the drawback of ICE power train [22]–[27]. The Fuel Cell
Vehicles (FCVs) not only helps to maintain a healthy envi-
ronment but also reduces the service and operating cost of
the vehicles compared to ICE vehicles [28]–[34].

The FCV’s and HVEs technologies are overgrowing due
to the advancement in Power Electronics (PE) [35]–[38].
Both the FCVs and HEVs offer the cleaner and less emis-
sion of CHG, which are the alternative to conventional ICE
for the future generation. Both technologies utilize electric
energy and PE to drive vehicles [39]–[42]. Onboard fuel cell,
hydrogen storage and reformer utilized to drive the FCVs
instead of the battery. Whereas, the Fuel Cell Hybrid Electric
Vehicles (FCHEVs) are driven by fuel cells along with the
batteries.

The power electronic circuits are responsible for the con-
version of energy, circulation, control of energy within the
power train and as a prime mover for efficient, cost-effective
vehicles [43]–[47]. Generation of electrical power from the
fuel cell is dependent on the type of fuel cells, the number of
stack and size of the fuel cells. The critical working tempera-
ture of fuel cells and the type of electrolyte plays the critical
parameters to select suitable fuel cells. Because of the char-
acteristics and performance of the fuel cells depend on the
operating temperature [48], [49]. Fig. 1 depicts the classifica-
tion of available fuel cells based on the electrolyte, the power
and the working temperature. The Polymer Exchange Mem-
brane or Proton Exchange Membrane Fuel Cell (PEM-FC)
are the leading fuel cell technology. These fuel cells generate
the electricity by utilizing hydrogen directly from the fuel
tank and oxygen from the air, emit only water and heat as
the byproduct—the fuel cell vehicles documented as a zero-
emission vehicle due to absence of tailpipe pollutant. PEM-
FC, Alkaline Fuel Cell (AFC), Zinc-air battery, Phosphoric
acid Fuel Cell (PFC), Methanol Fuel Cell (MFC) is suitable
for vehicular applications. Among the types of the fuel cell,
PEM-FC gaining more popularity due to its high-power den-
sity, moderate temperature, low corrosion, regular storage,
and robustness against shock and vibration [50]–[58].

Initially, the fuel cells are adapted for slow speed vehicles
such as submarine, forklift and industrial handling vehicles.
However, nowadays, the fuel cells are also used for high-
speed vehicles due to advancement in the power train of
FCVs [59]–[61]. Based on the structure of power train, FCVs
are classifying into two types; Fuel Cell Electric Vehicles
(FCEVs) and Fuel Cell Hybrid Electric Vehicles (FCHEVs).
Fig. 2(a) and Fig. 2(b) illustrates the Power train of the
FCEVs and FCHEVs with a typical efficiency of each unit.
In the power train of FCEVs, batteries or ultra-capacitors are
not employing to store the energy and the vehicle operated
by only with fuel cells. In case of FCHEVs, the suitable
batteries or ultra-capacitors (also called super-capacitor) are
being employed by modifying the power train for soft start
of the vehicle and improving the performance [61]–[63].
Batteries and super-capacitors are adopted as an auxiliary
energy source to support the fuel cell and to satisfy the
power demand and supply requirement of the Vehicle Power
Train (VPT) [63], [64]. Transfer of energy from the Tank to
Wheel (TTW) is dependent on the efficiency of the Power
Electronics Converters (PEC) for the VPT [64]. Numerous
DC-DC converter topologies proposed for various vehicles
(FCEVs, FCHEVs, HEVs and PEVs), renewable energy and
electric drive applications [65]–[71]. Most of the DC-DC
power converters proposed for renewable energy and electric
drive applications also provided an effective solution for FC-
VPT technology with the cost, size and efficiency. Thus,
the selection of the suitable fuel cells and DC-DC power
converters are essential and crucial stage to design efficient,
low cost and high-power Fuel Cell Vehicular Power Train
(FC-VPT) [72]–[76].

The objective of this article is to present, the state-of-
art review of unidirectional non-isolated DC-DC Multistage
Power Converter (MPC) topologies for FC-VPT by com-
parison and application. This paper is organized as sections
as follows: The responsibility of power electronics in VPT
discussed in the section-II. This section also deals with the
classification of DC-DC converter topologies. The conven-
tional multistage DC-DC converter explained in the section-
III. Recently proposed MPCs discuss in the section-IV
to section-X. Comparison of DC-DC MPC along with its
applications, for the low and high-power train, is given by
section-XI. The future scenario of a DC-DC converter for the
vehicular application elaborated in the section-XII. Finally,
the conclusions provided in section-XIII.

II. RESPONSIBILITY OF POWER ELECTRONICS IN FUEL
CELL POWER TRAIN AND CLASSIFICATION OF DC-DC
CONVERTERS
All the mechanical and hydraulic loads are replaced by elec-
trical loads, to adopt advanced features like air conditioning,
power steering, power window, brakes, etc. To achieve, the
high efficiency, smart, the highly flexible vehicle with zero-
emission along with the flexibility of fuel, safety requirement
and for driver comforts, [77]–[80]. Therefore, the power elec-
tronics technology plays a viable role in circulating current,
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FIGURE 1. Classification of Fuel Cell (based on type of electrolyte, power and working temperature).

FIGURE 2. Power train of FCVs with efficiency of each unit (a) Fuel cell Electric vehicles (FCEVs) (b) Fuel cell Hybrid Electric vehicles (FCHEVs).

power in VPT and to employ the advanced functionality
and luxurious loads in vehicles [81]. In FCVs, the power
train and high-power loads supplied by high voltage bus;
whereas the low voltage, the bus utilized to supply low power
loads. In maximum cases, the battery or ultra-capacitor are
using to feed low power loads. For charge and discharge
the battery; bidirectional DC-DC converter between the DC-
bus and battery is another option. The output voltage of the
fuel cell is few, and the number of stacking more fuel cell
is not the optimal solution to increase the terminal voltage,
to satisfy the demand of power train and luxurious elec-
trical loads [19], [81]. The electrical system of the vehicle
becomes more complex and costly due to more electrical

loads. In such cases, the power electronics are the reliable
solutions to implement numerous control methods to con-
trol, adjustable drives, power electric-mechanical brakes, and
electro-hydraulics etc. Apart from this, numerous high power
electric actuation and dynamics are adopted to add an extra
luxurious feature to the vehicles. Power converter technolo-
gies are responsible for managing and for controlling the
power flow within the VPT [81].

The Power Electronics Converters (PEC) has classified
into four types; DC-DC, DC-AC, AC-DC and AC-AC con-
verters. In fuel cell vehicles, the DC-DC converter used to
boost the terminal voltage of the fuel cell and the obtain
voltage supply to DC-AC converter to drive the traction
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motor. High voltage DC-DC power converter is required
with the vehicular application to feed high voltage loads.
In literature, various unidirectional multi-stages DC-DC con-
verters addressed with the high gain conversion for various
applications including, the hybrid vehicles, renewable energy,
battery, and electric drives. These DC-DC converters are
also suitable to achieve higher voltage demand of power
train [65]–[71].

Fig. 3 shows the classification of PEC to focus on DC-DC
converter. DC-DC converters, classified into two main cate-
gories; Non-isolated and isolated. A non-isolated converter
shares a common ground between input and load or with
the floating load. Whereas, in the isolated converter, input
and load terminal are electrically isolated [65]. Based on the
direction of power flow through the converter, non-isolated
and isolated converters classified into two sub-categories;
one is unidirectional, and another is bidirectional converters.
To provide isolation; the transformer and coupled inductors
employed in the power converter. Which increase the con-
version ratio of the converter, but also increases the cost,
size and losses. Thus, the high frequency is the superior
option to reduce the transformer and coupled inductor size.
Inside unidirectional converters, the power flow only Input to
Output (I to O) direction. However, in case of bidirectional
converters, the power flow will be both the direction I to
O and O to I [65], [69]. Furthermore, both the unidirec-
tional and bidirectional sub-categories of non-isolated DC-
DC converter classified into two sub-categories; one cate-
gory is a Common Grounded Unidirectional/ Bidirectional
Converter (CGUC/CGBC) and Floating Output Unidirec-
tional/Bidirectional Converter (FOUC/FOBC). Further, both
the CGUC and FOUC classified into a single stage, multi-
stage and multiphase DC-DC converters.

Fig. 4(a)-(d), the concept of unidirectional non-isolated
and isolated with grounded and floating output single-stage
DC-DC converters explained in detail. Similarly, in Fig. 4(e)-
(h), the concept of unidirectional non-isolated and isolated
with grounded and floating output multistage DC-DC con-
verters explained in detail. Magnetic components and energy
storing elements used in DC-DC converter along with con-
trolled/ uncontrolled power semiconductor devices and the
functionality of the converter depending on the position of
elements.

III. STAGES OF MULTISTAGE POWER CONVERTER
(CONVENTIONAL DC-DC CONVERTER)
The primary stages of Multistage Power Converter (MPC)
classified into three categories; buck, boost and buck-boost
converters [82], [83]. The Cuk, Single Ended Primary Induc-
tance Converter (SEPIC) and ZETA converters derived from
the hybridization of two conventional converters (addition
of two conventional converters). Thus the Cuk, SEPIC and
ZETA converter are categorized into MPC [84]–[87]. The
conventional DC-DC, Cuk, SEPIC and ZETA converters
are not suitable to achieve a high conversion ratio due to

the requirement of high rating components and high duty
cycle [88].

The power circuit of the conventional unidirectional
common grounded boost, buck and buck-boost converters,
depicted in Fig. 5(a)-(c). Whereas the floating output boost,
buck, and buck-boost converters, depicted in Fig. 5(d)-(f),
respectively. The boost and buck converter provide a non-
inverting output voltage, whereas buck-boost converter pro-
vides an inverting output voltage. Recently, many DC-DC
converters to attain high step-up/down conversion ratio using
the front end structure of boost, buck and buck-boost con-
verter are addressed [65], [69]. In the next section, unidirec-
tional non-isolated DC-DC MPC categories, discussed with
its sub-classes.

IV. UNIDIRECTIONAL NON-ISOLATED DC-DC
MULTISTAGE POWER CONVERTER (MPC)
The conventional DC-DC converters, employed in various
medium-voltage step-up applications. However, conventional
converters are not a practical solution for high voltage step-
up applications [89]–[91]. To satisfy the high voltage load
demand and tomake the systemmore reliable, efficient, small
size, many solutions proposed in the last decades. DC-DC
MPC topologies designed by utilizing numerous boosting
stages along with conventional DC-DC converter [65]. The
combinations of the conventional converter and numerous
boosting stages form an extensive power converter config-
uration. Each converter topologies have its requirements,
characteristics and features. It is quite difficult, confusing
to survey and categorize the DC-DC MPC. In this work,
numerous unidirectional DC-DC converters are reviewed and
categorized to explain the global scenario of recently pro-
posed DC-DCMPC in literature. This article assists in under-
standing the concept and structure of unidirectional MPC
topologies, types of boosting stages with the advantages and
disadvantage of MPC. The specific topologies describe in
terms of their cost, reliability and applications. Based on the
boosting stages and conversion ratio; all the non-isolated DC-
DC multistage converters classified into the following three
main categories:

• Low voltage step-up MPC (Derived Topologies/two-
stage)

• Moderate voltage step-up MPC (Cascaded or Quadratic
Boost converter topologies)

• High voltage step-up MPC (Hybridization with
Switched Inductor (SI), Switched Capacitor (SC), trans-
former, coupled inductor etc.

A. LOW VOLTAGE STEP-UP MPC (DERIVED TOPOLOGIES)
Low voltage step-up MPC designed by hybridization of
two conventional DC-DC power converters, hence called as
derived topologies or two-stage converter. The classification
of low step-up MPC shown in Fig. 6(a). Though based on
the conversion ratio, many researchers claim that low step-up
converter is a conventional DC-DC converter. However, these
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FIGURE 3. Classification of Power Electronics Converter with more focus on non-isolated unidirectional DC-DC Converter.

FIGURE 4. DC-DC unidirectional converter configurations (a) Non-isolated Common Ground Single-stage Converter (Non-isolated CGSC) (b)
Non-isolated Floating Output Single-stage Converter (Non- isolated FOSC) (c) Isolated Grounded Single-stage Converter (Isolated GSC) (d) Isolated
Floating Single-Stage Converter (Isolated FSC) (e) Non-isolated Common Ground Multistage Converter (Non-isolated CGMC) (f) Non-isolated Floating
Output Multistage Converter (Non-isolated FOMC) (g) Isolated Grounded Multistage Converter (Isolated GMC) (h) Isolated Floating Multistage
Converter (Isolated FMC).

converters designed by utilizing two converters to achieve
excellent benefits and to avoid the drawback of conventional
converters structure. The various combinations of conven-
tional DC-DC converters to derive low voltage MPC shown
in Fig. 6(b). Cuk converter is step-up/down inverting output

DC-DC MPC designed by hybridization of popular Boost
and buck converter. In Cuk converter, front end structure is
a conventional boost converter and load side structure is con-
ventional buck converter [84]–[86]. The Single-Ended Pri-
mary Inductance Converter (SEPIC) is a step-up/down non-
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FIGURE 5. DC-DC unidirectional conventional common ground and floating power converter (a) Common Grounded Boost Converter (boost or
step-up converter) (b) Common Grounded Buck Converter (buck or step-down converter) (c) Common Grounded Buck-Boost Converter
(buck-boost or up-down converter) (d) Floating Boost Converter (floating boost or step-up converter) (e) Floating Buck Converter (floating
buck or step-down converter) (f) Floating Buck-Boost Converter (floating buck-boost or up-down converter).

FIGURE 6. Classification and possible combinations (a) Classification of Low voltage DC-DC Multistage Power Converter (MPC) (b)
Hybridization of conventional DC-DC converter to derive Low Voltage MPC (Cuk, SEPIC and ZETA derivation).

inverting output DC-DC MPC designed by hybridization of
the standard boost converter and buck-boost converter [84]–
[86]. In SEPIC, the front-end structure is the traditional boost
converter, and the load side structure is a traditional buck-
boost converter. The ZETA converter is a step-up/down non-
inverting output DC-DC MPC designed by hybridization
of the traditional buck-boost converter and buck converter.
Inside ZETA converter, the front-end structure is the tradi-
tional buck-boost converter, and the load side structure is
the traditional buck converter. Cuk, SEPIC, ZETA converters
are single switch (Power MOSFET, IGBT etc.) controlled
converter, and to design these converters; two inductors, two
capacitors, along with single power diode are required [84]–
[87]. The power circuit of Cuk, SEPIC and ZETA converter
depicted in Fig. 7(a)-(c) respectively.

B. MODERATE VOLTAGE STEP-UP MPC (CASCADED OR
QUADRATIC BOOST CONVERTER)
The classical DC-DC converters are not adequate for
high ormoderate voltage applications [88], [89]. Several stan-
dard DC-DC converters are connected in a cascaded manner
to achieve a moderated voltage. The generalized structure
of the N-stage cascaded converter shown in Fig. 8(a). The
cascaded power converters provide an average voltage con-
version ratio by increasing the number of switches [90]–
[93]. The input supply directly fed to the first stage of the
cascaded converter, and the voltage stepped up by increasing
the duty cycle to maximize margin. The remaining stages

operated with a lower duty cycle, thus switching losses is
reduced [69]. Due to several switches, sophisticated circuitry
and increased complexity in control switches of each stage.
The high voltage conversion ratio achieved but compromised
in robustness due to several numbers of inductors, diodes,
capacitors and active switches. In [94], cascaded Cuk con-
verter approach is employed, but result in reduced efficiency
and higher losses due to a large number of components.
In [95], a multistage converter with a magnetic component-
free proposed by using diodes and capacitor network to attain
the maximum conversion ratio. The drawback, an additional
number of diodes and capacitors. Also, the conversion ratio
limited due to the restriction of the number of stages.

The limitation of the active power switch overcome by the
Quadratic Boost Converter (QBC) [96]–[98]. The generalized
structure of QBC shown in Fig. 8(b). QBC strategy employed
for several stages using a single switch and utilizing the
number of uncontrolled switches (diodes). The overall gain
of the QBC is the product of the voltage gain of all stages,
considerable downside still exists. The main drawback of
the QBC is the voltage stress across the controlled switch;
poor efficiency and complexity increased due to the fourth-
order system. The voltage stress across the controlled switch
is equal to the total output voltage. Hence, required higher
rating switch, which increases the cost of the converter. For
improved efficiency, several approaches are addressed in the
literature [98]. In [99], 3-level Quadratic Boost Converter (3-
level QBC) proposed for high step-up application by utilizing
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FIGURE 7. Power circuit of Low Step-Up DC-DC Multistage Power Converter (MPC) or derived two stage topologies (a) Cuk Converter (b) Single
Ended Primary Inductance Converter (c) ZETA converter.

FIGURE 8. Moderate Voltage Converter (a) Generalized Structure of Cascaded Boost Converter (CBC) (b) Generalized Structure of Quadratic Boost
Converter (QBC).

two switches at the output side. However, the utilization
of two inductors is another drawback of the converter and
restricted to the low or moderate voltage and power applica-
tion. Switched Capacitor (SC), Switched Inductor (SI) or a
combination of Switched Inductor and Switched-Capacitor
(HSI-SC) employed in converters order to generate the high
voltage (explained in the next section).

C. HIGH VOLTAGE STEP-UP MULTISTAGE POWER
CONVERTER
High Voltage (HV) step-up MPC have high gain conversion
ratio and their power circuits designed by hybridization of
classical DC-DC power converters. These converters also
designed by using Front End Structure (FES) or full con-
verter along with numerous boosting stages like Switched
Capacitors (SC) (designed with the help of diode-capacitor
circuitry), Switched Inductor (SI), Voltage Lift Switched
Inductor (VLSI) cell, modified Voltage Lift Switched Induc-
tor cell (mVLSI), Voltage Multiplier (VM) etc. [65].

The numerous structures of Switched Capacitor (SC) cells
using diodes, switches and capacitor shown in Fig. 9(a)-(o)
[100]–[125]. Recently, the Switched Inductor (SI) andHybrid
combination of Switched Inductor and Switched-Capacitor
(HSI-SC) proposed to lift the voltage with high conversion
ratio [65], [88]–[91]. The VLSI and mVLSI are the famous
structure of HSI-SC used for the DC-DC converter. For sim-
plicity, this article HSI-SC configuration considered as a part
of SI. The numerous structures of SI and HSI-SC showed
in Fig. 10(a)-(s) using a diode, inductors, capacitors and
controlled switch [98], [117]–[119], [126]–[139]. All the high
step-up DC-DC MPCs classified into the following six sub-
classes:

• Switched Capacitor Based Converter (SCBC) series.

• Switched Inductor Based Converter (SIBC) series, /or a
hybrid combination of SI and SC, i.e. HSI-SC.

• Transformer, Coupled Inductor Based Converter family.
• Luo converter series.
• Multilevel DC-DC converter series.
• X-Y converter series.

V. MULTISTAGE SWITCHED CAPACITOR BASED
CONVERTER FAMILY (M-SCBC FAMILY)
Recently, the Switched Capacitors (SC) circuitries are pro-
posed for various step-up applications to achieve a high gain
conversion. Various SC circuitries showed in Fig. 9(a)-(o).
Multistage Switched-Capacitor Based Converters (M-SCBC)
are favored by simple structure, the modular approach and
potential for monolithic integration. In SC, all the capac-
itors are charged in parallel and discharged in series to
achieve a high gain conversion ratio [100]–[107]. The gain
ratio depends on the number of capacitor and arrangement
of capacitors in the converter. Apart from this, some SC
circuits follow the charge pumping concept, i.e. transfer
of energy from one capacitor to another capacitor, hence
also called charge pump network [103], [108]–[114]. These
SC or charge pump provides a viable solution to step-
up the voltage with a high conversion ratio and for var-
ious applications. Numerous high step-up DC-DC MPC
addressed in literature by using SC stages in conven-
tional boost converter or derived converters (Cuk, SEPIC
and ZETA) [100]–[125].

A. M-SCBC WITH BOOST AND BUCK-BOOST CONVERTER
FES
Several M-SCBC topologies proposed with the boost
and buck-boost front-end structure of the step-up appli-
cations. Popular M-SCBC topologies shown in Fig.11
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FIGURE 9. Recently proposed Switched Capacitor (SC) Structure (a)–(h) using uncontrolled switches and capacitor (i) SC using two diodes and
one controlled switch (j) SC using one diodes and two controlled switch (k) SC using two diodes and two controlled switch (l) SC using three
controlled switch (m) SC using four diodes three controlled switch (n)-(o) SC using four controlled switches.

FIGURE 10. Recently proposed Switched Inductor (SI) and Hybrid combination of Switched Inductor and Capacitor (HSI-SC) Structure (a)–(n) using
uncontrolled switches (diodes) and inductor (o)-(s) HSI-SC structure using diodes, capacitor and controlled switch (MOSFET), Note: (a), (b) and (c)
Structure of Switched Inductor and (d)-(s) Structure of HSI-SC.
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FIGURE 11. Switched Capacitor based DC-DC Multistage Converter with boost and buck-boost front end structure (a) Three Switch High Voltage Boost
Converter with FEBC structure (TS-HVBC) (b) Extension version of Three Switch High Voltage Boost Converter with FEBC structure (Extended TS-HVBC) (c)
Inverting Switched Capacitor Converter with input side inductor (d) Non-Inverting Switched Capacitor Converter with Input side inductor (e) Non-Inverting
Switched Capacitor Boost converter with FEBC structure and LC filter (f) Inverting Switched Capacitor Boost converter with FEBC and LC filter (g) Two
stage Switched Capacitor Boost converter with FEBC and LC filter (h) Inverting Switched Capacitor Boost converter with FEBC and Unidirectional C- filter
(HVDCC) (i) Non-Inverting Switched Capacitor Boost converter with FEBC structure and Unidirectional C-filter (HVDSC) (j) Non-Inverting Switched
Capacitor Boost converter with FEB-BC structure and Unidirectional C-filter (HVDZC) (k) Inverting Switched Capacitor Boost converter with FEB-BC
structure and Unidirectional C-filter (HVDIZC) (l) Inverting Switched Capacitor Boost converter with FEB-BC and Unidirectional LC-filter.

(a)-(l). In [107], and Three Switch High Voltage Boost
Converter (TS-HVBC) elaborated. Three Switch High Volt-
age Boost Converter (TS-HVBC) designed by hybridization
of Front End Boost Converter (FEBC) and SC. The power cir-
cuit of the TS-HVBC illustrated in Fig. 11(a). The power con-
verter consists of two diodes, two capacitors and one inductor
along with the single control switch—a two-stage converter
with the inverting output and suitable for the medium or high
boost applications. The converter is operating in the CCM
when k>D(1-D)2 and operate in DCMwhen k<D(1-D)2. The
conversion ratio of the TS-HVBC in CCM and DCM mode

is given in the equation (1) and (2) respectively.

Vout
Vin
=
−1

1− D
=
−T

T − Ton
=

−1
1− fsTon

(1)

Vout
Vin
= −

1+
√
1+ 4T 2

on
T 2k

2
, k =

2L
RlTs

(2)

where fS is switching frequency, T is the total period, Ton is
ON time of the switch, D is the duty cycle, and Rl is the load
resistance. Theoretically, this converter has a power factor
greater than 0.97 for conversion ratio higher than 1.5.
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This converter provides a negative conversion ratio equiv-
alent to inverting classical boost converter; the structure is
easily modifiable and extendable by adding additional stages
of SC and shown in Fig. 11(b). Two diodes and capacitors are
required to add one stage of SC [107]. The voltage conversion
ratio of the converter given as in the equation (3)

Vout
Vin
=
−2

1− D
=
−2T

T − Ton
=

−2
1− fsTon

(3)

In [108], the inverting SC converter with input side induc-
tor discussed, and the power circuit shown in Fig. 11(c). The
configuration is a three-stage step-up converter which con-
sists of input inductor stage, switch capacitor stage, and LC
filter. The converter provides a negative voltage conversion
ratio. Two inductors, three capacitors, and two diodes along
with the single control switch, are required to design this
converter. The voltage conversion ratio of the converter given
in equation (4).

Vout
Vin
=
−(1+ D)
1− D

=
−(T + Ton)
T − Ton

=
−(1+ fsTon)
1− fsTon

(4)

In [108], the non-inverting SC converter with input side
inductor discussed, and the power circuit shown in Fig. 11(d).
The configuration is three-stage step-up converters which
consist of input inductor stage, switch capacitor stage, and
LC filter. The converter provides a positive voltage conver-
sion ratio. Two inductors, three capacitors, and two diodes
along with single control switch, are required to design this
converter—the voltage conversion ratio of the converter given
in equation (5).

Vout
Vin
=

1+ D
1− D

=
T + Ton
T − Ton

=
1+ fsTon
1− fsTon

(5)

In [108]–[110], the non-inverting SC boost converter dis-
cussed with the low voltage stress across the switch. The
power circuit discussed in [108] shown in Fig. 11(e). The con-
verter designed by utilizing the SC network [102]. The con-
figuration is a three-stage step-up converter which consists
of FEBC structure, switch capacitor stage, and LC filter. The
converter provides a positive voltage conversion ratio. Two
inductors, three capacitors, and two diodes along with single
control switch, are required to design this converter—the
voltage conversion ratio of the converter given in equation
(6).

Vout
Vin
=

1+ D
1− D

=
T + Ton
T − Ton

=
1+ fsTon
1− fsTon

(6)

In [108]–[110], the inverting SC boost converter discussed
with low voltage stress of switch. The power circuit discussed
in [108], [109] shown in Fig. 11(f). The converter designed
by hybridization of SC in the classical boost converter [102].
The configuration is a three-stage step-up converter, consists
of FEBC structure, switch capacitor stage, and LC filter.
The converter provides a negative voltage conversion ratio.
The converter required two inductor, three capacitors, and

two diodes along with a single control switch—the voltage
conversion ratio of the converter given in equation (7).

Vout
Vin
=
−(1+ D)
1− D

=
−(T + Ton)
T − Ton

=
−(1+ fsTon)
1− fsTon

(7)

The two-stage switched-capacitor boost converter with
reduced switch stress, and proposed for the high voltage
conversion ratio [107]. The converter is also called as Three
Switch High Voltage Cuk Converter (TS-HVCC) because the
input characteristic of TS-HVCC is similar to the classical
boost converter or Cuk converter. In comparison, the load
side characteristic is similar to the Cuk converter. The power
circuit of TS-HVCC shown in Fig. 11(g), having three stages;
FEBC, SC, and LC filter. The converter provides a negative
conversion ratio, which is higher than the Cuk converter and
given in equation (8).

Vout
Vin
=
−(1+ D)
1− D

=
−(T + Ton)
T − Ton

=
−(1+ fsTon)
1− fsTon

(8)

In [113], a new DC-DC High Voltage Derived Cuk Con-
verter (HVDC) discussed. The structure is inverting SCBC
and has inductor at only the input terminal. The power circuit
of the converter shown in Fig. 11(h). This circuit is a three-
stage step-up converter which consists of FEBC, SC, and
C-filter stages. Here, Cuk structure formed by combining
the FEBC and SC stages. This converter provides a negative
voltage conversion ratio and required single inductor, three
capacitors, and three diodes along with single control switch
to design the converter. This converter provides a higher con-
version ratio compared to the conventional boost converter
with low voltage stress on the switch at the same duty cycle—
the voltage conversion ratio of the converter given in equation
(9).

Vout
Vin
=
−2

1− D
=
−2T

T − Ton
=

−2
1− fsTon

(9)

In [111]–[113], a new DC-DC High Voltage Derived
SEPIC converter (HVDSC) discussed. The structure is non-
inverting SCBC and derived by employing SC in the SEPIC.
The power circuit of the converter shown in Fig. 11(i). This
configuration is a four-stage step-up converter which consists
of FEBC, intermediate LC, SC andC-filter stages. The SEPIC
structure formed by combining the FEBC and the interme-
diate LC stage. This converter provides a positive voltage
conversion ratio. To design this converter, two inductors,
four capacitors, and two diodes along with the single control
switch, are required. This converter provides a high conver-
sion ratio compared to a conventional boost converter with
low voltage stress on the switch at the same duty cycle. The
voltage conversion ratio of the converter given in equation
(10). This configuration utilized to derive inverting voltage
by changing the polarity of the capacitor, and the direction of
the diodes.

Vout
Vin
=

2− D
1− D

=
2T − Ton
T − Ton

=
2− fsTon
1− fsTon

(10)
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In [111]–[113], a new DC-DC High Voltage Derived
ZETA converter (HVDZC) discussed. This converter is non-
inverting SCBC and derived by using SC in the ZETA con-
verter, and the second inductor replaced by a diode. The
power circuit of the converter shown in Fig. 11(j). This con-
figuration is a three-stage step-up converter which consists of
Front-End Buck-Boost Converter (FEB-BC), SC and C-filter
stages. The ZETA structure formed by combining the FEB-
BC and SC stages. This converter provides a positive voltage
conversion ratio ad required single inductor, three capacitors,
and three diodes along with a single control switch. The
control switch is floating and connected between the positive
terminal of the input and inductor. This converter provides
a high conversion ratio compared to the conventional boost
converter with the low switch voltage stress. The voltage
conversion ratio of the converter in the CCM and DCM given
in the equation (11) and (12) respectively.

Vout
Vin
=

1+ D
1− D

=
T + Ton
T − Ton

=
1+ fsTon
1− fsTon

(11)

Vout
Vin
=

1+
√
1+ 4T 2

on
T 2k

2
, k =

2L
RTS

(12)

In [111]–[113], a new DC-DC High Voltage Derived
Inverting ZETA Converter (HVDIZC) discussed. This con-
verter is inverting SCBC, and derived by using SC in the
ZETA converter, and a diode replaces the second inductor.
The power circuit of the converter shown in Fig. 11(k). This
circuit is a three-stage step-up converter which consists of the
FEB-BC, SC, and C-filter stages. The ZETA structure formed
by combining the FEB-BC and SC stages. The converter
required single inductor, three capacitors, and three diodes
along with a single control switch. This converter provides a
negative high conversion ratio compared to the conventional
boost converter with low switch voltage stress. The voltage
conversion ratio of the converter with CCM and DCM has
given by the equation (13) and (14) respectively.

Vout
Vin
= −

2− D
1− D

= −
2T − Ton
T − Ton

= −
2− fsTon
1− fsTon

(13)

Vout
Vin
= −1−

√
1+

T 2
on

T 2k
, k =

2L
RTS

(14)

In [109]–[113], ZETA DC-DC converter based on the
diode assist capacitor derived. The power circuit discussed
in [109] considered and shown in Fig. 11(l). This circuit is
inverting SCBC, and derived by using SC in ZETA converter.
The structure of the converter formed by combining FEB-BC
and SC stages along with LC filter. This converter provides
a negative voltage conversion ratio. Two inductors, three
capacitors, and two diodes along with single control switch,
are required to design this converter. The voltage conversion
ratio of the converter is given in (15).

Vout
Vin
= −

2− D
1− D

= −
2T − Ton
T − Ton

= −
2− fsTon
1− fsTon

(15)

B. MULTISTAGE SWITCHED CAPACITOR CONVERTER
(MSCC) WITHOUT FEBC AND FEB-BC
Numerous Multistage Switched-Capacitor Based Converters
(MSCCs) addressed in the literature without the front-end of
the Boost converter and the Buck-Boost converter structure
(FEBC and FEB-BC). These converters are derived for the
application of high step-up/down voltage and also suitable to
satisfy the electrical load demand in the vehicle.

One interesting topology called Switched-Capacitor with
Intermediate Boost Converter (SC-IBC) discussed in [114].
This topology provides a high step-up voltage conversion
ratio and shown in Fig. 12(a). This topology derived by using
a conventional boost converter as an intermediate stage. The
switched capacitor directly connected to the input side of the
converter. Three capacitors, five diodes and single inductor
along with four control switches are needed to design SC-
IBC. The voltage conversion ratio of the converter given in
equation (16).

Vout
Vin
=

3− 2D
1− D

=
3T − 2Ton
T − Ton

=
3− 2fsTon
1− fsTon

(16)

The switched capacitor based multistage step-down con-
verter shown in Fig. 12(b)-(f) [115]–[125]. These converters
do not provide a suitable solution for the power train of fuel
cell applications. But these converters find an application to
drive the low voltage luxurious loads in the vehicles.

C. MSCC WITH QUADRATIC BOOST FRONT-END
STRUCTURE (FUTURE DIRECTION)
Based on the literature survey, in this section, four new
converter topologies are proposed for the future direction of
MSCC for high step-up applications. Quadratic Boost Con-
verter (QBC) provides a suitable solution with SC to attain a
high voltage conversion ratio. Following four new topologies
are proposed:
• Quadratic Multistage Switched-Capacitor Converter
with C-filter. (QMSCCwith Cfilter) (shown in Fig. 13(a))

• Quadratic Multistage Switched-Capacitor Converter
with LC-filter (QMSCC with LC filter) (shown
in Fig. 13(b))

• Quadratic Multistage Switched-Capacitor Converter
with intermediate stage and C-filter (QMSCCwith inter-
mediate stage and C filter) (shown in Fig. 13(c))

• Quadratic Multistage Switched Capacitor Converter
with intermediate stage and LC-filter (QMSCC with
intermediate stage and LC filter) (shown in Fig. 13(d)).

The voltage conversion ratio of QMSCC with C-filter
given in equation (17). The voltage conversion ratio of
QMSCC with LC-filter given in the equation (18). The volt-
age conversion ratio of QMSCC with intermediate stage and
C-filter given in the equation (19). The voltage conversion
ratio of QMSCC with intermediate stage and LC-filter given
in the equation (20).

Vout
Vin
=

2
(1− D)2

=
2T 2

(T − Ton)2
=

2
(1− fsTon)2

(17)
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FIGURE 12. Multistage Switched Capacitor Converter without Boost Front-End Structure (a) Multistage Switched capacitor converter with
boost converter intermediate stage (b) Modified switched capacitor interleaved buck converter (c) Switched capacitor quadratic buck
converter (d) Four switch switched capacitor based multistage buck converter (e) Two switched capacitor based multistage buck converter
(f) Switched capacitor buck multistage converter with buck converter intermediate stage.

FIGURE 13. Multistage Switched Capacitor converter with Quadratic Boost Front-End Structure (a) Quadratic multistage switched capacitor
converter with C-filter (b) Quadratic multistage switched capacitor converter with LC-filter (c) Quadratic multistage switched capacitor converter
with intermediate stage and C-filter (d) Quadratic multistage switched capacitor converter with intermediate stage and LC-filter.
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Vout
Vin
=

1+ D
(1− D)2

=
T 2(T + Ton )
(T − Ton)2

=
1+ fsTon

(1− fsTon)2
(18)

Vout
Vin
=

2− D
(1− D)2

=
T 2(2T − Ton )
(T − Ton)2

=
2− fsTon

(1− fsTon)2
(19)

Vout
Vin
=

1+ D
(1− D)2

=
T 2(T + Ton )
(T − Ton)2

=
1+ fsTon

(1− fsTon)2
(20)

The detail classification of multistage switched-capacitor
based converter shown in Fig. 14 and the comparison of the
SBSC and the other parameters discussed in the comparison
section of this article.

FIGURE 14. Classification of Multistage Switched Capacitor Based
Converter Family (M-SBSC Family) based on recently addressed article.

VI. MULTISTAGE SWITCHED INDUCTOR BASED
CONVERTER FAMILY (M-SIBC FAMILY)
Switched Inductor (SI) is another popular technique
employed in DC-DC converter to increase the voltage with
a large conversion ratio. In Switched Inductor (SI), inductors
are discharged in series and charge in parallel [98], [117]–
[119], [126]–[139]. Multistage Switched Inductor Based
Converters (M-SIBC) provides a high voltage conversion
ratio using less number of components. These converters
structures are simple, and the inductance rating (value) of
both inductors are the same. The same core utilized to
integrate the inductors (to form switched inductor network)
to reduce converter weight and size. A hybrid combination
of Switched Inductor and Switched Capacitors (HSI-SC) is
another admired solution to attain a high conversion ratio.
Numerous M-SIBC topologies proposed for the large step-
up and step-down conversion ratio. Power circuits of the M-
SIBC shown in Fig. 15(a)-(l).

In [126], Switched Inductor (SI) concept discussed to attain
a high voltage conversion ratio. The power circuit of the
primary version Switched Inductor Boost Converter (SIBC)
shown in Fig. 15(a). The basic SIBC designed by replacing
inductor in the traditional boost conventional by the basic
Switched Inductor (SI) circuitry. The basic SIBC required
two similar inductors (equal in value), one capacitor, and
four diodes along with the single control switch. The voltage
conversion ratio of SIBC given in equation (21). The power
circuit divided into three stages; SI network, Switching stage
and C-filter stage.

Vout
Vin
=

1+ D
1− D

=
T + Ton
T − Ton

=
1+ fsTon
1− fsTon

(21)

In [98], Quadratic Boost Converter (QBC) proposed with
low buffer capacitor stress and higher conversion ratio. This
converter designed by using the hybrid combination of SI
and SC (here called HSI-SC). The power circuit of the HSI-
SC based QBC shown in Fig. 15(b). The circuit consists of
three stages; HSI-SC stage, switching stage and C-filter stage.
The circuit designed by using HSI-SC in the conventional
Boost converter. This converter provides a high conversion
ratio precisely equal to the conventional QBC. This converter
is more suitable to attain the high voltage conversion ratio
compared to the conventional QBC due to low voltage across
the buffer capacitor. The voltage conversion ratio of the QBC,
with low the buffer capacitor voltage is given in equation (22).

Vout
Vin
=

1
(1− D)2

=
T 2

(T − Ton)2
=

1
(1− fsTon)2

(22)

In [127], the boost converter proposed with HSI-SC (here
act as voltage multiplier). Along with this converter, HSI-SC
arranged along with voltage multiplier and attached in the
middle of the boost converter. The power circuit of the con-
verter shown in Fig. 15(c). The inclusion of the inductor with
SC allows the semiconductor control switch to operate with
ZCS (Zero current switching) turn-on. The reverse recovery
effect of the diodes also reduced. Thus, commutation losses
reduced, and it is suitable to operate at high frequency. The
converter structure is easily extendable to the N-stages of
employing the additional number of multiplier stages. The
intermediate HSI-SC stage is employed to boost the voltage
with high value, and C-filter is used to reduce output ripples.
The voltage conversion ratio of the converter with one stage
and with N-stage of multiplier cell given in the equation (23)
and (24) respectively.

Vout
Vin
=

2
1− D

=
2T

T − Ton
=

2
1− fsTon

(23)

Vout
Vin
=

N + 1
1− D

=
(N + 1)T
T − Ton

=
(N + 1)
1− fsTon

(24)

In [128], High efficiency, high step-up soft switching boost
converter proposed by using HSI-SC stage with an additional
capacitor. This converter provides a high voltage conversion
ratio compared to the conventional boost converter, and the
power circuit of the high step-up soft-switching converter
shown in Fig. 15(d). The power circuit divided into threemain
stages; FEBC, HSI-SC with additional capacitor and C-filter.
This converter needs complex driver circuitry, and there is
no need for additional separation because of both switches
at operating at the same ground level. However, complex
structure due to the utilization of fiver components addition,
including inductor and switch is the main disadvantage of this
converter—the voltage conversion ratio by equation (25).

Vout
Vin
=

1
1− (D1 + D2)

=
1

1− (fsTon1 + fsT2)
(25)

In [129], HSI-SC based ultra-step-up DC-DC converter
proposed. The power circuit of the ultra-step-up DC-DC con-
verter shown in Fig. 14(e). The proposed technique designed
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FIGURE 15. Multistage SI and HSI-SC Based Converter (a) Basic switch inductor boost converter (b) Quadratic boost converter with lower buffer
capacitor voltage (c) Boost converter with integrated HSI-SC (d) High efficiency high step-up soft switching boost converter based on HSI-SC (e) HSI-SC
based ultra-step-up dc-dc converter (f) Positive output hybrid converter with switched inductor (Luo Converter with SI) (g) Self-lift positive output
hybrid converter with HSI-SC (h) Double self-lift positive output hybrid converter with HSI-SC (Luo Converter with HSI-SC) (i) Triple mode converter (j)
HSI-SC buck converter (k) Quadratic buck converter based on front end HSI-SC structure (l) HSI-SC buck converter (m) Buck converter with basic
switched inductor cell.

by utilizing the three stages; one is HSI-SC, and another is
SC within conventional Buck-Boost converter and C-filter
with opposite polarity. The proposed ultra-converter provides
a high voltage conversion ratio with a moderate duty cycle.
The stress across the switch is less, which enables the use of
low rating semiconductor-controlled devices; hence the cost
of the converter is reduced. The voltage stress across diodes
is also less. Thus, the converter circuit designed by using
Schottky diodes. The voltage conversion ratio provided in
equation (26).

Vout
Vin
=

3+ D
1− D

=
3T + Ton
T − Ton

=
3+ fsTon
1− fsTon

(26)

In [130], positive output hybrid converters with Switched
Inductor (Luo converter with SI), and self-lift positive out-
put hybrid converter with HSI-SC, double self-lift positive
output hybrid converter with HSI-SC (Luo converter with
HSI-SC) presented to attain the higher conversion ratio,
and the power circuit shown in Fig. 15(f)-(h), respectively.
These converters derived by employing the SI and SC in
the boost converter. These converters consist of four stages;
switching stage, HSI-SC, intermediate C-filter stage and LC-
filter. In other words, these converter topologies derived
by employing SI, self-lift SI and double voltage lift SI in
ZETA converter. The conversion ratio of the positive out-
put hybrid converter with SI, self-lift positive output hybrid
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converter with HSI-SC and double self-lift positive output
hybrid converter with HSI-SC given in equation (27)-(29),
respectively.

Vout
Vin
=

D+ D2

1− D
=
fsTon + f 2s T

2
on

1− fsTon
(27)

Vout
Vin
=

2D
1− D

=
2fsTon

1− fsTon
(28)

Vout
Vin
=

3D− D2

1− D
=

3fsTon − f 2s T
2
on

1− fsTon
(29)

In [131], the N stage high step-up converter proposed to
attain a high conversion ratio. The power circuit discussed in
[131] shown in Fig. 15(i). The proposed converter is work-
ing with the concept of the SC, but categorized in HSI-SC
because of an inductor or resonant tank utilized to assist ZCS.
Due to the ZCS spike in currents reduced, which generally
exists in the case of SC. The whole circuit is divided into three
stages, switching stage, HSI-SC stage and C-filter stage.

In [109], [115], [117] buck converter is derived by utilizing
HSI-SC. The power circuit of the converter discussed in [115]
depicted in Fig. 15(j). Three inductors, three capacitors, five
diodes along with single controlled switch, are required to
design the power circuit of the converter. This converter pro-
vides a high step-down voltage conversion ratio with reason-
able efficiency. The voltage conversion ratio of the converter
provided is given by equation (30). This converter power
circuit consists of four stages; input side inductor stage, SC,
SI switching stages.

Vout
Vin
=

D
(2− D)2

=
T 2Ton

(2T − Ton)2
=

fsTon
(2− fsTon)2

(30)

In [115], Quadratic Buck Converter (QBC) based on the
front end HSI-SC structure proposed. The power circuit of
the converter shown in Fig. 15(k). In this converter, HSI-SC
structure combined with conventional buck converters. This
converter provides a large step-down ratio and conversion
ratio provided in the equation (31).

Vout
Vin
= D2

= f 2s T
2
on (31)

In [127], HSI-SC buck converter proposed by employing a
multiplier cell in a buck converter. The power circuit of the
converter showed in Fig. 15(l). The arrangement of reactive
components reduces the drawback of the reverse recovery
current problem. In this circuit, HSI-SC is operating as a
regenerative clamping circuit, therefore reducing the prob-
lem with the layout and the Electromagnetic Interference
(EMI). In [115], [117]–[119], [132], [133], buck converter
with Switched Inductor (SI) proposed. The inductor of the
conventional buck converter is replaced by SI to obtain the
circuit of the buck converter. The power circuit discussed in
[115] showed in Fig. 15(m) and the voltage conversion ratio
provided in the equation (32).

Vout
Vin
=

D
2− D

=
fsTon

2− fsTon
(32)

In [126], a transformer-less DC-DC converter proposed
by utilizing two switches instead of three diodes in the
switched inductor. Three new converters named as converter-
I, converter-II and converter-III proposed by employing the
switched inductor and lift technique in the boost converter.
The power circuit of the converter-I and converter-II and
converter-III showed in Fig. 16(a)-(c) and voltage conversion
ratio provided in the equation (33)-(35) respectively.

Vout
Vin
=

1+ D
1− D

=
T + Ton
T − Ton

=
1+ fsTon
1− fsTon

(33)

Vout
Vin
=

2
1− D

=
2T

T − Ton
=

2
1− fsTon

(34)

Vout
Vin
=

3+ D
1− D

=
3T + Ton
T − Ton

=
3+ fsTon
1− fsTon

(35)

Apart from this, recently many DC-DC converters based
on Switched Inductor (SI) and Switch Capacitor (SC) concept
proposed with the coupled inductor, transformer and voltage
multiplier to attain the large conversion ratio [139]–[173].
Some SI converters with coupled inductor and transformer,
and with voltage multiplier discussed in the following sec-
tions.

VII. TRANSFORMER AND COUPLED INDUCTOR BASED
DC-DC CONVERTER TOPOLOGIES
To achieve high voltage boost output, magnetic coupling
utilized in both isolated and non-isolated converters. Trans-
former and coupled inductor-based DC-DC converters classi-
fied into two categories isolated and non-isolated. In DC-DC
converter topologies, the built-in transformer is providing a
viable solution to achieve a high voltage conversion ratio
[65], [69]. In built-in transformer technique, one winding
direct connected to load, and energy is transferred to another
magnetic coupling to achieve the high voltage conversion
ratio. The coupled inductor is another solution to increase
the voltage conversion ratio [65]. To limit the falling rate of
diode current and to minimize the reverse recovery problem,
leakage inductance utilized. To achieve a high conversion
ratio and to minimize the current ripple, coupled inductors
are an alternative solution to skip transformer.

There are many applications where electrical isolation
is not necessary and require. Therefore, for these types of
applications, non-isolated converters are the best solution to
achieve high voltage—both tapped and untapped inductive
coupling used in the DC-DC converters. In [140]–[142],
a complete review of tapping DC-DC converter and its types
discussed.

In [143], coupled inductor-based converter flying structure
with the common ground discussed for the step-up applica-
tions. The power circuit of the converter discussed in [143]
shown in Fig. 17(a). By using a coupled inductor, it is easy
to achieve a high conversion ratio; but due to leakage induc-
tance, the converter efficiency decreased. Also, high voltage
stress occurs across the switch; hence large rating switches
are required—the converter derived by combining the front-
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FIGURE 16. Step-Up DC-DC converter with two switches active switched inductor network (a) Converter-I (b) Converter-II (c) Converter-III.

end structure of the fly-back converter and C-filter by com-
mon grounding. Ideally, the boosting depends on the coupling
factor, coupling ratio and duty cycle—the voltage conversion
ratio provided in equation (36).

Vout
Vin
=

−D(1+ N2
N1
)
(
K+1
2

)
1− D

=

−fsTon
(
1+ N2

N1

) (
K+1
2

)
1− fsTon

(36)

where N2 and N1 are Coupled inductor winding turns ratio,
k is Lm/(Lm + Lk ), Lm and Lk coupled inductor magnetising
and leakage inductance.

In [144], the coupled inductor is employed as a transformer
to attain high voltage at the output terminal of the converter.
The power circuit of the converter discussed in [128], [144]
shown in Fig. 17(b). The high voltage achieved by adjust-
ing the right turn’s ratio and duty cycle. Coupled inductor
network of this converter is similar to HSI-SC. The primary
side winding is acting as a filter, and secondary side winding
operates as a series voltage source. The power circuit of the
converter divided into three stages; HSI-SC with the coupled
inductor, switching stage and C-filter. It is possible to inte-
grate both coupled inductors with the single magnetic core to
reduce the size of the converter.

The coupled inductor based DC-DC high step-up con-
verters are proposed with SC or charge Pump [128], [144]–
[146]. The power circuit of the converter discussed in [128]
shown in Fig. 17(c). The converter divided into three main
stages; FEBC with the coupled inductor, HSI-SC, Interme-
diate inductance and C-filter stages. Here, the intermediate
stage designed by using the coupled inductor. It is an active
clamp circuit, and it helps to recycle the energy. High voltage
readily achieved by adjusting the turn’s ratio and the duty
cycle. The converters have high voltage stress, and losses due
to leakage induce energy.

The hybrid combination of the conventional boost con-
verter and fly-back converter (Hybrid-Boost-Fly-back Con-
verter) are discussed in [144], [147], [148]. The power circuit
of the converter discussed in [144], [147] shown in Fig. 17(d).
The converter divided into four stages; Front end structure
of fly-back, switching stage and two C-filter. With this con-
verter, transformer of fly-back converter and inductor of boost
converter combined, and the outputs of both converters are

connected in series to extend the range of voltage conversion
ratio with reduced switch stress.

In [148], the high step-up boost converter integrated with
transformers which act as an auxiliary circuit. The power cir-
cuit of the converter discussed in [148] depicted in Fig. 17(e).
The converter circuit derived by combining the auxiliary
circuit on the top of the boost converter. The auxiliary circuit
integrated with the transformer and capacitors to avoid broad
input current ripple. Due to a simple structure, the doubler
employed in the auxiliary circuit to step-up the voltage. The
quasi-resonant mode of operation makes the current sinu-
soidal due to the resonant tank formed by transformer and
capacitors. The converter divided into three stages; FEBC
structure, resonant tank circuit and C-filter. This converter
provides a viable solution to achieve high voltage by adjusting
turns of a transformer.

In [149], Quadratic Boost Converter (QBC) is proposed
with the coupled inductor to obtain a high voltage conversion
ratio. The power circuit of the converter depicted in Fig. 17(f).
The converter divided into four stages. First two stages are
conventional boost converter which forms a QBC, the third
stage is HSI-SC with the coupled inductor, and the fourth
stage is the C-filter. This converter combines the function of
QBC, coupled with inductor and HSI-SC.

Tapped Buck Converter (TBC) discussed, which provides
a lossless clamping [115], [150]. The additional lossless
clamp circuit is employed to recover the voltage spike of the
switch. The power circuit of the converter discussed in [115],
[150] depicted in Fig. 17(g). The converter divided into two
stages; one is HSI-SC, and another is a buck converter. The
standard coupling provided between inductor of HSI-SC and
buck converter. The voltage conversion ratio of the TBC given
in equation (37).

Vout
Vin
=

D
D+ N (1− D)

=
fsTon

fsTon + N (1− fsTon)
(37)

where N is winding ratio.
In [151], a new high step-up converter with multiplier stage

proposed in which two capacitors are charged in parallel and
discharged in series with energy stored in the inductor. Also,
using clamp circuit leakage energy of the coupled inductor
is recycled. The power circuit of the converter discussed
in [151] shown in Fig. 17(h). The converter divided into

VOLUME 8, 2020 178145



M. Sagar Bhaskar et al.: Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in FC Vehicles

FIGURE 17. Transformer and Coupled Inductor Based Converter (a) Coupled inductor based fly- back structure (b) High step-up boost converter with
coupled inductor (c) Coupled inductor based dc-dc high step-up converter with charge pump (d) Hybrid-boost- fly-back-converter (e) High step-up
boost converter integrated with a transformers (f) Quadratic Boost Converter (QBC) with couple inductor (g) Tapped buck converter (h) High step-up
converter with multiplier stage (in) Quadratic Boost Converter with coupled inductor at second stage (j) Y-source DC-DC converter with discontinuous
current. (k) Y-source DC-DC converter with continuous current with additional capacitor. (l) Y-source DC-DC converter with continuous current with
additional capacitor and inductor (m) Quasi-Y-source converter (n) Buck converter with tapped coupled inductor (o) Tapped buck converter.

three stages; one is a boost converter with additional reac-
tive elements, second is the multiplier stage designed by the
coupled inductor, and the third stage is the C-filter. Moreover,
the low resistance power control switch is adopted to reduce
the losses.

In [152], Quadratic Boost Converter (QBC) proposed to
attain a high voltage conversion ratio. The power circuit of
the converter discussed in [152] shown in Fig. 17(i). The
converter divided into three stages; first is front end structure
with HSI-SC, the second stage is the boost converter with
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the coupled inductor, and the third stage is the C-filter. The
converter provides a high voltage at the output with less
voltage across the switch. Moreover, the conversion ratio of
the converter quickly increased by adjusting the coupling
factor.

In [153]–[156], DC-DC Z source and Y-source based con-
verter proposed for high conversion ratio. The power cir-
cuit of the converter discussed in [154] shown in Fig. 17(j).
The converter divided into three stages; Y-source impedance
network, switching stage and C-filter. It comes into all the
advantages of the original Y-source converter. Moreover,
the converter provides a high voltage conversion ratio even
with lesser duty cycle. The drawback of the converters is
discontinuous and pulsating current which is not suitable for
most of the practical application.

In [154]–[156], to overcome the drawback of discontinu-
ous current, a new DC-DC Y-source converter is proposed
with simple modification by adding a capacitor to smoothen
the current. The power circuit of the converter discussed
in [155] shown in Fig. 17(k). The converter divided into
three stages; Y-source network with an additional capacitor in
parallel, switching stage and C-filter. The modified network
provides a continuous current, but only when capacitors set
on the perfect and appropriate value. The converter faces
the problem of high inrush current due to input parasitic
reactance.

In [153]–[156], a new DC-DC Y-source converter is pro-
posed with additional inductor and capacitor at the input side
to smoothen the current. The power circuit of the converter
shown in Fig. 17(l) and divided into three main stages; the
first stage is Y-Source network with additional inductor and
capacitor, the second stage is the switching stage, and the
third stage is C-filter. Unfortunately, this converter has high
voltage stress across the devices.

In [153]–[156], DC-DC converter proposed with another
technique by employing quasi-Y-source network to smoothen
the current by adding one additional capacitor and inductor.
The power circuit of the Quasi–Y-Source boost converter
shown in Fig. 17(m). The converter divided into three stages;
the first stage is Quasi-Y-Source, the second stage is the
switching stage, and the third stage is C-filter. This converter
has a high conversion ratio and continuous input current.
To prevent the core from saturation, two capacitors placed in
such a way that they block the dc-current flowing through the
coupled inductor.

Buck converter proposed with the tapped coupled induc-
tor [150], [157]–[159]. The voltage conversion ratio adjusted
by changing the tapping of the inductors. This technique
also reduces the switching losses and conduction losses, but
high voltage spike occurs across the switches due to leakage
inductance of coupled inductors. The power circuit of the
converter discussed in [150], [158] shown in Fig. 17(n). The
converter combines the features of the buck converter and the
tapped coupled inductor.

In [159], [160], a new tapped buck converter proposed; the
high step-down ratio achieved compared to the conventional

buck converter. This converter designed by employing the
active clamp circuit for voltage spike problem. A clamped
capacitor connected in series with the tapped coupled induc-
tor winding. The power circuit of the converter discussed in
[160] shown in Fig. 17(o). This converter combines the fea-
tures of tap inductor, active clamp circuit and buck converter.

In [161], Interleaved Boost Converter (IBC) proposed
with the coupled inductor and Switched Capacitor (SC). The
power circuit of the converter discussed in [161] depicted
in Fig. 18(a). The switched capacitor used to increase the
voltage conversion ratio and to reduce the stress of the
switch. Switching losses reduced due to Zero Voltage Tran-
sition (ZVT) throughout the switching cycles. The converter
divided into three stages; the first stage is interleaved boost
converter with coupled inductor; the second stage is the
switched capacitor, and the third stage is the C-filter.

In [162], Interleaved Boost Converter (IBC) proposed with
a voltage multiplier cell. The high conversion ratio achieved
by adjusting the coupled ratio of the inductor and duty cycle.
To design the converter, low rating switch and small inductor
are suitable due to current sharing capability at the input side.
The power circuit of the converter discussed in [162] depicted
in Fig. 18(b). The converter divided into three stages. The first
stage is the interleaved converter with the coupled inductor,
the second stage coupled inductor stage or voltage multiplier,
and the third stage is C-filter. The voltage multiplier circuit
designed by utilizing two secondary of the coupled induc-
tor, one diode and one capacitor. The converter performance
increased due to the Zero Current Technique (ZCT), which
reduces switching losses and EMI.

In [163], a new interleaved boost converter proposed with
a built-in transformer. The power circuit of the converter dis-
cussed in [163] shown in Fig. 18(c). The full-bridge rectifier
circuit is employed with the interleaved structure to design
the circuit. Leakage of the transformer limits the recovery
current of the bridge—high efficiency confirmed by the soft-
switching technique. The converter divided into three stages.
The first stage interleaved boost converter; the second stage
coupled inductor as an intermediate stage, and the third stage
is the rectifier with filter.

In [164], to achieve a high voltage conversion ratio and
ZCS, a new interleaved winding coupled inductor boost con-
verter proposed. The voltage conversion ratio easily changed
by changing the turns of the coupled inductor. The prac-
tical clamp circuit utilized to limit the voltage stress of a
switch. The ZCS achieved due to leakage inductance of cou-
pled inductor; hence switching losses are reduced. The power
circuit of the converter discussed in [164] shown in Fig. 18(d).
The converter divided into three stages. The first stage is the
interleaved converter with the coupled inductor, the second
stage coupled inductor network, and the third stage is the C-
filter.

The Interleaved Boost Converter (IBC) proposed with a
built-in transformer voltage doubler cell to step-up the volt-
age [165]. Three windings, two diodes and two capacitors
used to design built-in transformer voltage doubler cell. The
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FIGURE 18. Transformer and coupled inductor based Interleaved converter (a) Interleaved converter with coupled inductor and switched capacitor (b)
Interleaved converter with multiplier cell (c) Interleaved converter with built-in transformer (d) Interleaved winding coupled inductor Boost converter
(e) Interleaved boost converter with built-in transformer voltage doubler cell (f) Switched coupled inductor based buck converter (g) Interleaved Boost
converter with coupled inductor. (h) Interleaved buck converter is proposed with coupled inductor (i) Buck Converter with three states switching.

capacitors are charged in parallel and discharged in series
to double the voltage. The power circuit of the converter
discussed in [165] shown in Fig. 18(e). The converter divided
into three stages; the first stage is interleaved boost converter
with an additional capacitor, the second stage is the built-in
transformer voltage doubler, and the third stage is the C-filter.
The active clamp technique is used in the converter to recycle
the leakage energy.

In [166], switched coupled inductor based buck converter
proposed. The power circuit of the converter shown in Fig.
18(f). The filter of the conventional buck converter replaced
by the coupled inductor and diodes. The power circuit of
the converter divided into three stages; the first stage is the
switching device which used to control the output voltage;
the second stage coupled Switched Inductor (SI), and the third
is the capacitive filter. Leakage energy recovered without
using clamp circuitry.

In [167], Interleaved Boost Converter (IBC) proposed with
the coupled inductor. The power circuit of the converter
discussed in [167] shown in Fig. 18(g). The intermediate
capacitor snubber is employed to reduce switching losses of
the converter and to improve the efficiency. In [168]–[171],
the interleaved buck converter proposed with the coupled
inductor. The power circuit of the converter discussed in [169]
shown in Fig. 18(h). The converter provides the less output

current ripple, and the inductor current ripple is depending
on the coupling of inductors. In [172], the multilevel buck
converter proposed by using several active switches for high
voltage step-up application. In [151], [173] buck converter is
proposed by the three state switching cells to reduce the cur-
rent peak of the active switch—the three-state switching cell
designed by using the two coupled inductors, two diodes and
two switches. The power circuit of the converter discussed
in [151], [173] shown in Fig. 18(i). Converter divided into
two stages; the first stage is the three-state switching cells,
and another stage is LC filter. Three-stage switching cells are
employed to reduce ripple and current peak.

VIII. LUO CONVERTERS
In the last decades, a Luo DC-DC converter is one of the
famous converter families in power electronics, which pro-
vides a suitable solution to achieve a high conversion ratio.
Voltage lift technique is employed to overcome the effect
of the parasitic element in the power circuit of the Luo
converter [174]–[178]. The Luo converter power circuits are
simple and easily extendable, and it also provides a high
voltage with reasonable efficiency and high density.

Many Luo DC-DC converter topologies addressed in the
literature based on the Switched Inductor (SI), Switched
Capacitor (SC), self-lift, re-lift, triple-lift, quadruple-lift etc.
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All the lift stages derived by utilizing the Switched Inductor
(SI) and Switched Capacitor (SC) concept with the conven-
tional DC-DC converter [174], [175].

In [174]–[176], Positive output re-lifts Luo converter pre-
sented with two controlled power switches. This converter
provides a high positive conversion ratio by employing a re-
lift structure. The power circuit of the positive re-lift Luo
converter shown in Fig. 19(a). The converter divides into
three main stages; FEB-BC, re-lift, and LC-filter stages. The
re-lift circuit derived by combining the structure of switched
capacitor and HSI-SC. This converter provides two times
voltage conversion ratio compared to traditional boost con-
verters. The voltage conversion ratio of the converter given in
equation (38).

Vout
Vin
=

2
1− D

=
2T

T − Ton
=

2
1− fsTon

(38)

In [174]–[176], positive output, triple-lift Luo converter
presented with two controlled power switches. This converter
provides a high positive conversion ratio by employing a
triple-lift structure. The power circuit of the positive triple-
lift Luo converter shown in Fig. 19(b). The converter circuit
is divide’s into three main stages; FEB-BC, triple-lift, and
LC-filter stages. The triple-lift circuit derived by combining
the structure of switched capacitor and double-stage HSI-SC.
This converter provides three times higher voltage conversion
ratio compared to the traditional boost converter. The voltage
conversion ratio of the converter given in equation (39).

Vout
Vin
=

3
1− D

=
3T

T − Ton
=

3
1− fsTon

(39)

In [174]–[176], positive output quadruple-lift Luo con-
verter is presented with two controlled power switches.
This converter provides a high positive conversion ratio by
employing the quadruple-lift structure. The power circuit of
the positive quadruple-lift Luo converter shown in Fig. 19(c).
The converter divides into three main stages; FEB-BC,
quadruple-lift, and LC-filter stages. The quadruple-lift circuit
derived by combining the structure of switched capacitor
and Triple-stage HSI-SC. This converter provides four times
voltage conversion ratio compared to the traditional boost
converter. The voltage conversion ratio of the converter given
in equation (40).

Vout
Vin
=

4
1− D

=
4T

T − Ton
=

4
1− fsTon

(40)

In [174]–[176], the simplified re-lift structure is the design
of the re-lift positive output Luo converter and used a single
switch. The power circuit of the simplified re-lift Luo con-
verter is shown by Fig. 19(d). The converter divided into two
main stages; simplified re-lift structure and LC-filter stages.
The simplified re-lift structure is designed by employing two
HSI-SC with a self-lift structure or switched capacitor. This
converter provides two times voltage conversion ratio com-
pared to traditional boost converters. The voltage conversion

ratio of the converter given in equation (41).

Vout
Vin
=

2
1− D

=
2T

T − Ton
=

2
1− fsTon

(41)

In [174]–[176], to use a single switch, the simplified triple-
lift structure is used to design triple-lift positive output Luo
converter. The power circuit of the simplified triple-lift Luo
converter shown in 19(e). The converter divided into two
main stages; simplified triple-lift and LC-filter stages. The
simplified triple-lift structure is designed by employing three
HSI-SC and simplified self-lift structure or switched capaci-
tor. This converter provides a three times voltage conversion
ratio compared to traditional boost converters. The conver-
sion ratio of simplified positive output, triple-lift Luo con-
verter is given in the equation (42).

Vout
Vin
=

3
1− D

=
3T

T − Ton
=

3
1− fsTon

(42)

In [174]–[176], the simplified quadruple-lift structure used
to design quadruple-lift positive output Luo converter to
reduce switch count. The power circuit of the simplified
quadruple-lift Luo converter shown in Fig. 19(f). The con-
verter divided into two main stages; simplified quadruple-lift
and LC-filter stages. The simplified quadruple-lift structure
is designed by employing the four HSI-SC and the simpli-
fied self-lift structure or switched capacitor. This converter
provides a four times voltage conversion ratio compared to
the traditional boost converter. The conversion ratio of the
converter given in equation (43).

Vout
Vin
=

4
1− D

=
4T

T − Ton
=

4
1− fsTon

(43)

In [174], [177], the negative output Luo converter is pro-
posed for the high negative voltage conversion ratio by com-
bining the concept of negative simplified lift-techniques. The
power circuit of the negative re-lifts Luo converter shown
in Fig. 20(a). The converter divided into two stages; negative
re-lift and LC filter stages. The negative re-lift structure
derived by combining the circuit of two HSI-SC stages with
the negative simplified self-lift technique. The power circuit
of the negative triple-lift Luo converter shown in Fig. 20(b).
The converter divided into two stages; negative, triple-lift
structure and LC filter. The negative triple-lift structure
derived by combining the circuit of three HSI-SC stages
with negative simplified self-lift technique. The power circuit
of the negative output quadruple-lift Luo converter shown
in Fig. 20(c). The converter divided into two main stages;
negative quadruple-lift structure, and LC filter. The negative
quadruple-lift structure derived by combining the circuit of
four buck-boost converters with negative simplified self-lift
technique. The conversion ratio of negative output re-lifts,
triple-lift and the quadruple lift Luo converter provided in
equation (44)-(46), respectively.

Vout
Vin
=
−2

1− D
=
−2T

T − Ton
=

−2
1− fsTon

(44)
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FIGURE 19. Positive Output Luo Converter (a) Re-lift Luo converter (b) Triple-lift Luo converter (c) Quadruple-lift Luo converter (d) Single switch Re-lift
Luo converter (e) Single switch Triple-lift Luo converter (f) Single switch Quadruple-lift Luo converter.

Vout
Vin
=
−3

1− D
=
−3T

T − Ton
=

−3
1− fsTon

(45)

Vout
Vin
=
−4

1− D
=
−4T

T − Ton
=

−4
1− fsTon

(46)

IX. DC-DC MULTILEVEL/MULTIPLIER CONVERTER
To achieve high voltage conversion ratios, recently many
topologies addressed by combining the feature of N-level
voltage-multiplier or diode-capacitor networks with con-
ventional DC-DC converters. The advantages of multilevel
converters are: i) Less voltage stress across power device
ii) High conversion ratio using moderate duty cycle iii)
Easy to add several levels without touching the primary
circuit iv) Modular structure v) Provides a viable solution
to integrate with multilevel inverters vi) Few numbers of
switches [179]–[181].

In [179]–[181], DC-DC step-up converter derived by com-
bining the circuit of N-stage voltage multiplier (VMC) with
the conventional buck-boost or boost converter for high step-
up application. The power circuit of the boost converter with
voltage multiplier shown in Fig. 21(a). Each stage consists

of two diodes and two capacitors. The output stages can
easily add to increase the output voltage of the converter. The
voltage stress across the switch is also less. This converter
provides a non-inverting high voltage output and the voltage
conversion ratio of the converter given in the equation (47),
where N is the number of diode capacitor stages connected at
the output of the converter. The power circuit of the converter
divided into three sections (note: here section word is used
to avoid confusion between numbers of multiplier stages and
power converter stages); first section FEBC stage, the second
section is diode-capacitor N-stages, and the last section is the
C-filter. The conversion ratio of the converter depends on the
number of stages and the duty cycle.

Vout
Vin
=
N − 1
1− D

=
T (N − 1)
T − Ton

=
N − 1

1− fsTon
(47)

In [179]–[181], Cockcroft Walton Voltage Multiplier Cell
(CW-VMC) based DC-DC converter topology proposed. The
power circuit of the converter shown in Fig. 21(b). The
converter divided into three sections; the first section is the
single common source with four switches boost converter
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FIGURE 20. Negative Output Luo Converter (a) Re-lift Luo converter (b) Triple-lift Luo converter (c) Quadruple-lift Luo converter.

front end structure; the second section is N-stage voltage
multiplier (VMC), and the third section is the C-filter. The
converter derived by combining the features of voltage multi-
plier and four-switch boost converter. This converter provides
a high voltage conversion ratio with a moderate duty cycle
and without utilizing transformer and coupled inductor. The
conversion ratio of the converter depends on the number of
stages and the duty cycle—the voltage conversion ratio given
in equation (48).

Vout
Vin
=

N
1− D

=
NT

T − Ton
=

N
1− fsTon

(48)

In [95], [182], two-switch voltagemultiplier (VMC) is pro-
posed and discussed without utilizing the magnetic compo-
nents. The power circuit of the converter shown in Fig. 21(c).
The filter capacitor is not required, since the series structure
of the capacitor at the output side of the multiplier. The
output voltage is dependent on the number of capacitors at
the output. Two switches alternatively operated to boost the
voltage.

In [183], the hybrid DC-DC converter is proposed based
on the three-state switching cell, voltage multiplier and trans-
former. The power circuit of the converter shown in Fig.
21(d). Half of the output current is flowing through both
switches. Hence low rating switches are suitable to design
the converter. However, more output stage added to increase
more the number of levels. High switching frequency is suit-

able to reduce the size, volume and current/voltage ripple of
the converter.

In [184]–[190], new DC-DC converters proposed by com-
bining the feature of conventional DC-DC converters and
derived converter (Cuk and SEPIC) with Cockcroft Walton
Voltage Multiplier (CW-VMC). The main feature of these
converters is: i) High voltage conversion ratio achieved with-
out using a transformer and coupled inductor at moderate
duty cycle ii) Low voltage stress iii) Single switch topologies
iv) Extendable structure (easy to extend the number of levels)
without modifying the circuit of the conventional converter
v) Self-balance structure. Two diodes and two capacitors
are required to increase one stage of the converter. The
power circuit of the Nx Multilevel Boost Converter (Nx
MBC), Multilevel Buck-Boost Converter (MBBC) Multi-
level Cuk Converter, Multilevel SEPIC Converter is shown
in Fig. 21(e)-(h), respectively. The Nx Multilevel Boost Con-
verter (MBC) gives N-times higher conversion ratio com-
pared to a conventional boost converter [184], [185]. The
voltage conversion ratio of MBC provided in equation (49).
The conversion ratio of MBBC and multilevel Cuk converter
is the same and provided in equation (50).

Vout
Vin
=

N
1− D

=
TN

T − Ton
=

N
1− fsTon

(49)

Vout
Vin
= −(

1+ (N − 1)D
1− D

) = −(
1+ (N − 1)fsTon

1− fsTon
) (50)
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FIGURE 21. Multilevel converters based on diode-capacitor multiplier network or Cockcroft Walton (CW) multiplier (a) DC-DC step-up converter
with n-stage Voltage Multiplier Cell (VMC) (b) Cockcroft Walton Voltage Multiplier Cell (CW-VMC) based DC–DC converter topology (c) Two-switch
voltage multiplier (VMC) without utilizing the magnetic components (d) Hybrid DC-DC converter based on the three state switching cell (e) Nx
Multilevel Boost Converter (Nx MBC) (f) Nx Multilevel Buck-Boost Converter (Nx MBBC) (g) Nx Multilevel Cuk Converter (h) Nx Multilevel SEPIC
Converter (i) Inverting Nx Multilevel Boost Converter (Inverting Nx MBC).

The conversion ratio of Multilevel SEPIC converter is
provided by the equation (51).

Vout
Vin
=

1+ (N − 1)D
1− D

=
1+ (N − 1)fsTon

1− fsTon
(51)

To achieve the inverting voltage, a new inverting Nx MBC
proposed in [191]. The power circuit of the converter shown
in Fig. 21(i). This converter combines the feature of the
conventional boost converter and negative Voltage Multiplier
Cell (negative VMC). This converter provides an inverting
N-times higher conversion ratio compared to a conventional
boost converter with low switch stress across the switch—the
voltage conversion ratio provided in equation (52).

Vout
Vin
=
−N
1− D

=
−TN
T − Ton

=
−N

1− fsTon
(52)

In [192], SI concept is employed in DC-DC Multilevel
Boost Converter (MBC) to achieve a high conversion ratio
with the reduced number of levels and a single switch. The
power circuit of the Switched Inductor Multilevel Boost Con-
verter (SI-MBC) shown in Fig. 22(a).

The SI-MBC combines the features of a Switch Inductor
(SI) and Voltage Multiplier Cell (VMC) with a conventional
boost converter. For increasing the conversion ratio, the num-
ber of levels increased by adding more stage of multiplier
without modifying the switched inductor structure. This con-
verter gives a high conversion ratio compared to MBC. The
conversion ratio of the SI-MBC given in equation (53).

Vout
Vin
=
N (1+ D)
1− D

=
N (T + Ton)
T − Ton

=
N (1+ fsTon)
1− fsTon

(53)

178152 VOLUME 8, 2020



M. Sagar Bhaskar et al.: Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in FC Vehicles

FIGURE 22. Advanced multilevel converter based on diode-capacitor multiplier network or Cockcroft Walton (CW) Multiplier (a) Switched Inductor
Multilevel Boost Converter (SI-MBC) (b) Inverting Nx Multilevel Boost Converter (Inverting 2Nx MBC) (c) Nx Interleaved Multilevel Boost Converter
(Nx IMBC) (d) 2Nx Interleaved Multilevel Boost Converter (2Nx IMBC) (e) 4Nx Interleaved Multilevel Boost Converter (4Nx IMBC).

FIGURE 23. Stages of X-Y Converter Family (a) L-converter or BBC (b) 2L-Converter or SI BBC (c) 2LC-Converter or VLSI BBC (d) 2LCm-converter mVLSI
BBC.

In [193], inverting 2Nx converter is proposed to achieve
a high negative voltage conversion ratio. This converter
combines the feature of the Voltage-Lift Switched-Inductor
(VLSI, category of HSI-SC), voltage multiplier with the con-
ventional boost converter. The power circuit of the inverting
2NxMultilevel Boost Converter (Inverting 2NxMBC) shown
in Fig. 22(b). For increasing the conversion ratio, the number
of levels increased by adding a more significant number of
stages of multiplier without modifying the HSI-SC cell. This
converter provides a higher conversion ratio compared to
the Nx MBC. The voltage conversion ratio of the converter
provided in equation (54).

Vout
Vin
=
−2N
1− D

=
−2NT
T − Ton

=
−2N

1− fsTon
(54)

In [194], Nx Interleaved Multilevel Boost Converter (Nx
IMBC) proposed to reduce the input current ripple with a high

FIGURE 24. Universal structure of X-Y Converter.

conversion ratio. This converter provides a better dynamic
behaviour as compared to the conventional boost converter
and Multilevel Boost Converter (MBC); however, it required
a large number of capacitor and diodes. The power circuit
of the Nx-IMBC shown in Fig. 22(c). This converter derived
by combining the two MBC in an interleaving way. The
conversion ratio of the Nx-IMBC is equal to Nx-MBC. The
advantage of the converter is high voltage gain with reduced
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FIGURE 25. Power Circuit of X-Y converter topologies (a) L-L power converter (b) L-2L power converter (c) L-2LC power converter (d) L-2LCm
power converter (e) 2L-L power converter (f) 2L-2L power converter (g) 2L-2LC power converter (h) 2L-2LCm power converter.

input ripple. However, this converter requires a large number
of switches.

In [195], a new 2Nx Interleaved Multilevel Boost
Converter (2Nx IMBC) proposed to increase the voltage
conversion ratio of the interleaved converter. This converter
provides two times conversion ratio compared to Nx-IMBC.
The power circuit of the 2Nx-IMBC shown in Fig. 22(d).

In [196], a new 4Nx Interleaved Multilevel Boost
Converter (4Nx-IMBC) proposed to increase the voltage con-
version ratio of the interleaved converter. This converter pro-
vides four times conversion ratio compared to Nx-IMBC. The
power circuit of the 4Nx-IMBC shown in Fig. 22(e). 4Nx-
IMBC converter combines the feature of HSI-SC, the Voltage
Multiplier (VMC) and interleaved converter.

In general, DC-DC MBC is the best solution to achieve
a high voltage conversion ratio without utilizing transformer
and coupled inductor at a moderate duty cycle. These con-
verters are an extension of the conventional boost converter
without increasing the number of inductors. A fewer number
of switches used and to design a multilevel converter.

X. X-Y CONVERTER FAMILY
X-Y converter family (a new breed of the buck-boost con-
verter) is proposed for high voltage step-up applications to

overcome the drawback of DC-DC multilevel converters,
cascaded converters and isolated converters [197]–[200]. The
proposed X-Y power converter family can offer a higher out-
put voltage by using the minimum number of semiconductor
devices and reactive components. These converters are best
suitable for application which requires DC-DC conversion
with high conversion ratio; such as the vehicular power train,
automotive application, renewable energy application, fuel
cell application and DC-link applications.

Sixteen configurations proposed for the X-Y family. These
converters are two-stage converter topologies and derived by
combining the features of the Switch Inductor (SI or 2L),
voltage-lift-switch-inductor (VLSI or 2LC) and modified
voltage-lift-switch-inductor (mVLSI or 2LCm). Four new
converter topologies derived from designing the stages of the
X-Y converter family by using the structure of buck-boost
converter, SI or 2L, VLSI or 2LC and mVLSI or 2LCm.

The special conspicuous features of the X-Y converter
family [197]–[203] are:
• Single control switches
• Provide negative output voltage
• Non-isolated topologies
• High voltage conversion ratio without high duty cycle.
• Modular structure.

178154 VOLUME 8, 2020



M. Sagar Bhaskar et al.: Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in FC Vehicles

FIGURE 26. Power circuit of XY converter topologies (a) 2LC-L power converter, (b) 2LC-2L power converter, (c) 2LC-2LC power converter, (d)
2LC-2LCm power converter, (e) 2LCm-L power converter, (f) 2LCm-2L power converter, (g) 2LCm-2LC power converter, h) 2LCm-2LCm power
converter.

Fig. 23(a) shows the power circuit of conventional Buck-
Boost Converter (BBC or L converter). Fig. 23(b) shows the
power circuit of Switched Inductor Buck-Boost Converter
(SI-BBC) or 2L converter. The 2L converter is a step-up con-
verter and derived by combining the features of the Switched
Inductor (SI or 2L) and conventional BBC. Fig. 23(c) shows
the power circuit of Voltage–Lift-Switched-Inductor Buck-
Boost Converter (VLSI BBC) or 2LC converter. 2LC con-
verter is a step-up converter and derived by combining the
features of theVoltage-Lift-Switched Inductor (VLSI or 2LC)
and conventional BBC. Fig. 22(d) shows the power circuit
of a modified Voltage-Lift-Switched-Inductor Buck-Boost
Converter (modified VLSI BBC) or 2LCm converter. 2LCm
converter is a step-up converter and derived by combining the
features of modified Voltage-Lift-Switched-Inductor (modi-
fied VLSI or 2LCm) and conventional BBC.

Fig. 24 shows the universal structure of the X-Y converter
family [197]–[203]. Two separate converter stages named as
an X-converter and Y-converter is used to design topologies
of X-Y family. The X-converter is directly fed by input power
supply and the input of the Y-converter is algebraic addition
of the output voltage of the X-converter and input supply.
The inverting output voltage appears at the output terminal,

which is equal to the inverting sum of the output voltage of X
and Y converter. The output voltage of the X-Y converter is
calculated by using equation (55).

Vout = −
(
Vx + Vy

)
(55)

In the X-Y converter family, a total of sixteen topolo-
gies formed by numerous appropriate grouping of the new
BBCs (stages of X-Y converter) and the power circuits shown
in Fig. 25(a)-(h) and Fig. 26(a)-(h) [197].

In [198], a new member of the X-Y family, named as novel
L-Y converters proposed to attain the higher conversion ratio.
Novel L-Y topologies formed by combining the features of
Voltage Doubler (VD) with an L-Y converter group or fam-
ily (topologies of X-Y converter). L-Y, 2L-Y, 2LC-Y and
2LCm-Y converters are four groups of X-Y converter fam-
ily [201]–[203]. L-Y category of X-Y family consists of the
L-L converter, L-2L converter, L-2LC converter and L-2LCm
converter. In L-Y converter category; X converter is a conven-
tional Buck-Boost converter (BBC or L Converter). Two sep-
arate converter stages named as L-Converter and Y-Converter
used to derive new topologies of X-Y family. The input power
supply directly feeds the L-converter, and the input of the
Y-converter is the algebraic addition of the output voltage of
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FIGURE 27. Power circuit of L-Y converter topologies (a) L-LVD power converter, (b) L-2LVD power converter, (c) L-2LCVD power converter, (d)
L-2LCmVD power converter.

the L converter and input supply. The inverting output voltage
appears at the output terminal, which is equal to the inverting
sum of the output voltage of L and Y converter. The output
voltage of L-Y converter calculated by using equation (56).

Vout = − (VL + Vy) (56)

The power circuit of the novel L-Y converter topologies
(L-LVD, L-2LVD, L-2LCVD and L-2LCmVD converter) are
shown in Fig. 27(a)-(d) [197]. These new L-Y converter
member (L-LVD, L-2LVD, L-2LCVD and L-2LCmVD con-
verter) provides a higher voltage conversion ratio compared
to existing the L-Y converter topologies L-L, L-2L, L-2LC
and L-2LCm converter). The detail description of suitable
combinations of the X-converter and the Y-converter to
derive X-Y family and novel L-Y converter topologies shown
in Fig. 28.

A separate new combination showed which combines the
feature of the old L-Y converter and the Voltage Doubler
(VD). Recently X-Y converters are also combined with
voltage doubler [201]–[203], voltage multiplier [204]–[208]
to achieve higher output voltage. In [209], a new member
called XL members derived in X-Y family. The converters
derived by using SI, 2LC, 2LCm network in X converters.
In [209]–[211], single input double output DC-DC converters
derived for vehicular loads. This converter provides a solution
to achieve two output voltages by using a single input and a
single switch.

XI. COMPARISON AND APPLICATION OF MULTISTAGE
FAMILIES
To select appropriate and suitable boost converter (to drive the
truncation motor via an inverter) or buck converter (to drive
the low voltage luxurious loads) for fuel vehicular power
train. From the above-aforementioned families, it is essential
to compare converter as mentioned above in terms of voltage
conversion ratio, number of inductors, number of capacitors,

FIGURE 28. Various Combinations of X-converter and Y-converter to
derive X-Y converter family and L-Y new members with voltage doubler.

number of diodes, number of switches, voltage stress across
switch the switches, number of stages and number of trans-
formers. In table 1-6, all the converters as mentioned above
of the M-SCBC family, the M-SIBC family, transformer and
coupled inductor based MPC, the Luo converter, the DC-
DC multilevel power converters, the X-Y converter family
compared respectively.

The vehicles are typically classified based on the Gross
Vehicle Weight Rating (GVWR) or Gross Trailer Weight
Rating (GTWR) and power required to drive the power
train. There are three major categories of vehicles; light-
duty vehicles; medium-duty vehicles, and high duty vehicles.
The typical schematic layout of the power train of light-duty
shown in Fig. 29(a). Fuel cell output voltage is very low,
thus need to step-up using a suitable unidirectional boost
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TABLE 1. Comparison of switched-capacitor based converter family.

TABLE 2. Comparison of switched inductor based converter family.

TABLE 3. Comparison of transformer and coupled inductor based converter family.
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TABLE 4. Comparison of LUO converter family.

TABLE 5. Comparison of DC-DC multilevel converter family.

TABLE 6. Comparison of X-Y converter family.

converter to attain the required voltage at the terminal of
inverter to drive the traction motor—the speed and torque
of the motor drive controlled through power converters (DC-
DC and DC-AC). The battery used to provide supplies for

inverter in the absence of fuel cell energy and a warm-up
time of fuel cell. The typical schematic layout of the power
train of high duty shown in Fig. 29(b). High duty vehicles
required a DC-DC converter with a high conversion ratio and
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TABLE 7. Reliability, cost, efficiency, advantage, disadvantages and application of multistage families.

FIGURE 29. Typical schematic layout of power train (a) low duty vehicle (b) high duty vehicle.

high power to drive the vehicles. Apart from this, fuel cell
voltage also used to drive advanced, luxurious features of
the vehicle. Thus, numerous loads fed by utilizing appropri-
ate DC-DC and DC-AC converter. The major challenge in
designing the fuel cell VPT is a selection of proper DC-DC
and DC-AC converter to convert the voltage/current of the
fuel cell to the required voltage/current level, selection of best
fuel cell and power management. Nowadays, numerous DC-
DC converter options are available in the literature, and it is
essential to select the most efficient and cost-effective DC-
DC converter. Table-7, aforementioned DC-DC converters
family reliability, efficiency, cost, advantages, disadvantages
and application discussed in detail.

XII. FUTURE DIRECTION OF DC-DC CONVERTER FOR
VEHICULAR APPLICATIONS
Advancement in electric and electronic systems of the Vehic-
ular Power Train (VPT) is compulsory to improve the

navigation system, mobile integration, satellite system, com-
fort, suitability, convenience, entertainment facilities, protec-
tion and safety, ecological issue and communication system
etc. [212], [213]. Most of the electronics applications work
on the DC power supply. Thus, it is compulsory to improve
the power converters stages to satisfy the need and require-
ment of the future generation. It is needed to design a good
DC-DC converter to supply the loads as well as to drive
the train.

There are more opportunities to improve DC-DC
converters stages in terms of cost, efficiency, number of
components, modularity, and controllability by using recent
multistage technologies. There is scope for the hybrid DC-
DC and multi-ports converter topologies for the high voltage
conversion ratio and multiple outputs to drive multiple loads
as well as vehicular train at a time using the same converter.
High conversion ratio and multi-ports DC-DC converters can
be achieved by combining the topologies as mentioned above.
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XIII. CONCLUSION
The performance of the numerous unidirectional multi-
stage DC-DC converter families has been comprehensively
reviewed and articulated to improve the Tank-To-Wheel
(TTW) efficiency to lower cost, eco-friendly, zero-emission
and high-power Fuel Cell Vehicles (FCVs). For select-
ing the best fuel cell for FCVs, classification is pre-
sented based on the working temperature and power capa-
bility. Also based on the type and characteristics, DC-
DC converters broadly classified as SCBC, SIBC, Trans-
former and Coupled Inductor Based Converter, Luo con-
verter, Multilevel converter and X-Y converter family.
Each multistage converter family has its advantages and
disadvantages.

Based on the review of numerous multistage converters,
concluded that the existing topologies, again and again, com-
bine with switched inductor and several boosting techniques
to improve the performance for various applications. HSI-SC,
multilevel and X-Y converters are the better choice for the
Fuel Cell VPT in term of cost and efficiency. Details of the
individual converter with the comparative study presented to
select the best converter to drive power train and to supply a
luxurious load of FCVs.

Moreover, the role, challenges and future scenario of the
DC-DC converter for a vehicular power train discussed in
detail. Advantages, disadvantages, and application of each
multistage family discussed more specific to the power train
of the small vehicle (Cars, Motorcycle etc.), as well as larger
vehicles (Bus, trucks etc.).
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