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ABSTRACT The synchronization of words in conversation, called entrainment, is generally observed in
human-human conversations. Entrainment has a high correlation with dialogue success, naturalness, and
engagement. In this article, we define entrainment scores based on the word similarities in semantic space to
evaluate the entrainment of system generation. We optimized a neural conversation model to the entrainment
scores using reinforcement learning so that the system can control the degree of entrainment of the system
response. Experimental results showed that the proposed entrainable neural conversation model generated
comparable or more natural responses than conventional models and satisfactorily controlled the degree of
entrainment of the generated responses.

INDEX TERMS Neural conversation model, conditional response generation, entrainment, dialogue evalu-
ation, reinforcement learning.

I. INTRODUCTION
Entrainment is a well-known conversational phenomenon
in which dialogue participants mutually synchronize with
regards to various aspects: lexical choice [1], syntax [2],
style [3], acoustic prosody [4], [5], turn-taking [6], [7], and
dialogue acts [8]. Entrainment has a high correlation with dia-
logue success, naturalness, and engagement [9]–[11]. Some
existing works evaluated the dialogue quality and the per-
formance of dialogue systems through entrainment analysis
[12]. Although phenomena related to entrainment suggest
that the quality of human-human and human-machine dia-
logues can be improved, it remains challenging to build a
dialogue system that can explicitly consider the entrainment
phenomena in the framework of a neural conversation model,
which has been actively studied in recent years [13], [14].

In this article, we incorporate entrainment phenomena into
a neural conversation model for building a more natural and
user-satisfied dialogue system. We construct a neural conver-
sation model that can control the degree of entrainment of
generated responses based on a framework of reinforcement
learning (RL) [15]. We define the automatic entrainment
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scores based on the local interpersonal distance [11], which
focuses on lexical entrainment. We use this score to optimize
a neural conversation model by RL.

In Section III, we describe our task of entrainable con-
versation modeling (Section III-A), a conditional generation
model based on conventional architecture (Section III-B),
and our proposed model optimized to entrainment scores
by RL (Section III-C2). In experiments, we performed
a preliminary analysis using the defined entrainment
scores to clarify the relationship between user assess-
ment and entrainment phenomena in a chit-chat dialogue
domain (Section IV). Experimental results showed that our
entrainment scores correlated with human assessment in
human-human and human-machine dialogues in the chit-chat
domain (Section V). As a model evaluation, we conducted
subjective and objective evaluations (Section VI). Our pro-
posedmodel generated comparable or more natural responses
compared with general neural conversation models, which
optimized by word prediction based on cross-entropy loss,
and controlled well the degree of entrainment of the gener-
ated responses (Section VII). We discuss the challenges for
the advancement of entrained response generation in neural
conversation models by analyzing our experimental results
(Section VIII).
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II. RELATED WORKS
Many studies have analyzed entrainment in dialogues and
shown that we can observe the phenomena in dialogues
from various aspects: lexical choice [1], syntax [2], style [3],
acoustic prosody [4], turn-taking [6], and dialogue acts [8].
Furthermore, automatic entrainment scores have been pro-
posed that focuses on these aspects. These entrainment scores
were highly correlated with dialogue success, naturalness,
and engagement [9]–[11].

Some studies used the knowledge obtained by analyzing
the entrainment to the dialogue system. One work [6] pre-
dicted the user’s turn-taking behavior by considering entrain-
ment. Another work [16] modeled a dialogue strategy to
intentionally increase the accuracy of the automatic speech
recognition using entrainment, and another [17] unified these
works. Although these studies were conducted on model-
ing and predicting the entrainment of the user’s behaviors,
it remains challenging problem to build a dialogue system
that can make entrainment to users to improve the dialogue
system’s response quality. In other words, insufficient studies
have positively affected users through entrainment by the
system.

On the other hand, recent neural conversation models
focus on the efficient use and encoding of dialogue history
[14], [18]. However, they do not directly handle entrainment
phenomena because they are achieved by minimizing the
cross-entropy loss of word prediction in decoder networks.
Both the model networks that consider the dialogue con-
text and the objective function of the model itself must be
improved to achieve entrainable response generation.

In this article, we introduce a reinforcement learning (RL)
framework [15], [19] to optimize a neural conversation model
for automatic entrainment scores. Entrainment scores are
given as RL rewards that enable neural conversation mod-
els to generate appropriately entrained responses for their
dialogue contexts. Existing studies have already described
the correlation between human assessments and automatic
entrainment scores. We performed a follow-up analysis using
chit-chat dialogue corpora to confirm that we can use the
scores as an objective function. By optimizing the model to
maximizing these scores, we expect that our neural conversa-
tion model can generate more natural responses.

III. ENTRAINABLE NEURAL CONVERSATION MODEL
In this article, we focus on lexical entrainment, which is
related to lexical choice in dialogues. We introduce an
entrainment score based on the similarity in semantic spaces
in word-distributed representation [11], [20] to capture local
entrainment trends for each turn in the dialogue. We optimize
the neural conversation model using RL to maximize the
entrainment scores of the generated responses. We formulate
the problem as conditional neural conversation modeling,
which uses the degree of entrainment of the response as a
condition, because generating a highly entrained response is
not always appropriate even though the model has to control
the degree of entrainment based on the dialogue contexts.

FIGURE 1. Task of entrainable conversation generation.

In this section, we first describe an overview of
the response generation task tackled in this article
(Section III-A). Then we describe the architecture of a condi-
tional neural conversation model given the degree of entrain-
ment (Section III-B). Finally, we describe a method that
optimizes the conditional neural conversation model using
RL to fit the given degree of entrainment (Section III-C).

A. TASK DEFINITION
We formally define the task of entrainable conversation mod-
eling as a response generation task given a dialogue context
and a degree of entrainment to the dialogue context. Define
generated response word sequence R = {w1,w2, · · · ,wT },
given dialogue context H = {H1,H2, . . . ,HN } and degree of
entrainment of target response rtarget ∈ R. N is the dialogue
length, and T is the number of words in an utterance.
In this setting, response R is required to satisfy not only the

appropriateness to the dialogue context but also the degree of
entrainment to the dialogue context (Fig. 1). In other words,
the neural conversation model enforces entrainment degree
rgenerated ∈ R of the actual generated response to be closer
to indicated entrainment degree rtarget. This optimization is
achieved by minimizing the relative error of both entrainment
degrees:

minimize
rgenerated∈R

relative_error(rtarget, rgenerated). (1)

As an approach to building such neural conversation mod-
els controllable by a given condition, such as the entrain-
ment degree, vector concatenation is widely used between a
word vector and the vectorized condition to feed a decoder
input [21], [22]. Some other works proposed to extend
models [23], [24] for conditional generation according to
given emotion labels in the task of the emotional dialogue
generation.

B. NEURAL CONVERSATION MODEL BASED ON
ENTRAINMENT DEGREE
We introduce a conditional neural conversation model based
on a hierarchical encoder-decoder model [14] with a context
attention mechanism, which explicitly gives an embedded
vector of entrainment degree to the decoder (Fig. 2).We apply
the vector concatenation as a widely used method for condi-
tioning the decoder.
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FIGURE 2. Neural conversation model with entrainment degree as a
condition.

The encoder network has a hierarchical structure that con-
sists of utterance and context encoders. The utterance encoder
receives a word at each time step using forward RNNs to
encode an utterance into a fixed-length vector:

hi,t = RNNutterance(hi,t−1,Embed(wi,t )). (2)

Here i is the number of turns in the dialogue context, and
hi,t is the hidden vector obtained by inputting each word
wi,t in utterance Hi. Each word wi,t , which is encoded to
a fixed-length vector using an embedding layer, is used as
input.

In the context encoder, utterance vectors are input to
encode the dialogue history:

ci = RNNcontext(ci−1, hi,T ). (3)

Here hi,T is a hidden vector obtained at the last step in the
encoding for each utterance. Resultant vector ci is fed into
the decoder to generate a response sentence as initial hidden
state h′0. In the decoder, hidden state h

′
t of the decoder and the

output probability of word pt are calculated:

h′t =RNNdec(h′t−1, [Embed(wi,t−1);Linearent(rtarget)]), (4)

pt = softmax(Linearproj(h′t )). (5)

Here Linearproj is a projection layer, which maps h′t to a
vector of vocabulary size |V|. Linearent is a linear transfor-
mation layer that embeds target entrainment degree rtarget
into a fixed-length vector. wi,t is sampled from pt and used
as a part of the input for the next step. In this decoding
architecture, we expect the decoder to generate a response
with an appropriate degree of entrainment for the dialogue
history by also inputting entrainment degree rtarget in addition
to already generatedwords. Note that we used teacher-forcing
in the training process [13].

We also introduce a simple attention mechanism to the
above decoder for efficiently handling the information from
the encoded dialogue context. Specifically, let c1:N be a
sequence of vectors obtained by the context encoder, and let

h′t be the hidden states of the decoder in the t step. We com-
pute the alignment weights based on general-attention [25]
for each hidden state and obtain context vector h̄t :

αj =
exp(score(cj, h′t ))∑N
j̃=1

exp(score(cj̃, h
′
t )
, (6)

h̄t =
N∑
j̃=1

αj̃ · cj̃. (7)

The output words in step t are predicted using computed
context vector h̄t :

ĥt = tanh(Linearattn([h̄t ; h′t ])), (8)

pt = softmax(Linearproj(ĥt )). (9)

In general, training the neural conversation model is based
on minimizing the cross-entropy:

LCE = −
T∑
t=1

log
exp(xt,e)∑|V |
k exp(xt,k )

. (10)

Here |V| denotes the vocabulary size, xt ∈ R|V | denotes
the output of the projection layer in the decoding steps, and
xt,e ∈ R|V | denotes the e-th element that correspond to target
word wt .

However, perhaps models based on minimizing cross-
entropy loss do not efficiently use the information in the
dialogue context [26]. Furthermore, since cross-entropy loss
is not designed to handle entrainment phenomena, we have to
define a new objective function for building a neural conver-
sation model that is optimized to entrainment scores.

C. MODEL OPTIMIZATION TO ENTRAINMENT DEGREE
BASED ON REINFORCEMENT LEARNING
Our final goal is to build an entrainable neural conversational
model based on the given entrainment degree. However,
model optimization based on existing cross-entropy loss does
not satisfactorily control the generation because the optimiza-
tion is calculated word-by-word. In contrast, optimization
based on reinforcement learning has the potential to train
such a controllable response generation model [27]. Thus,
we introduce the REINFORCE algorithm, which is based on
reinforcement learning [15], [19].

In this section, we describe the objective function and
its optimization method using the REINFORCE algorithm
(Section III-C1). We introduce a reward function using
an automatic entrainment score to optimize the model
(Section III-C2) and scrutinize the training procedure for our
neural conversation model based on reinforcement learning
(Section III-C3).

1) REINFORCE ALGORITHM
The generation process in the neural conversation model is
formalized as a Markov decision process (MDP) and opti-
mized with reinforcement learning (RL) [28]. The problem
of response generation in the neural conversation model is
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generating response word sequence R = {w1,w2, · · · ,wT }
that corresponds to given dialogue history H and target
entrainment degree rtarget. Formally the generation process is
defined as choosing an action to generate word wt given a
state, already generated words {w1,w2, · · · ,wt−1}, in time-
step t [29]. Such a word selection process in the generation
is defined as an action sequence, which is generated by an
actual policy in MDP.

We define a reward function based on entrainment scores
to encourage the model to generate entrained responses. The
entrainment’s evaluation score is fed as a reward to update
the generator’s policy in the RL. We use a policy gradient
(REINFORCE algorithm) [15], [19] to train the policy. The
objective function and its gradient are defined:

JRL (θ ) =
∑
w1:T

Gθ (wt |w1:t−1) · QGθ (w1:t−1,wt ), (11)

∇JRL(θ ) '
1
T

T∑
t=1

∑
wt∈V

QGθ (w1:t−1,wt )

· ∇θGθ (wt |w1:t−1) (12)

=
1
T

T∑
t=1

Ewt∼Gθ [Q
Gθ (w1:t−1,wt )

· ∇θ log p(wt |w1:t−1)]. (13)

Here θ is a parameter of the policy. V is a vocabulary,
w1:t−1 indicates the already generated word sequence (state
in MDP), and p(wt |w1:t−1) = Gθ (wt |w1:t−1) is the generative
probability of word wt ∈ V (action in MDP) in the decoder.
QGθ (w1:t−1,wt ) is an action-value function that gives an
expected future reward when the system generates word wt
given the state: already generated word sequence w1:t−1.
The action-value function for each step is calculated using

a Monte Carlo tree search (MCTS) [29], [30] under the
current policy and its parameter θ :

QGθ (R1:t−1,wt )

=


1
N

∑N

n=1
r(H ,Rn1:t ,R

ref, rtarget) for t < T ,

r(H ,R1:t ,Rref, rtarget) for t = T .
(14)

Here r(·) is a reward function that evaluates the entrainment
degree of response R1:T = {w1,w2, · · · ,wT }. Rn1:t is the gen-
erated response using a roll-out [29] from partial-generated
response R1:t using parameter θ . Rref is a reference response,
and n is the number of roll-outs.1 This reward function calcu-
lates the reward based on the relative error between a given
entrainment degree and the entrainment degree of the actual
generated response to allow it to control the entrainment
degree of the generated response. Note that we can use an
arbitrary score in this formulation. We use a reliable entrain-
ment score based on the similarity of the semantic space of the
words to feed the entrainment degree (score) as the reward.

1We set the number of roll-outs to 5. However, since the computation
cost of MCTS is high when training the large model, we can also adopt an
approach for speeding up the training, such as REGS [28], instead of MCTS.

2) REWARD FUNCTION FOR EVALUATING ENTRAINMENT
DEGREE
We construct a reward function based on the idea of a local
interpersonal distance (LID), which is a previously proposed
turn-level entrainment score [11]. LID uses a predefined
number of turns (context lengths) in response to the utter-
ances of the primary speaker (anchor). The anchor utterance
and response pair that has a minimum distance is chosen to
calculate LID. This calculation is based on local entrainment,
which is not always observed in the immediate response to
the primary speaker’s turn. It might be sustained and exhib-
ited after a few turns [31]. In this article, unlike the LID’s
original definition [11], we calculate the similarity between
the anchor utterance and each past contextual utterance by
another speaker and choose an anchor and contextual utter-
ance pair with minimum distance. However, note that there is
no difference in the nature of both scores.

To calculate the distance between two utterances, we use
Word Mover’s Distance (WMD) [20], which is calculated
from the distributed vector representations of words in a doc-
ument.WMD targets both semantic and syntactic information
to get a distance between text documents. WMD calculates
the Earth Mover’s Distance [32] between sets of word vec-
tors that are contained in the target sentences (documents).
This calculation is based on the minimum travel distance.
Specifically, let ei ∈ Rd represents i-th word, as defined
by word-embedding E ∈ Rd×n for vocabulary of n words.
We also define a and b are n-dimensional normalized vectors,
which consist of bag-of-words of two sentences. ai indicates
the count of the word i in the sentence.2 TheWMD introduces
an transport matrix T ∈ Rn×n, such that Ti,j indicates how
much of ai should be transported to bj. Formally, the WMD
learns T to minimize:

WMD(a, b) = min
T≥0

n∑
i=1

n∑
j=1

Tij||ei − ej||

subject to
n∑
j=1

Tij = ai ∀i,

and
n∑
i=1

Tij = bj ∀j. (15)

To solve this minimization problem, we used the efficient
implementations [20], [33], [34].3

We define target entrainment degree rtarget based on the
idea of LID:

sim(x, y) = e−WMD(bow(x),bow(y))2 , (16)

rtarget = rtarget(H ,Rref)= max
Hother
j ∈Hother⊂H

sim(Hother
j ,Rref).

(17)

Here the sim(·) function normalizes the calculation results
of WMD as the similarities between utterances (x and y). e

2Note that ai is normalized over all words in a.
3https://github.com/RaRe-Technologies/gensim
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is a natural logarithm, and bow(·) is a function to convert
the given sentence to bag-of-words representation. Rref is the
reference response corresponding to dialogue history H , and
Hother

⊂ H is a set consisting of the most recent k utterances
from the dialogue historyH , excluding the primary speaker’s
utterances. rtarget is assumed to be a similarity that takes
values from 0 to 1.

Next we define entrainment degree rgenerated of the actual
generated response:

utarget= utarget(H ,Rref)= arg max
Hother
j ∈Hother⊂H

sim(Hother
j ,Rref),

(18)

rgenerated= rgenerated(H ,Rref,R) = sim(R, utarget). (19)

Here utarget is a target utterance to make entrainment by
system generation, which has the maximum similarity of
every pair formed by the anchor utterance of the reference
and a context utterance. Thus, rgenerated is calculated as the
similarity between the generated response and the target.

The reward given to the generated response is calculated
from the relative error between rtarget and rgenerated:

r = r(H ,R,Rref, rtarget)=1−
|rtarget−rgenerated|

max(rtarget, 1−rtarget)
. (20)

This reward function gives more reward when the rela-
tive error between the entrainment degree of the gener-
ated response and the indicated entrainment degree is small.
In other words, it gives penalty if the generated utterance is
over or under-entrained compared with the reference.

We used different functions for rtaget and rgenerated because
using the same function will lead to learning a lazy policy that
always refers to the previous utterance.

3) MODEL TRAINING BASED ON REINFORCE ALGORITHM
The training procedure of a neural conversation model with
RL is shown in Algorithm 1.

Algorithm 1 Training Procedure
Require: generator policy Gθ ; roll-out policy Gθ
1: Initialize Gθ with random weights θ
2: Pretrain Gθ to minimize LCE F (10)
3: for number of iterations do
4: G′θ ← Gθ
5: for number of steps do
6: sample (H ,Rref, rtarget) from training data
7: generate response R using G′θ on H and rtarget
8: compute QGθ for (H ,R, rtarget) using G′θ F (14)
9: update Gθ based on JRL(θ ) F (11)

First, we pre-train the neural conversation model by mini-
mizing cross-entropy loss LCE. Then we train it to maximize
objective function JRL(θ ) using reinforcement learning and
add LCE to the loss to stabilize the training. This approach
works as a teacher forcing and prevents the collapse of

TABLE 1. Number of dialogues/utterances in each corpus.

policies due to the model’s inability to access the reference
response [28]. The policy used to calculate QGθ is updated
every 20 steps. We use the model with the highest reward sum
for the generated response and the deterioration of perplexity
within 1.0 points in the validation set for the evaluation.

IV. ENTRAINMENT ANALYSIS SETTING
LID, which is used as a reward in this article, probably
correlates with human assessment (therapeutic outcomes and
affective behaviors) in the dialogues of clinical psychology
and psychotherapy [11]. On the other hand, no examination
has focused on chit-chat dialogues, which are the main focus
of this article. Therefore, we performed a preliminary anal-
ysis to clarify the relationship between user assessment and
entrainment in chit-chat dialogues.

We used Spearman’s rank correlation coefficient to eval-
uate the relationship between the Conversational Linguistic
Distance (CLiD) [11], a dialogue session-level entrainment
score calculated by the mean of the LIDs, and the user assess-
ment assigned to each dialogue. CLiD is defined:

CLiD(D) =

∑
(H ,Rref)∈D rtarget(H ,Rref)

|D|
. (21)

We applied (17) to each turn of the dialogues and averaged
the results as the dialogue level entrainment scores. Here,
(H ,Rref) ∈ D is a context and response pair for each turn
in the dialogue. Note that the definition changes from the
original CLiD to fit our problem.

For the entrainment analysis, we used the following
chit-chat dialogue corpora:
• ConvAI2-wild-evaluation: Dialogues between a human
and a system that participated in the ConvAI2 competi-
tion.4 Each dialogue was evaluated by human partici-
pants on a five-point scale.

• NTT-chit-chat: Dialogues between human participants
that covered as wide range of topics [35]. Participants
in each dialogue evaluated it from the following three
viewpoints on a seven-point Likert scale: 1) strongly
disagree; 2) disagree; 3) Slightly disagree; 4) neither;
5) slightly agree; 6) agree; 7) strongly agree.
– Q1: ‘‘I am satisfied with the current dialogue. I’d

like to have such a dialogue again.’’
– Q2: ‘‘I found myself interested in the topic of the

current dialogue.’’
– Q3: ‘‘In the current dialogue, I spoke positively on

my own.’’

4http://convai.io/data
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TABLE 2. Entrainment analysis results for ConvAI2-wild-evaluation.

TABLE 3. Entrainment analysis results for NTT-chit-chat.

V. ENTRAINMENT ANALYSIS RESULTS
We performed a correlation analysis of ConvAI2-wild-
evaluation, as shown in Table 2. Here ρ is the correlation
calculated by Spearman’s rank correlation analysis, and the p-
value is the probability of the null hypothesis. We calculated
the CLiD for two types based on their attributes because
the speaker has distinctly different attributes: ‘‘Human →
System’’ shows the human responses to the system, and
‘‘System → Human’’ shows the system responses to the
humans.

As shown in Table 2, we confirmed that CLiD has a posi-
tive correlation with human scores, regardless of any setting
used to calculate it. This result indicates that the entrainment
degree is critical for improving the quality of human-machine
dialogues. Since many systems based on a neural network
are not able to handle the dialogue context [26], this result
might be deeply related not only to entrainment but also to
whether the system can generate a context-relevant response.
To compare cases using different values of k , we confirmed a
stronger correlation in the case of k = 2. In fact, humans often
respond with an awareness of both the previous utterances but
also deeper utterances from the past in a dialogue history [31].

We also performed a correlation analysis between average
assessments by two participants and CLiD in an NTT-chit-
chat (Table 3).

Table 3 shows a moderately positive correlation between
the user assessments corresponding to these questions and
the CLiD. This result suggests that using entrainment in
dialogues is an effective strategy to improve user satisfaction
in chit-chat dialogues. As stronger correlation is observed in
k = 1 than in k = 2. This is probably because NTT-chit-
chat has multiple utterances per turn. In other words, when
we apply CLiD to dialogues that contain a lot of information
in one turn, it is difficult to find strong correlations between
CLiD and human scores, because LIDs, which are CLiD
components, will be biased by the number of words in the
utterances.

These results indicate that CLiD, which is calculated by
LID averages, is a useful and strict score to evaluate dialogues
in the chit-chat domain, if their utterance length is limited.

TABLE 4. Number of dialogues/utterances in ConvAI2 dataset.

In other words, these results support our hypothesis: maxi-
mizing the LIDs in dialogues increases dialogue quality.

VI. EVALUATION SETTING FOR RESPONSE GENERATION
We confirmed that improving LID scores is important in
human-machine dialogue setting as well, which is a basic
hypothesis of our entrainable dialogue modeling. In this
section, we describe the experimental settings to confirm the
effect of our proposed entrainable neural conversation model.

A. DATASET
We used the dataset provided at the ConvAI2 competition,
which was also used to train the system in the ConvAI2-wild-
evaluation described in Section IV. This dataset was divided
into train, validation, and test sets (Table 4). We divided the
original development data into validation and test sets.5

B. COMPETING MODELS
We compared the following different types of neural conver-
sation models in our evaluations:
• ASEQ2SEQ: a standard neural conversation model that
encodes a previous utterance as a query for decod-
ing a response with an attention mechanism (general-
attention) [25].

• HED: a hierarchical encoder-decoder model [14] with-
out an attention mechanism and conditioning to a
decoder.

• AHED: a model that combines an attention mechanism
with the HED model.

• C-ASEQ2SEQ: a model with conditioning based on
ASEQ2SEQ. We gave the condition (degree of entrain-
ment) as described in Section III-B.

• C-HED: a HED model with a conditioning mecha-
nism. We gave the condition (degree of entrainment) as
described in Section III-B.

• C-AHED: an AHEDmodel with conditioning. We gave
the condition (degree of entrainment) as described in
Section III-B.

We trained these neural conversation models using con-
ventional cross-entropy loss (+CE) and our proposed opti-
mization based on reinforcement learning (+RL). We used
the entrainment scores as a condition given to the decoder
and explored the case with different k ∈ {1, 2} for score
calculation. When k = 1, the entrainment score is calculated
using only the previous utterance; when k = 2, it is calcu-
lated using the two most recent utterances by a non-primary
speaker. Since the dialogue is performed alternately by two

5Note that the original test set in ConvAI2 dataset are private.
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speakers, the neural conversation model needs to handle at
most four utterances in a dialogue history when k = 2.

C. HYPER-PARAMETER SETTINGS
We used the same hyper-parameter settings in these mod-
els. The vocabulary size was 15000, the word embedding
size was 300, the entrainment embedding size was 50, the
hidden-size was 500. We used a two-layer Gated Recurrent
Unit (GRU) [36] as an RNN. In the training, we used a
mini-batch size of 128, and an Adam optimizer [37] with
a learning rate of 1e-4. For the WMD calculation, we used
pre-trained, word-distributed vectors,6 which normalized the
norm to 1 for each. We set the maximum length of the
dialogue history to 4.

D. AUTOMATIC EVALUATIONS
We automatically evaluated the generation results using ref-
erences in the test set. We used a beam search (a beam width
of 5) for generating examples to be evaluated. For automatic
evaluation, we used the following five different metrics:
• Perplexity (PPL) is a general metric for evaluating a
language model performance. The model Likelihoods
of the reference responses are calculated. Note that the
perplexity scores do not directly reflect the quality of
generation; for example, dull responses also have good
perplexity scores.

• BLEU, which is the most popular automatic evalua-
tion metric of language generation tasks, calculates the
similarity between references and generated responses
[38] based on n-gram precision.We used BLEU2, which
considers uni-grams and bi-grams because matches in
higher-order n-grams are rarely observed response gen-
eration tasks.

• WMD is the average similarity between the references
and the generated responses for each case in the test set.
The similarity is calculated based on (16). The score is
multiplied by 100 and displayed in a range of 0 to 100.

• r is an average reward calculated from (20) to each
generation. When this score is high, the entrainment
degree of the generated response shows a similar degree
to the reference. In other words, it shows that the neu-
ral conversation model controlled the response content
well based on the entrainment degree. We sorted the
test sets by the entertainment scores of the references
and divided them into four parts to calculate r for each
(r0∼25%, r25∼50%, r50∼75%, r75∼100%). For example,
r0∼25% shows the average reward of examples that have
less entrainment scores in the references. These scores
are multiplied by 100 and displayed in a range of 0 to
100.

• Entropy (Ent) is a diversity metric [39] that reflects
the evenness of the empirical n-gram distribution for
the given responses: Ent = 1∑

w∈V C(w)

∑
w∈V C(w) log

6For English data: http://nlp.stanford.edu/projects/glove/
and for Japanese data: http://www.worksap.co.jp/nlp-activity/word-vector/

C(w)∑
w′∈V C(w′) , where, V is the set of all n-grams in the

given responses, and C(w) denotes the frequency of
n-gram w. We set the uni-gram for evaluation.

E. HUMAN SUBJECTIVE EVALUATIONS
Automatic evaluation scores still have a problem since they
do not have high correlation with human subjective evalu-
ation results [40]. Thus, we also examined models with a
human subjective evaluation to confirm the naturalness of the
generated responses. In the evaluation of naturalness, we used
a 3-point scale in accordance with an existing work [41].
240 generated responses were randomly selected from the
test set, and human annotators added their evaluation scores
for each sample by looking at the dialogue contexts. Detailed
descriptions follow.
• +2: This response is not only relevant and natural, but
also informative and interesting.

• +1: This response can be used as a response to the
context, although it is universal, like ‘‘Yes, I see,’’ ‘‘Me
too,’’ or ‘‘I don’t know.’’

• 0: This response cannot be used as a response to this
context. It is either semantically irrelevant or dis-fluent.

Three annotators evaluated each sample, and the final score
was decided by a simple majority. If the evaluation was com-
pletely disagreed (0, +1, and +2), the example was scored
as 1.

VII. EXPERIMENTAL RESULTS ON ENTRAINED RESPONSE
GENERATION
A. AUTOMATIC EVALUATION RESULTS
We show the automatic evaluation results of response gen-
eration models in Table 5. Our proposed models using the
target entrainment degree as a condition showed improve-
ment on r from the baseline models and achieved comparable
performance on other metrics. Our proposed models con-
trolled the generation at a high level, based on the indicated
entrainment degree. In particular, we confirmed a remarkable
improvement in models that applied reinforcement learning
(C-HED+RL and C-AHED+RL). C-AHED+RL showed
the best performance in k = 2, indicating that the attention
mechanism for context works well when the model uses
longer contexts. However, we still have a problem with gen-
eration performance r75∼100%, which gives very high entrain-
ment scores as a condition. In other words, generating highly
entrained responses is more challenging. Furthermore, our
proposed models based on reinforcement learning showed a
consistent improvement of WMD and Ent, and BLEU was
comparable to the baseline models.

Then we traced the changes in the generation performance
when we gave different fixed examples of rtarget as a con-
dition for the generation models instead of the oracle. The
results are shown in Fig. 3. Here the vertical dashed line
is the median of oracle rtarget. Our proposed models, which
are optimized by reinforcement learning, showed consis-
tent improvement compared with the other models. For r ,

VOLUME 8, 2020 178289



S. Kawano et al.: Entrainable Neural Conversation Model Based on RL

TABLE 5. Automatic evaluation results for each neural conversation model.

FIGURE 3. Changes in generation performance when given a fixed rtarget.

we confirmed the highest performance around the median
of oracle rtarget. Lower scores on high rtarget were proba-
bly caused by a lack of training samples of high rtarget.
For WMD and Ent, we confirmed increasing trends in both
scores when we give a high rtarget. On the other hand,
both scores are low in the range of low rtarget. This result

was caused by dull responses, which have small diver-
sity and little relevance to the references. In some cases,
our models outperformed the results of giving the oracle
conditions. This indicates that our models are robust even
if the condition given to the model is different from the
oracle.
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FIGURE 4. Relationships between human scores and entrainment scores.

B. HUMAN SUBJECTIVE EVALUATION RESULTS
Table 6 shows the human evaluation results for the natu-
ralness of the generated responses in each model. We used
the oracle entrainment degrees as the given conditions. Our
proposed models, based on reinforcement learning, gen-
erated a more acceptable response to the dialogue con-
text than the baseline models under the oracle condition.
C-AHED+RL (k = 2) showed the highest performance.
However, C-HED+RL (k = 2) did not improve the score
compared with C-HED+RL (k = 1). This indicates that
C-HED model, which has no attention mechanism, can not
take enough advantage of reward signals that considering the
more past context.

We also evaluated the relationship between human evalu-
ation scores and entrainment scores based on LID.7 Fig. 4
shows the box-plots for human evaluation scores and entrain-
ment scores of three models (no-conditioned models and
C-HEDs, C-AHEDs). Here the horizontal axis indicates
the human evaluation scores and the vertical axis indicates
the entrainment scores. Note that C-HEDs and C-AHEDs
are including both results of cases in +CE and +RL.
We calculated the polyserial correlation ρ [42] between
human scores and entrainment scores instead of Spearman’s
rank correlation since there is only a 3-point scale for
human scores. We identified significant positive correlations
between human scores and entrainment scores for all of the

7The LID was calculated based on (17).

TABLE 6. Frequency of each subjective evaluation score. Weighted-Avg is
a weighted average by frequency of scores.

groups regardless of the k settings. This result is consistent
with the results of the preliminary analysis in Section V.
Note that we can not compare the magnitude of the corre-
lations in each group. This is due to the correlations will
be small for groups with a low frequency of score 0 since
the nature of the evaluation score based on the 3-point
scale.

Table 7 shows the generation examples of the compared
models based on AHED in k = 2. Their naturalness seems
at least comparable; even our proposed models generated
more entrained responses. Note that it is difficult to find
using the same words because our proposed method is based
on WMD that calculates the semantic similarity in semantic
spaces.
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TABLE 7. Generated responses from models given a dialogue history and a target entrainment degree: A and B denote system and user. One utterance of
each speaker is given as a history in the example. Generation results of each model are shown after the context. Before generation results, given target
entrainment degrees and rewards bestowed on generated responses are indicated by brackets.

VIII. CONCLUSION
We proposed a neural conversation model that can control the
entrainment degree of generated responses according to the
given entrainment degree. We applied reinforcement learn-
ing to optimize our model for automatic entrainment scores
that incorporate local interpersonal distance as a reward.
Experimental results showed the entrainment scores corre-
lated with human assessments in both human-human and
human-machine dialogues in a chit-chat domain. Our pro-
posed model also generated comparable or more natural
responses than conventional models based on the minimiza-
tion of cross-entropy loss, while the degree of entrainment of
the generated responses is well controlled.

Although our method outperformed the existing method
based on cross-entropy loss, the entrainment degree of gen-
erated response can still be improved. This is because our
method does not have any mechanism to explicitly access

the vocabulary used in the dialogue context on its decoding
process. Hierarchical attention [43] or a copying mechanism
[44] may explicitly solve this problem based on the word
information in dialogue contexts. Incorporating such different
aspects of entrainment as dialogue act choice is also impor-
tant [8], [27].

A phenomenon where synchronization with each other in
a dialogue, such as entrainment, is strongly related to the
attributes of the dialogue participants and the relationships
between them [45]. Therefore, we will focus on individuality
or personality to control entrainment [21].
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