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ABSTRACT This article presents a novel strategy regarding the stabilization control problem for plants
with unmatched uncertainties. The methodology is based on Adaptive Smooth Super Twisting Sliding Mode
Control. At first, as an initial step, the plant with unmatched uncertainty is transformed into a plant with
matched uncertainty. At the second step, the plant with matched uncertainty is decomposed into a unique
framework containing the nominal part and some unknown terms (where these unknown terms are computed
adaptively). The nominal system is stabilized by using Smooth Super Twisting Sliding Mode Control. The
stabilizing controller for the plant with matched uncertainty is designed in a way; it contains some nominal
control plus some compensator term. The stability of the said technique is presented impressively. The
compensator controller and the adapted laws are derived in such a way that the time derivative of a Lyapunov
function becomes strictly negative. The proposed method is tested on a fourth-order plant. The simulation
results show the effectiveness and validity of the proposed controller.

INDEX TERMS Sliding mode control, higher-order sliding mode control, adaptive smooth super-twisting
algorithm, Lyapunov function, unmatched uncertainty.

I. INTRODUCTION
Designing feedback control law for the stabilization of com-
plex non-linear unmatched control systems has been an excit-
ing subject for researchers in the field of control theory. Due
to their wide range of applications in the ariel and under-
water vehicles, such systems have gained prompt attention
in the control community. In aforesaid applications, usually,
actuators are responsible for moving flight control surfaces,
respond quickly as compared to the engine dynamics. This
fact needs to be considered in the process of control design for
such systems. When faults and failures result in uncertainty
in the dynamics of aircraft, such a system is categorized as an
unmatched uncertainty system [1], [2]. Different techniques
have been incorporated to achieve the desired performance
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from such systems in the presence of unmatched uncertainty,
based on adaptive and Sliding Mode Control techniques
(SMC) [3]–[5]. Practically speaking, precision, along with
robustness, are ever demanding from the aforementioned sys-
tems. Among the said approaches, SMC fulfills the desired
performance effectively.

Therefore, from the perspective of precision and robust-
ness, the strategies based on slidingmode control have gained
considerable attention from the research community of con-
trol systems [5]–[11]. SMC can be conveniently employed
due to its simplicity. It is engaged in two phases, namely
reaching and sliding phase, respectively. The reaching phase
is considered essential in the case of conventional SMC (in
some SMC formats, it may be ignored). However, in the
sliding phase, the systems state trajectory is bound to slide on
the sliding surface by the use of an appropriate control signal.
During the sliding phase, the closed-loop system’s response
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depends upon the surface parameter and remains insensitive
to variations of system parameters and external disturbances
[9], [10]. Contrarily during the reaching phase, the system is
susceptible towards minimal disturbances, even of matched
nature, resulting in deterioration in performance. Therefore,
the robustness cannot be guaranteed throughout the system
response [10]. Furthermore, SMC has the main obstacle in
its practical application due to high-frequency oscillations
(known as chattering, generated due to discontinuous con-
trol law). Chattering is undesirable for electro-mechanical
systems because it invokes high-frequency dynamics, which
leads to system instability [10], [11].

Various methodologies have been proposed in the litera-
ture to explain how to overcome undesirable chattering phe-
nomenon which includes;

a) use of Higher-Order Sliding Mode Control
(HOSMC) [10],

b) observer-based approach, and
c) use of saturation function instead of signum function

(as discontinues control) [10], [11].

Similarly, Integral Sliding Mode Control (ISMC) is also
proposed to counter the uncertainty issue during the reach-
ing phase [9], [12]. Employment of Dynamic Sliding Mode
Control (DSMC) is another solution to reduce chattering
by providing new dynamics that act as compensators, and
these compensators are further employed to improve system
stability and performance [13]. The bottleneck for DMSC
applicability is its limited application toward the non-linear
system. By adopting, any of the aforementioned strate-
gies, we have to accept some trade-offs in terms of finite-
time convergence, system stability, and robustness of the
systems [13], [14].

Among HOSM controllers, Second Order Sliding
Mode (SOSM) controller is prevalent due to its ease and
smooth implementation [14], [15]. To design SOSM, a num-
ber of algorithms have been proposed in recent years in
which twisting, super twisting, sub-optimal, and drift are
commonly used. Due to not requiring time derivatives of slid-
ing variables and having insensitivity to sampling time, Super
Twisting (STW) algorithm has been gained much attention
from the research community, and this algorithm is used for
the systems having relative degree one [11], [16]–[18]. The
algorithm guarantees that system trajectories twist around
the origin within finite time. In this article, STW algorithm
is used in adaptive manner, in which control gains are able
to adapt themselves to various uncertainties online, which
increases its effectiveness.

The following are the significant contributions regarding
this paper:

• A new strategy is proposed to stabilize the control sys-
tem with the presence of unmatched uncertainties. The
unmatched uncertainties are considered at the design
phase so that the control signal efficiently controls the
system under such uncertainties.

• The proposed methodology is based upon Adaptive
Smooth Super-twisting (ASSTW) based SMC. In the
proposed methodology, first, the plant with unmatched
uncertainty is transformed into a plant with matched
uncertainty. Then the said plant is decomposed into
a particular structure containing a nominal part and
some unknown terms (which would be computed later
adaptively).

• The nominal system is stabilized, and the stabiliz-
ing controller for the plant with matched uncertainty
is designed, consisting of nominal control and com-
pensator control. The compensator controller and the
adapted laws are derived based on the Lyapunov stability
theory.

• A fourth-order plant is tested to confirm the validity of
the proposed method.

This paper is organized in a way that the problem
formulation and description are displayed in Section II.
Moreover, some general control theory is also posed in
Section II. Some practical examples are listed in Section III
to show the effectiveness of the designed methodology.
Finally, the concluding remarks are drawn in Section IV,
along with some future direction, supported by the
references.

II. PROBLEM FORMULATION
Considering the plant dynamics,

ẋ1 = x2 + θ1φ (x1)
ẋ2 = x3 + θ2φ (x1)
...

ẋn−1 = xn + θn−1φ (x1)
ẋn = u

(1)

where state variables, control input, and unknown constants
are represented by x1, x2, . . . ,xn, u and, θi,i= 1, . . . ,n−1,
respectively. However, φ (x1) is a sufficiently smooth known
function with well-defined partial derivatives with respect
to x1. It can be clearly observed from equation (1) that
the uncertainties do not appear with the control input,
so equation (1) is referred as a plant with unmatched uncer-
tainties. However, this unmatched uncertainty is the norm
bounded.

A. PROBLEM STATEMENT
Given the desired set point xdes ∈ Rn, construct a feed-
back strategy in terms of the controls u:Rn

→ R such
that the desired set point xdes is an attractive set for (2),
so that there exists an ε> 0, such that x (t; 0,x0) → xdes
as t → ∞ for any initial condition x0 ∈ B (xdes;ε). With-
out the loss of generality, it is assumed that xdes= 0, which
can be achieved by a suitable translation of the coordinate
system.

The control problem is solved by transforming the sys-
tem (1) with unmatched uncertainties into the system (3) with
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matched uncertainties through a transformation (2).

z1 = x1
z2 = x2 + θ1φ (x1)
z3 = x3 + θ2φ (x1)+ θ1φ(1) (x1)
z4 = x4 + θ3φ (x1)+ θ2φ(1) (x1)+ θ1φ(2) (x1)
...

zn−1 = xn−1 + θn−2φ (x1)+ θn−3φ(1) (x1)
+ . . .+ θ1φ

(n−3) (x1)
zn = xn + θn−1φ (x1)+ θn−2φ(1) (x1)

+ . . .+ θ1φ
(n−2) (x1)

(2)

where φ(i) (x1) = d i

dt iφ (x1).
System (2) can be rewritten as z = x + A,
where z = [z1z2z3 . . . zn]T , x = [x1x2x3 . . . xn]T

and

A =



0
θ1φ

θ2φ + θ1φ
(1)

θ3φ + θ2φ
(1) + θ1φ

(2)

...

θn−2φ + θn−3φ
(1) + . . .+ θ1φ

(n−3)

θn−1φ + θn−2φ
(1) + . . .+ θ1φ

(n−2)


Then 

ż1 = z2
ż2 = z3
ż3 = z4
...

żn−1 = zn
żn = u+ θn−1φ(1) (x1)+ θn−2φ(2) (x1)

+ . . .+ θ1φ
(n−1) (x1)

(3)

θi are unknown constants and maybe computed adaptively.
Let θ̂i be an estimate of θi and θ̃i = θi − θ̂i be the error in the
estimation of θi, i = 1, . . . , n−1, then, system (3) can further
be expressed as (4)

ż1 = z2
ż2 = z3
ż3 = z4
...

żn−1 = zn
żn = u+ θ̂n−1φ(1) (z1)+ θ̂n−2φ(2) (z1)

+ . . .+ θ̂1φ
(n−1) (z1)+ θ̃n−1φ(1) (z1)

+θ̃n−2φ
(2) (z1)+ . . .+ θ̃1φ(n−1) (z1)

(4)

Theorem: System in (4) is asymptotically stable by choos-
ing sliding surface s = z1 +

∑n−2
i=1 cizi+1 + zn, and u =

veq + vs where
veq = −z2 −

∑n−2

i=1
cizi+2 − θ̂n−1φ(1) (z1)− θ̂n−2φ(2) (z1)

− . . .− θ̂1φ
(n−1) (z1)

vs = −k1 |s|
ρ−1
ρ sign (s)+ w

ẇ = −k2 |s|
ρ−2
ρ sign (s) , k1,k2 > 0, ρ ≥ 2

Consider a Lyapunov function
V = ζ TPζ + 1

2

(
θ̃21 + θ̃

2
2+ . . .+θ̃

2
n−2 + θ̃

2
n−1

)
, where P =[

p1 p2
p3 p4

]
is the positive definite and symmetric matrix sat-

isfying the Lyapunov equation: ATP + PA = −Q, where
Q ∈ R2×2 is the positive definite and symmetric matrix.
V̇ = −s−

1
ρ ζ TQζ ≤ 0 if the adaptive laws are chosen as

˙̃
θ1 = −bφ(n−1) (z1)
˙̃
θ2 = −bφ(n−2) (z1)
...
˙̃
θn−2 = −bφ(2) (z1)
˙̃
θn−1 = −bφ(1) (z1)

where b = 2y |s|−
1
ρ (p1sysign (s)+ p2w) and

˙̂
θi = −

˙̃
θi, i =

1, . . . , n− 1
Proof:As the sliding surface for the system (4) is defined

as

s = z1 +
n−2∑
i=1

cizi+1 + zn

where ci > 0 are chosen in such away that s becomesHurwitz
polynomial, then

ṡ = ż1 +
n−2∑
i=1

ciżi+1 + żn

= z2 +
∑n−2

i=1
cizi+2+u+ θ̂n−1φ(1) (z1)+ θ̂n−2φ(2) (z1)

+ . . .+ θ̂1φ
(n−1) (z1)+ θ̃n−1φ(1) (z1)

+θ̃n−2φ
(2) (z1)+ . . .+ θ̃1φ(n−1) (z1) (5)

By choosing u = veq + vs, where
veq = −z2 −

∑n−2

i=1
cizi+2 − θ̂n−1φ(1) (z1)− θ̂n−2φ(2) (z1)

− . . .− θ̂1φ
(n−1) (z1)

vs = −k1 |s|
ρ−1
ρ sign (s)+ w

ẇ = −k2 |s|
ρ−2
ρ sign (s) , k1,k2 > 0, ρ ≥ 2

(6)

After employing (6) in equation (5), ones got:

ṡ = −k1 |s|y sign (s)+ w+ a (7)

where

ẇ = −k2 |s|
y− 1

ρ sign (s) , k1, k2 > 0, y =
ρ − 1
ρ

a = θ̃n−1φ(1) (z1)+ θ̃n−2φ(2) (z1)+ . . .+ θ̃1φ(n−1) (z1)
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Define ς =
[
|s|ysign(s)

w

]
then,

ς̇ =

[
y|s|y−1ṡ

ẇ

]
=

[
y|s|

−1
ρ {−k1|s|ysign(s)+ w+ a}

−k2|s|
y− 1

ρ sign(s)

]

= |s|
−1
ρ

[
y {−k1|s|ysign(s)+ w+ a}

−k2|s|ysign(s)

]
= |s|

−1
ρ

[
−yk1 y
k2 0

] [
|s|ysign(s)
w+ a

]
= |s|

−1
ρ

[
−yk1 y
k2 0

]{[
|s|ysign(s)

w

]
+

[
0
a

]}
= |s|

−1
ρ Aξ + |s|−

1
ρ

[
ya
0

]
where

A =
[
−yk1 y
−k2 0

]
i.e.

ς̇ = |s|−
1
ρ

(
Aξ +

[
ya
0

])
(8)

The eigenvalues of A =
[
−yk1 y
−k2 0

]
are the roots of the

Hurwitz polynomial, i. e,

|λI − A| =
[
λ+ yk1 −y
k2 λ

]
= λ2 + λ (yk1)+ (yk2) = 0,

Therefore, A =
[
−yk1 y
−k2 0

]
is strictly stable, then ∃P ∈

R2×2, where P is a positive definite, and symmetric matrix,
satisfying the Lyapunov equation: ATP + PA = −Q, where
Q ∈ R2×2 is the positive definite and symmetric matrix.
Since

V = ζ TPζ +
1
2

(
θ̃21 + θ̃

2
2+ . . .+θ̃

2
n−2 + θ̃

2
n−1

)
(9)

Taking the time derivative of V and utilizing (8) yields

V̇ = ζ̇ TPζ + ζ TPζ̇ + θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + . . .+ θ̃n−2

˙̃
θn−2

+θ̃n−1
˙̃
θn−1

=

{
|s|−

1
ρ AT ξT + |s|−

1
ρ
[
ya 0

]}
Pζ

+ζ TP
{
|s|−

1
ρ Aξ + |s|−

1
ρ

[
ya
0

]}
+ θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2

+ . . .+ θ̃n−2
˙̃
θn−2 + θ̃n−1

˙̃
θn−1

= |s|−
1
ρ

{
ξT
(
ATP+ PA

)
ξ
}

+ |s|−
1
ρ

([
ya 0

]
Pζ + ζ TP

[
ya
0

])
+θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + . . .+ θ̃n−2

˙̃
θn−2 + θ̃n−1

˙̃
θn−1

= − |s|−
1
ρ

(
ξTQξ

)
+ 2y |s|−

1
ρ (p1ζ1 + p2ζ2) a

+θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + . . .+ θ̃n−2

˙̃
θn−2 + θ̃n−1

˙̃
θn−1

− |s|−
1
ρ ξTQξ + b

{
θ̃n−1φ

(1) (z1)+ θ̃n−2φ(2) (z1)

+ . . .+ θ̃1φ
(n−1) (z1)

}
+ θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2

+ . . .+ θ̃n−2
˙̃
θn−2 + θ̃n−1

˙̃
θn−1

= − |s|−
1
ρ ξTQξ + θ̃1

{
˙̃
θ1 + bφ(n−1) (z1)

}
+θ̃2

{
˙̃
θ2 + bφ(n−2) (z1)

}
+ . . .+ θ̃n−2

{
˙̃
θn−2

+bφ(2) (z1)
}
+ θ̃n−1

{
˙̃
θn−1 + bφ(1) (z1)

}
(10)

where
b = 2y |s|−

1
ρ (p1ζ1 + p2ζ2)

= 2y |s|−
1
ρ
(
p1 |s|y sign (s)+ p2w

)
By using 

˙̃
θ1 = −bφ(n−1) (z1)
˙̃
θ2 = −bφ(n−2) (z1)
...
˙̃
θn−2 = −bφ(2) (z1)
˙̃
θn−1 = −bφ(1) (z1)

where b = 2y |s|−
1
ρ (p1sysign (s)+ p2w) and

˙̂
θi = −

˙̃
θi, i =

1, . . . , n− 1, in (9), one can obtain V̇ = − |s|−
1
ρ ζ TQζ ≤ 0.

From this, we conclude that ζ → 0. Since s → 0, therefore
zi→ 0, for i = 1, . . . , n.

III. ILLUSTRATIVE EXAMPLES
To prove the effectiveness and stability of the proposed design
methodology, a fourth-order plant is considered and illus-
trated in this section.

A. PLANT WITH ORDER 4, i.e., n = 4
Considering the system displayed in (1), for n = 4, ones have:

ẋ1 = x2 + θ1φ (x1)
ẋ2 = x3 + θ2φ (x1)
ẋ3 = x4 + θ3φ (x1)
ẋ4 = u

(11)

The system (11) can take the form as shown in (12), by sub-
stituting the value of φ (x1) = 0.5x21

ẋ1 = x2 + 0.5θ1x21
ẋ2 = x3 + 0.5θ2x21
ẋ3 = x4 + 0.5θ3x21
ẋ4 = u

(12)

State trajectories of system (12) are displayed in Fig 1, which
indicates the convergence of all states at nearly sixth second.

z1 = x1
z2 = x2 + 0.5θ1x21 = x2 + 0.5θ1z21
z3 = x3 + 0.5θ2x21 + θ1x1ẋ1 = x3 + 0.5θ2z21 + θ1z1z2
z4 = x4 + 0.5θ3x21 + θ2x1ẋ1 + θ1

(
ẋ21 + x1ẍ1

)
= x4 + 0.5θ3z21 + θ2z1z2 + θ1

(
z22 + z1z3

)
(13)
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FIGURE 1. State trajectories of system (12).

FIGURE 2. State trajectories of system (15).

Using the transformation defined in (2), the system (12) is
transformed as (13). Moreover, by following the footprints
defined in equation (3) and (4) at Section II, ones got equa-
tion (14) and (15) respectively

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = u+ θ3z1z2 + θ2

(
z22 + z1z3

)
+θ1 (2z2z3 + z2z3 + z1z4)

(14)

State trajectories of the transformed system are displayed in
Fig 2, which confirms the significant convergence of the sys-
tems states. Initial conditions (−2, 4,−3, 2) are considered
for Fig 2.

The system (14) can be rewritten as

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = u+ θ̂3z1z2 + θ̂2

(
z22 + z1z3

)
+ θ̂1 (2z2z3+z2z3+z1z4)

+θ̃3z1z2 + θ̃2
(
z22 + z1z3

)
+ θ̃1 (2z2z3 + z2z3 + z1z4)

(15)

The sliding surface presented in Section III is considered for
n = 4, concerning the system (15) is shown below

s = z1 + 3z2 + 3z3 + z4

then ṡ becomes

ṡ = ż1 + 3ż2 + 3ż3 + ż4

177936 VOLUME 8, 2020
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FIGURE 3. Applied control input.

FIGURE 4. Parameter estimation.

= z2 + 3z3 + 3z4 + u+ θ̂3z1z2 + θ̂2
(
z22 + z1z3

)
+θ̂1 (2z2z3 + z2z3 + z1z4)+ θ̃3z1z2

+θ̃2

(
z22 + z1z3

)
+ θ̃1 (2z2z3 + z2z3 + z1z4)

By choosing

u = veq + vs (16)

where

veq = −z2 − 3z3 − 3z4 − θ̂3z1z2 + θ̂2
(
z22 + z1z3

)
−θ̂1 (2z2z3 + z2z3 + z1z4)

vs = −k1 |s|
ρ−1
ρ sign (s)+ w

ẇ = −k2 |s|
ρ−2
ρ sign (s) , k1, k2 > 0, ρ ≥ 2

whereas,

ṡ = −k1 |s|
ρ−1
ρ sign (s)+ w+ θ̃3z1z2 + θ̃2

(
z22 + z1z3

)
+θ̃1 (2z2z3 + z2z3 + z1z4) (17)

Control effort is displayed in Fig. 3, indicating the system
stabilized in terms of control input in the sixth second.
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FIGURE 5. State trajectories of system (15), for adaptive conventional sliding mode control.

Define ς =
[
|s|ysign(s)

w

]
, where y = ρ−1

ρ
, then

ς̇ = |s|−
1
ρ Aς

+ |s|−
1
ρ


y
(
θ̃3z1z2 + θ̃2

(
z22 + z1z3

)
+θ̃1 (2z2z3 + z2z3 + z1z4)

)
0


where

A =
[
−yk1 y
−k2 0

]
Choose a Lyapunov function

V = ςTPς + 1
2

(
θ̃21 + θ̃

2
2 + θ̃

2
3

)
, where P =

[
p1 p2
p2 p3

]
is the positive definite and symmetric matrix satisfying the
Lyapunov equation ATP+PA = −Q, where Q ∈ R2×2 is the
positive definite matrix.

Then

V̇ = ς̇TPς + ςTPς̇ + θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + θ̃3

˙̃
θ3

V̇ =
{
|s|−

1
ρ ξTAT

+ |s|−
1
ρ

[
y
(
θ̃3z1z2

+θ̃2

(
z22 + z1z3

)
+ θ̃1 (2z2z3 + z2z3 + z1z4)

)
0
]}
Pς

+ςTP

 |s|−
1
ρ Aξ + |s|−

1
ρ


y
(
θ̃3z1z2

+θ̃2
(
z22 + z1z3

)
+ θ̃1 (2z2z3 + z2z3 + z1z4)

)
0




+θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + θ̃3

˙̃
θ3

= |s|−
1
ρ ξT

(
ATP+ PA

)
ξ + |s|−

1
ρ

[
y
(
θ̃3z1z2 + θ̃2

(
z22 + z1z3

)
+θ̃1 (2z2z3 + z2z3 + z1z4)

)
0
]
Pζ

+ζ TP


y
(
θ̃3z1z2 + θ̃2

(
z22 + z1z3

)
+θ̃1 (2z2z3 + z2z3 + z1z4)

)
0




+θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + θ̃3

˙̃
θ3

= − |s|−
1
ρ ςTQς + 2y |s|−

1
ρ (p1ς1 + p2ς2)(

θ̃3z1z2 + θ̃2
(
z22 + z1z3

)
+ θ̃1 (2z2z3 + z2z3 + z1z4)

)
+θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + θ̃3

˙̃
θ3

= − |s|−
1
ρ ςTQς + b

(
θ̃3z1z2 + θ̃2

(
z22 + z1z3

)
+θ̃1 (2z2z3 + z2z3 + z1z4)

)
+ θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 + θ̃3

˙̃
θ3

= − |s|−
1
ρ ςTQς + θ̃1

(
˙̃
θ1 + b (2z2z3 + z2z3 + z1z4)

)
+θ̃2

(
˙̃
θ2 + b

(
z22 + z1z3

))
+ θ̃3

(
˙̃
θ3 + bz1z2

)
where

b = 2y |s|−
1
ρ (p1ς1 + p2ς2)

= 2y |s|−
1
ρ
(
p1 |s|y sign (s)+ p2w

)
V̇ = − |s|−

1
ρ ςTQς ≤ 0

if adaptive laws are chosen as

˙̃
θ1 = −b (2z2z3 + z2z3 + z1z4) ,
˙̃
θ2 = −b

(
z22 + z1z3

)
,

˙̃
θ3 = −bz1z2 (18)
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FIGURE 6. Comparison of control efforts (Adaptive SMC and ASSTW).

Parameter estimation is presented in Fig 4. It is very obvi-
ous from Fig 1 and 2 that the system states converge to
zero asymptotically, and parameter estimates converge to the
desired values.

To prove the effectiveness of the proposed technique,
a comparison is also made with conventional adaptive first-
order sliding mode control (from (5) , u = −veq − sign (s)),
and the results are posed in Figs 5 and 6. Due to the adaptive
phenomenon, states successfully converge to zero in finite
time, which can be observed from Fig. 5. However, if we
follow the comparison of control effort difference is very
clear. A tremendous amount of chattering can be observed in
Fig. 6. This high-frequency oscillation (known as chattering)
is very dangerous for electro-mechanical systems. It may
also lead to a total system failure. On the other hand, it is
evident that the proposed strategy carries substantial marks
considering chattering suppression.

IV. CONCLUSION
In this work, a new methodology based on Adaptive Smooth
Super Twisting Sliding Mode Control (ASSTW) has been
developed for plants with unmatched uncertainties. The plant
with unmatched uncertainty is first converted into a plant
with matched uncertainty. Further, the plant with matched
uncertainty is transformed into a particular structure, consist-
ing of two parts: 1) nominal part, 2) some unknown terms
that are computed adaptively. The nominal system has been
stabilized through ASSTW. The stabilizing controller for the
plant with matched uncertainty has been designed, consisting
of nominal control plus some compensator control. The com-
pensator controller and the adapted laws are derived in such a
way that the time derivative of a Lyapunov function becomes
strictly negative. The control design procedure has been illus-
trated for a fourth-order plant. To prove the effectiveness

of the proposed technique, a comparison is also made with
conventional first-order sliding mode control. The numerical
simulations verify the effectiveness and supremacy of the
proposed strategy in terms of robust finite-time convergence
and chattering suppression.

Considering the future perspective, the scope of this work
may be extended to hardware implementation. Moreover,
a fusion of the aforementioned strategy may be implemented
infusion with any artificial intelligence/ machine learning
algorithm like neural network (i.e., neural network-based
adaptive smooth super twisting sliding mode control).
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