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ABSTRACT Mining slopes, electrical power generation dams and several big construction enterprises
demands continuous inspections. The size and diversity of these structures demands high precision and
portable approach. In such environments, 3D reconstruction methodologies are able to capture and analyze
the real world in detail. However, the accuracy and precision can affect the ability to process and interpret
the acquired data. For instance, laser scanning is a very accurate method and can deliver a higher quality
result. Meanwhile, 3D photogrammetry using a single camera and Structure From Motion (SFM) have
their performance correlated with the image quality. In a typical application, 3D data from reconstruction is
pre-processed by a specialist. Then, it is stored for comparison and analyzed over time. The posterior analysis
has several challenges associated with the reconstruction process characteristics. Several techniques have
been developed to allow the comparison of point cloud captured at different epochs. Therefore, this research
work presents a new methodology to perform alignment and comparison of point clouds, namely 3D-CP2,
an acronym for 3D Correspondence and Point Projection. This method intends to analyze the point cloud
motion to be applied in terrestrial 3D SFM reconstructions. Besides, the technique can also be used in many
other related applications. The methodology developed in this work is applied in controlled experiments
and real use cases to show its potential for point cloud displacements analysis. The results showed that the
proposed method is efficient and can produce results more accurately than the referenced literature.

INDEX TERMS Aerial inspection, point cloud change detection, structural analysis, structure from motion,
3D reconstruction.

I. INTRODUCTION
Massive constructions are typically associated with high con-
tingency risks demanding the highest security and inspection
standards [1]. If slopes and dams are considered, the catas-
trophic disruption consequences and the enormous forces that
act on these structures make those structures especially criti-
cal, demanding strict inspections. Among all types of inspec-
tion categories, the 3-dimensional Surface Deformation
Analysis (SDA) [2] is one of the significant importance.
The SDA requires a very dense Geo-referenced point-cloud
where each point must be compared with its correlative
from previous inspections to find any possible displacement.
Several challenges arise from the point cloud deformation
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analysis that remains unsolved despite the increasing number
of developed methods to detect and quantify displacement
and deformation [3], [4]. Besides, many applications can
benefit frommorphological surface data [5], [6]. For instance,
erosion, sedimentation, and other environmental factors may
reshape structures and create risks to people as well as to the
environment [7], [8]. The structural deformation monitoring
requires constant tracking, and the rate of change can be
regularly measured to estimate structure stability and safety.
However, due to the lack of regular structures and smooth
objects, the deformation analysis of natural scenes is partic-
ularly demanding for point cloud since two points cannot be
readily identified in different epochs [9].

In the last years, many different technologies have
been proposed for inspecting structures deformation. For
example, Light detection and ranging (LIDAR), 3D Cameras,
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and Structure From Motion (SFM) have been deployed in
many modern applications, as can be seen in [10]–[15]. Note
that in these mentioned applications, the 3D point clouds are
generated representing the objects and places over inspection.
However, they generate large amounts of data related to the
surface of a given area, requiring sophisticated engineering
tools to extract useful information.

There are many challenges associated with processing this
kind of information [16], [17]. As an example, a point in two
different epochs reconstruction may not be reconstructed in
one of the epochs. Another issue is the amount of texture
and quality of the reconstruction that can create false corre-
spondences. Figure 1 depicts these common issues related to
point cloud reconstruction. In Figure 1(a), the reconstructions
have different point density. Thus, the matching process cor-
responds to the surfaces with different scales, which make
one of them wrong in relation to the real-world. Figure 1 (b)
shows that reconstructions errors in the surface detail can
make a typical stair surface looks like a straight line.

FIGURE 1. Common issues in the point cloud reconstruction. (a) A point
is not identified. (b) False correspondence due poor quality of the
reconstruction.

Other difficulties related to the point clouds can be asso-
ciated with the methods employed to compare them. Many
methods, such as cloud-to-cloud (C2C) [18] and multi-scale
model-to-model cloud (M3C2) [10], use the normal of the
surface to evaluate point cloud distance. Despite being effi-
cient in many cases, these methods are sensible in situa-
tions where the movement is larger or happens in a different
direction from the surface normal. As a solution to these
issues, several techniques have been developed over the years,

such as in [19]. As stated by the authors of Qin et al. [20],
the two major approaches in 3D change detection are the
methods that rely on statistical analysis to find correlations
among data, and the methods that use surface reconstruction
to collapse the point cloud to an average position. However,
these solutions have limitations andmay not produce accurate
results.

Despite these limitations, these methods are still used and
applied in research papers. In [21], the authors used M3C2 to
perform an analysis of rockfall evaluating the characteristics
of the method. The authors in [22] combined M3C2 with
statistical methods to determine areas of erosion, and in [14],
the method was used to evaluate the effect of different
changes in the SFM method. In summary, many applications
can benefit from more precise and accurate measurement
methods.

A. MAIN CONTRIBUTIONS
Therefore, this research work proposes an innovative solution
to find correspondence among SFM reconstructions. From
these correspondences, the process estimates cameras’ align-
ment. Once images are aligned, the points can be projected
among both images, and correspondences among groups
of 2D and 3D points can be calculated. Then, it is possible to
estimate the motion direction as well as to find a proper align-
ment between patches of two point clouds. An appropriate
subtraction of the point clouds is performed using traditional
methods to determine the scalar difference and the respective
displacement for each point. The proposed method is called
3D Correspondence and Point Projection (3D-CP2). This
research uses experimental data from a series of controlled
experiences and real conditions to demonstrate the good per-
formance of the 3D-CP2 methodology. The contributions of
this research can be summarized as follow:
• A proposition of an innovative method for estimating
point cloud movements or deformation based on 2D/3D
correspondence and point projection.

• Analysis of methods performance using a controlled
environment and data of real structures.

B. ORGANIZATION
The remainder of this work is organized as follows. Section II
presents a brief review of related works, highlighting the
state-of-the-art in point cloud alignment process. Section III
details the proposed methodology and its mathematical foun-
dations. Section IV shows the proposed experiments with a
proper discussion of the results. The concluding remarks and
future work are conducted in Section V.

II. BACKGROUND AND RELATED WORKS
Point clouds are increasingly used in many applications.
As an example, the autonomous navigation system used in
cars and drones is becoming very reliant on depth cameras,
radar, or laser [23]. Other prominent applications include
precision agriculture [24], terrain analysis [25], and structural
inspection [26]. Note that all those applications generate a
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large sum of data related to the surface of the objects. Thus,
a common requirement to process all geometric information
is the alignment between two point clouds.

Several studies have evaluated the accuracy of modern
remote sensing techniques. In the works of Qin et al. [20] and
Lindenbergh and Pietrzyk [27], the authors presented a theo-
retical background of 3D point cloud change detection. There
are two major deformation models, that is, point-based and
surface-based. The point-based approach is used to compare
the point clouds directly, and the most used methods are the
C2C andM3C2 algorithms [10]–[28]. Other methods, such as
surface-based models, including cloud-to-mesh (C2M) and
mesh-to-mesh (M2M), reconstruct a triangle mesh surface
from a given point cloud. Then, the resulting meshes are
compared, as demonstrated in Wang et al. [29].

A significant drawback of the point-based and surface-
based models is the inability to correctly estimating the plane
deformations, which is explained by how these methods
find the correspondences among points in different recon-
structions epochs for displacement estimation. For instance,
the surface-based process searches the correspondent point in
the direction of the normal vector of the underlying surface
or a plane fitted to the neighboring points. The point-based
approach selects the particular nearest point from the other
epoch [10]–[13].

Another challenge is the automatic point cloud registration
process [30], [31]. In the work of Park et al. [32], the authors
used registration to combine point clouds in such a way
that they generate larger scenes. This use of point cloud
registration is widespread when performing reconstruction of
architectonic areas. For terrestrial data analysis or inspection,
the registration process has to find at least three control points
that are in the same position on both point clouds to find the
alignment between them.

Among algorithms that find alignment between point
clouds, the Iterative Closest Point (ICP) is a commonly
used method [33]. This is an iterative algorithm where the
Mahalanobis distance between the point clouds are mini-
mized by a series of random point selections and trans-
formations. There are many variations of the ICP method,
as can be seen in Shi et al. [34], Ren et al. [33], and
Bouaziz et al. [35]. Note that the ICP method is adopted in
a few point cloud tools, such as Cloudcompare [36]. Despite
the use, its application requires a skilled operator due to the
method’s shortfalls. It requires that the point cloud positions
are close to each other, where the process only finds the final
transformation.

Note that the correspondences are crucial for 3D registra-
tion. Several works have focused on the design of 3D features
to capture local geometry for correspondence establishment.
The works of Wagner et al. [37] and Rethage et al. [38]
proposed the use of local feature descriptors to find the
correspondences. However, most of the methods found in
the literature require highly specialized personnel to select
the proper point cloud parts to be compared, aligned, and to
analyze them.

FIGURE 2. Flowchart of the 3D-CP2 methodology.

In this sense, the current methods present difficulties
in being deployed in real-world applications. Therefore,
the correspondence methodology proposed in this work can
improve the efficiency of existing processes dramatically.
These improvements are expected by eliminating the need for
manual point cloud alignment, determination of movement in
the real deformation direction instead of the normal direction
of the surface, and accurate movement measurement when
the object position changes significantly regarding the point
cloud size.

III. PROPOSED 3D DEFORMATION ANALYSIS
This section details the proposed method and its mathe-
matical foundations for analyzing the deformation of 3D
reconstructions. Figure 2 presents a global overview of the
3D-CP2 methodology. Initially, a first inspection is per-
formed, and the point clouds are generated. Therefore, this
cloud becomes a reference for future point clouds from
this same inspected area. After generating a point cloud for
a second inspection, the point of interest is found, and a dense
matching process is performed. Finally, the algorithm makes
the new projection of the point vector.

A. PROBLEM STATEMENT
Given two sets of input images from different inspections
Ot = {I t1, I t2, . . . , I tk} andO

t+1, obtained at inspections t and
t + 1, respectively. From these image sets, it is assumed that
is possible to apply SFM to reconstruct two point clouds sets
N t
= {pt1, . . . , ptk} andN

t+1, where the first point cloudN t is
called reference cloud and pti is the i-th point in the reference
cloud. The second point cloud and image sets,Ot+1 andN t+1,
are the candidate sets. Note that the images can’t be directly
analyzed for deformation after the point clouds generation.
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In the next step, correspondences among the reference and
candidate images are determined to build images pair. In other
words, for each image I tk in reference set Ot , a pair image
I t+1k is determined in the candidate set Ot+1. A measurement
distance has to be defined to determine which image in the
candidate set is the right pair in the reference set. The next
paragraph presents the variables to determine this distance,
along with proposed distance measurements.

Note that a set of parameters needs to be determined to
estimate the correlation between two images. For this, it is
possible to use the models generated for each image during
the SFM point cloud generation stage, as shown in [14]. For
each image I xk in the Ox , an extrinsic set of camera parame-
ters Cx

k [RC |TC ] is calculated. The matrix Cx
k is comprised

by a rotation matrix RC and a translation vector TC that
accurately represent the camera position in the point cloud
Nx reconstruction space. Observe that a calibration stage is
required to minimize those issues if lens errors or other image
deformation Then, it is possible to estimate the error between
two images, I tk and I t+1hk

, as a distance dist = e(I tk, I
t+1
hk

)
in relation to sum of the position and rotation errors in the
camera parameters, as presented in Equation 1 [39].

dist =
||ct+1k − ctk||

||ctk||
+ cos−1

(
trace(RtkR

t+1
hk

)− 1

2

)
(1)

Based on these measurements, a set of images is selected
as a pair. This pairwise selection can be represented by the
set W = {(I t1, I t+11 ), (I t2, I

t+1
2 ), . . . , (I tLt , I

t+1
k )}. Figure 3

depicts this process. It is important to note that the distance
in a given pair of image (I t1, I t+11 ) certainly effects the final
results of the algorithms. For this reason, in an ideal situation,
these distances should be kept as close as possible among
subsequent inspections to limit errors.

FIGURE 3. Experiment layout representation.

After alignment a dense set of points pti , a point is projected
in all visible images. After this projection in the k-th image
of the first inspection set Ot , the pair images I tk and I

t+1
k of

the setW are selected. Then, densematching is applied to find
correspondences between groups of points in the pair images.
The correspondences are denominated ω

i,hk,th1,t+1
u .

The next step in the algorithm is the selection of the
3D points pt+1j from the cloud N t+1. The points are selected

if their projections I t+1k are within a maximum distance th2
from the points ω

i,hk,th1,t+1
u . For all points in the 3D projec-

tion at a given distance th2 and a median dk,ti , the distance for
the correspondent points is estimated. The estimated median
represents the movement performed by the group of points.

Figure 4 exemplifies the correspondence process determi-
nation for the point pti from the k-th image of the inspec-
tion Ot . As aforementioned, the median d ti represents the
point movement vector pti . A limit from a given point pti can
be defined to maximize efficiency in a maximum distance,
which is defined as dmax . However, this distance also limits
the amount of movement that can be detected. Therefore,
it has to be carefully estimated for each cloud-based on the
reconstruction scale.

FIGURE 4. Correspondence estimation for the i -th 3D point of N t using
the k-th image of the inspection set W .

After this process, the algorithm determines each point’s
position from the first image concerning the second one.
As can be seen, this information allows a precise movement
estimation for each point in the cloud. The distance can be
calculated using any methods from the literature, such as
Euclidean distance. However, it is essential to note that recon-
struction errors in the SFM process can affect the results.
Thus, the filtering process is still required to reduce errors.

All the processes described in this section can be summa-
rized in Algorithm 1. This algorithm details the input and out-
puts of the method as well as the processing steps. However,
note that the stages to perform the SFM reconstruction were
omitted once they are dependent on the user software, which
is outside of this research scope.

Figure 5 presents the data flow from Algorithm 1. The first
image set (from initial inspection) is presented at the left,
and the second image set is at the right of the diagram. The
SFM process is applied to both image sets, and a registration
process is performed to align both point clouds. Note that
image pairing finds the matches among those images using
image descriptors and point cloud data. This last step output
is to feed into the 2D-2D match, and latter to the 3D-3D
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FIGURE 5. Infographic representation of the processing steps.

Algorithm 1 3D-CP2 Algorithm
Input: 3D Point cloud 1 (ptc1), Images for reconstruc-
tion 1;
Input: 3D Point cloud 2 (ptc2), Images for reconstruc-
tion 2,
camera calibration files;
1: Perform registration for ptc1 and ptc2;
2: Find pair of images, i.e. images that are correspondents;
3: Perform reprojection of points from ptcX to images
(2D-3D Projection);
4: Find points correspondences (2D-2D);
4: Perform match (3D-3D);
5: for each correspondece 3D-3D in the point cloud
6: Estimate distance between points;
7: end
8: Estimate scalar field as output;
Output: Reference file with movement of each point;

match. The last stage also uses information from the 2D-3D
reprojection of the SFM points in the image set. The 2D/3D
reprojection finds where each 3D point land is in the input
images. At last, the distance among 3D points matches is
estimated.

Figure 6 presents a complete overview of the process, once
many steps of 3D-CP2 are complex and difficult for visual-
izing. First, in Figure 6 (a), a set of pictures is taken from
the inspected site (Figure 6 (b)). An SFM process produces
the 3D point cloud (Figure 6 (c)), generating a reconstruction
showed in Figure 6 (d). The reconstruction has to be cleaned,
i.e., vegetation and other changing parts have to be removed

to avoid errors resulting in Figure 6 (e). This process has to
be repeated for the second inspection to a later comparison.
The picture set from both reconstructions and their respective
point clouds is used as input for the algorithm. The figures are
matched and form pairs, as illustrated in Figure 6 (f). The
points are re-projected (6 (g)) and matched (6 (h)). Then,
the last step estimates the distance frommatched points using
an appropriated metric. Note that the image paring described
in Figure 6 (f) uses descriptors. These descriptors are essential
to allow the recognition of unique features in each image that
is somewhat invariant to luminosity, position, and orienta-
tion. Thus, the descriptors estimation performance defines the
method ability to identify environment characteristics as well
as to form image pairs. If this pairing stage is not successful,
the subsequent stages may induce errors in the final distance
estimation.

As can be seen, the displacements are calculated from
3D-3D matches, which ensures that the point in the second
3D point cloud is the same from the first 3D point cloud.
This process will be able to estimate the real movement of
the point. This is the essential advantage of the proposed
method, once most methods will estimate the movement
in the normal direction, which may not represent reality.
The steps are taken using re-projection from the images to
the points clouds also ensures that the individual points are the
same from the images. This is an advantage over methods that
rely on point cloud match only.

IV. RESULTS AND DISCUSSIONS
A. MATERIALS AND METHODS
This section presents two sets of experiments to evaluate the
3D-CP2 methodology. The first set was performed in a con-
trolled environment to determine the algorithm efficiency in
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FIGURE 6. Infographic representation of the processing steps.

specific cases. The second set was comprised to analyze real
cases of terrain deformation. These controlled experiments
aim to establish the algorithm’s efficiency and accuracy in
relation to the ground truth and the methods in the literature.
The tests were carried out to compare the 3D-CP2 with
the M3C2 technique proposed by Lague et al. [40], which
is considered state-of-the-art in the 3D cloud deformations’
estimation.

As previously explained, this controlled environment was
selected to minimize external influence and establish the
measurements concerning the ground truth. Note that other
variables, such as luminosity and occlusion, and a set of fixed

camera positions, were selected to decrease the comparison
errors. Besides, the dimensions of the boxes in the experi-
ments are known (i.e., 245 mm x 175 mm). These measures
were used to make the real scale of the reconstructions. Also,
six images with 4864 x 3648 px resolution were used to
perform the scenes reconstructions.

The experiments considered movements in different angles
concerning the normal of the surface once many meth-
ods in the literature use the normal of the point clouds
to analyze the deformation and to estimate distances.
Figure 7 shows a representation of the movements per-
formed in the first set of experiments. In the first experiment,
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FIGURE 7. Movements performed in the first set of experiments.
(a) Baseline. (b) Movement on normal direction. (c) Perpendicular
movement in relation to normal direction. (d) Angular movement in
relation to normal.

Figure 7 (b), the movement is in the normal direction of the
surface. This is an easy case for all methods. The second
and third cases, which are presented in Figure 7 (c) and
Figure 7 (d), respectively, are in different angles, making it
difficult a proper movement estimation.

B. RESULTS IN A CONTROLLED SCENARIO
The first experiment was carried considering the movement
in the normal direction presented in Figure 7 (a). Figure 8 (a)
presents the box attached to the wall and Figure 8 (b) shows
the same box with a 40 mm displacement from it. The box
position was carefully determined in both situations to reduce
the measurement errors to less than 1mm.

FIGURE 8. Movement performed in the normal direction of the surface.
(a) Initial position. (b) Displaced position.

Through the use of the photographic inspection a set of
images was built and is represented in Figure 8. In the experi-
ment, carefully selectedmarks are positioned to determine the
scale and improve the SFM process by providing a reference
control point. In real situations, if it is unfeasible to use those
markings, real-time kinematics or post-processing kinematics
should be considered to allow a very precise result. Note,
however, that this will also improve the performance of other
methods, such as M3C2, and should always be considered.
Using the image-sets, the SFM reconstructions were obtained
as shown in Figure 9 (a) and 9 (b), respectively. Using those
reconstructions it is possible to estimate the point cloud dis-
tance by applying the M3C2 algorithm. TheM3C2 result was
overlaid in the Figure 9 (c).

FIGURE 9. SFM reconstructions. (a) Reconstruction of the baseline.
(b) Reconstruction after normal movement. (c) Scalar representation
of the distance.

Figure 10 (a), Figure 11 (a) and Figure 13 (a) present the
point distances distribution for the 3D-CP2method. The same
procedure is performed for the M3C2 algorithm, which are
shown in Figure 10 (b), Figure 11 (b) and Figure 13 (b). Note
that for the normal movement, both histograms are similar
in shape and distribution. This is the perfect situation for
algorithms such as the M3C2. The method that relies on
the normal of the surface to estimate the movement direc-
tion have its best performance in this kind of scenarios. For
instance, if there were no errors in the calculations, only a
single bar at 40mm with all the distance measurement points
would be shown in the histogram.

The histograms of the perpendicular movement experi-
ments, which are presented in Figure 11, are different from
the last experiments. Figure 11 (a) has a similar distribution
from the Figure 10 (a), but with some errors spread along the
correct value. However, the M3C2 histogram of Figure 11 (b)
shows two sharp spikes in values closer to zero. These errors
in the M3C2 measurement occurred because this algorithm
only perceives movement in the parts where there was no
overlap. This is better detailed in Figure 12.
Note in Figure 12 that the upper part shows negative

displacement. This negative displacement results from the
normal direction being perpendicular to the surface and the
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FIGURE 10. Histogram of points distances for movement in the normal
direction. (a) 3D-CP2. (b) M3C2.

box movement being in the perpendicular direction, exposing
the surface. This is the same behavior from the bottom part
of the box shown in red. The middle part of the box also
shows some green points indicating zero displacements. The
histograms did not include the wall surface at the sides of the
box. In this sense, no point with zero displacements should
be observed.

Figure 12 is a representation of the perpendicular move-
ment experiment. In this Figure, a scalar field is overlaid to
represent the distances calculated by the M3C2 algorithm.
The scalar field uses the color blue to negative displacements,
the color red to the positive displacements, and no displace-
ments are in green. As can be seen, as the displacement is
perpendicular to the normal of the surface, all calculations
performed by theM3C2 are wrong. For instance, the negative
displacement is the result of the M3C2 that estimates the
movement in the direction of the absent board. In contrast,

FIGURE 11. Histogram of points distances for movement in the
perpendicular direction. (a) 3D-CP2. (b) M3C2.

the real movement should be positive due to the box move-
ment. This is the worst situation for the M3C2 algorithm, and
the same behavior is also observed for every method that uses
the normal direction in its calculations.

In this last experiment, the displacement has an angle about
the normal of the surface. Figure 13 depicts the distance dis-
tribution for both 3D-CP2 and M3C2 methods. It is possible
to observe in Figure 13 (b) that the M3C2 angles appear
to be correct, showing an even distribution of distances,
as expected for the box movement. However, Figure 14
illustrates the distance estimated by the M3C2 and the real
expected distance.

As explained, the M3C2 estimates the distance using the
normal of the surface as a reference to search for the points
where it should find the next surface. This is represented
in Figure 14 (a). It is possible to observe in Figure 14 (a) that
the cylinder in the normal of the surface put the algorithm
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FIGURE 12. Representation of the M3C2 displacement as a scalar field.

FIGURE 13. Histogram of points distances with an angle in relation to the
normal of the surface. (a) 3D-CP2. (b) M3C2.

to a different point from the one where the surface has
moved. The correct distance representation is presented in
Figure 14 (b).

FIGURE 14. Movement estimation. (a) M3C2. (b) Correct movement.

Table 1 compiles the data from the histograms. This table
also summarizes the mean values and standard deviation. It is
possible to observe the 95% confidence interval for the data,
allowing further analysis of its distribution.

These controlled results can provide an insight into the
areas where the proposed methodology gives better results
compared to the literature. As can be observed, the results
obtained by methods that rely on the normal of the surface
to compute displacements, such as C2M, and M3C2, can be
misleading. These results may not represent the reality of
the movement when it is not in the direction of the surface
normal. They can provide a good insight into were movement
happen. However, the scalar value of the change has to be
subject to detailed inspection in each part of the surface.

C. CONTROLLED EXPERIMENTS IN REAL TERRAIN
SURFACE
In the experiments performed in a controlled scenario,
the texture of the surfaces was designed to provide a proper
SFM reconstruction. In this sense, the second series of exper-
iments were performed to show the potential of the algo-
rithm in operating in real-world scenarios. In this second
experiment, a series of pictures were taken on a hillside in
two conditions. The first condition is the baseline, showed
in Figure 15. In the second, a movement was applied in a
rock on the hill in the normal direction. As already explained
in the previous section, this direction is the best for the
M3C2 algorithm. The normal direction was chosen because
it does not put these methods into a disadvantage.

In this experiment, a set of five images from the each posi-
tions were taken. Figure 16 presents the SFM reconstruction
generated for each scenario, and it represents the baseline.
Both point clouds were manually scaled and aligned using
the measurements taken at the scene.

The M3C2 algorithm was applied to the aligned point
cloud generating a scalar field that represents the amount of
movement measured. Figure 17 shows this result. Note that
the point cloud density is not constant and it is affected by the
vegetation, texture and luminosity of the scene. The negative
and positive displacements are represented by the colors blue
and red, respective. The areas with no displacements are
represented by green.
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TABLE 1. Data from the histograms summarizing the mean values and standard deviation.

FIGURE 15. Scenario of the real-world experiment.

FIGURE 16. SFM reconstruction of the real-world experiment.

It is observed that the vegetation produces interference, that
is, a little amount of red and blue dots distributed over the
point cloud. A segmentation method was applied to minimize
these influences, removing all vegetation before the analysis
of the results. Figure 18 shows the M3C2 result after segmen-
tation.

Figure 19 shows the distance calculation for the proposed
method. Note that the algorithm has a good response with
similar performance with the M3C2 method. This result
demonstrates that the method can be used in real situations.

In a resume, these results showed that M3C2, for instance,
is very efficient in detecting changes in the point cloud

FIGURE 17. Representation of the M3C2 displacement as scalar field.

FIGURE 18. M3C2 algorithm histogram of points distances for the
movement in the normal direction.

with a considerably low error if the movement is in the
normal direction, which can be seen in the histograms from
Figure 10. Note that this is the best condition for M3C2 and
similar methods, such as C2C and C2M. When the move-
ment is in different directions from the normal, errors take
place. Figure 11 shows the worst-case condition for this type
of algorithm. The method detects some changes. However,
neither the module of distance and the balance of mass can be
trusted. In this situation, the user has to interpret the results
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FIGURE 19. 3D-CP2 algorithm histogram of points distances for the
movement in the normal direction.

seen in the displacement histograms to understand that the
spikes close to zero are actually measurement errors. The last
set of histograms are in Figure 13. This experiment shows
the middle ground condition, that is, what happens when the
movement has an angle (approximately 45 degrees in this
case) concerning the normal surface vector.

D. MONITORING OF SOIL EROSION
The next stage is to apply the proof of concept in a real
slope subject to erosion. Figure 20 shows the slope used
in this experiment. It is important to mention that in many
slopes, erosion is themost important force that drives changes
and affects the soil profile. The previous sections showed
the 3D-CP2 method performance tested in controlled situa-
tions. In order to show its robustness, this section presents
the proposed method performance evaluation compared with
M3C2 without direct comparison with validation measure-
ments. In this experiment, two different reconstructions were
built in different epochs to allow comparison. The camera
parameters are shown in Table 2 along with reconstruction
characteristics. As vegetation can significantly influence the
results, most of vegetation was masked and removed after
SFM reconstruction.

FIGURE 20. Slope subjected to soil erosion.

Both M3C2 and 3D-CP2 methods were applied to the
reconstructions to analyze the differences between them.

TABLE 2. Camera and reconstruction parameters.

FIGURE 21. Part of the analysed reconstruction. (a) Before. (b) After.
(c) M3C2.

FIGURE 22. Point’s movement.

Figure 21 (a) and (b) show the same parts of the recon-
struction in different inspection epochs. The whole area
has more than 100 meters, and this part was selected to
allow better visualization of the moving parts. Figure 21 (c)
shows the M3C2 motion estimation between images of
Figures 21 (a) and (b).
It is possible to estimate the movements in a structure

using the proposed method, as shown in Figure 22. As can
be noticed, the motion detected for most parts of the point
cloud is related to the difference’s in points positions due to
3D reconstruction. However, some points belonging to the
reconstruction changing part are showed in proper positions.
This result does not happen in the M3C2 results.

The next step is a comparison between the distance mea-
surements for M3C2 and 3D-CP2, as shown in Figure 23 and
Figure 24, as also done with other results. It can be noticed
that the proposed method shows two groups of points, where
one is resultant of SFM errors from points positions, and
the second from the real displacement. The M3C2 result also
showed a similar displacement. However, the second peak
is way closer, and it is related to the loss of mass due to
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FIGURE 23. Histogram of points distances with an angle in relation to the
normal of the surface estimated with 3D-CP2.

FIGURE 24. Histogram of points distances with an angle in relation to the
normal of the surface estimated with M3C2.

the motion in the point cloud. Thus, the result given by the
M3C2 does not represent the real displacement observed in
the point cloud.

The histograms from Figures 23 and 24 show the displace-
ment distribution for a movement in the normal direction.
In this situation, M3C2 and 3D-CP2 should present similar
performances. Indeed, this is the result observed in their
respective histograms. These results show that the proposed
method can be applied in real scenarios.

V. CONCLUSION AND FUTURE WORK
This research proposed a technique to perform alignment and
comparison of point clouds. The main purpose of this method
is to analyze the point cloud motion to be applied in ter-
restrial 3D SFM reconstructions. The proposed methodology
was used in controlled experiments as well as in real case
scenarios to show its potential for point cloud displacements
analysis. The results showed that the proposed technique is

efficient. Besides, it is capable of surpassingmethods that rely
on the normal of the surface to compute displacements, such
as M3C2.

Despite the authors’ promising results, the technique has
limitations mainly regarding the computational cost that is
higher due to the feature matching process and dependence
on feature matching in the image set. Other improvements
can be substantial for future works in scenarios that the
current techniques are not capable of giving proper results.
For example, it is necessary to carry out tests that the reg-
istration and scale errors are submillimetric. Therefore, it is
also required to use control points more precisely positioned.
Another possible improvement would be the combination
validation combination of the proposedmethodologywith the
M3C2 technique to provide more correct displacement values
and with an associated significance value.
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