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ABSTRACT We present a novel code-based signature scheme called modified pqsigRM. This scheme
is based on a modified Reed–Muller (RM) code, which reduces the signing complexity and key size
compared with existing code-based signature schemes. In fact, it strengthens pqsigRM submitted to
NIST for post-quantum cryptography standardization. The proposed scheme has the advantage of the
pqsigRM decoder and uses public codes that are more difficult to distinguish from random codes. We use
(U ,U + V )-codes with the high-dimensional hull to overcome the disadvantages of code-based schemes.
The proposed decoder samples from coset elements with small Hamming weight for any given syndrome
and efficiently finds such an element. Using a modified RM code, the proposed signature scheme resists
various known attacks on RM-code-based cryptography. For 128 bits of classical security, the signature size
is 4096 bits, and the public key size is less than 1 MB.

INDEX TERMS Cryptography, digital signatures, error correction codes, post-quantum cryptography
(PQC), Reed-Muller (RM) codes.

I. INTRODUCTION
Recently, code-based cryptographic algorithms have been
extensively studied in post-quantum cryptography (PQC).
Code-based cryptography is based on the syndrome decoding
problem and its variants. The syndrome decoding problem
is to find a vector e satisfying HeT = sT and wt(e) ≤ w,
where H is a parity check matrix of a random (n, k) code,
s is a random syndrome vector, w is a small value, and
wt(e) denotes the Hamming weight of a vector e. Berlekamp
and McEliece first proved the hardness of the syndrome
decoding problem [19] and McEliece proposed a cryptosys-
tem based on Goppa codes [22].

Courtois, Finiasz, and Sendrier proposed the CFS signature
scheme [2], which is a code-based signature scheme using a
full-domain hash (FDH) approach. In this scheme, t! hashes,
and decodings are required on average to sign a message
when an (n, k) Goppa code with error correction capability t
is used. It is proposed to use high-rate Goppa codes, which

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

have relatively small error correction capability t = n−k
log n ,

to reduce the signing time. Therefore, it has a large signing
complexity and certain drawbacks in terms of parameter
scaling. Moreover, it has been shown in [4] that high-rate
Goppa codes can be distinguished from random codes. This
falsifies the assumption of existential unforgeability under a
chosen message attack (EUF-CMA) security proof in [17],
which is based on the indistinguishability of Goppa codes.
Although Morozov et al. claimed to have proved the strong
EUF-CMA security of the CFS signature scheme without the
indistinguishability of Goppa codes [18], the large key size
and expensive signing remain as drawbacks.

There are several variants of the CFS signature scheme,
such as signature schemes using LDGM codes [7] and
blockwise-triangular secret key [9]. To find a signature with
small Hamming weight, the scheme in [7] uses a sparse coset
element added to a codeword with small Hamming weight.
Even though this is efficient and has a small key size, an attack
algorithm was presented in [6]. An attack algorithm for the
signature scheme using a blockwise-triangular secret key was
also proposed [8].
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The Kabatianskii-Krouk-Smeets (KKS) signature
scheme [30] and its variants [31], [32] take a different
approach than CFS signature scheme. However, owing to
the attack proposed in [36], these are considered (at best) to
be one-time signature schemes. Moreover, from the attacks
in [37], it is known that the parameters in the KKS scheme
and its variants should be carefully chosen.

SURF is a variant of CFS signature scheme using (U ,U +
V )-codes [29]. SURF uses (n, kU + kV ) binary codes defined
by {(u|u + v)|u ∈ U , v ∈ V }, where U and V are (n/2, kU )
and (n/2, kV ) random binary codes, respectively. A variant of
the Prange decoder is applied to SURF to find an error vector
with a small Hamming weight. The security of SURF is
based on the decoding-one-out-of-many (DOOM) problem,
in which a solution for the syndrome decoding problem is
sought in the presence of several syndromes. Unfortunately,
as it has been demonstrated that the hull of any (U ,U + V )-
code is highly probable to be a two-repetition code when U
and V are random binary codes [29], the hull of the public
key can be used for key attacks on SURF. In the recently pro-
posed signature scheme, Wave [35], the generalized ternary
(U ,U + V )-codes are used instead of binary codes as they
efficiently resist the hull attack in [29]. Moreover, finding
errors with large Hamming weight for the given syndrome
allows small parameters. A tighter security reduction using
rejection sampling and preimage samplable functions [34]
was proved in [35].

In this paper, a new code-based signature scheme using
binary codes with a (U ,U + V )-code as its subcode is
proposed. For two linear codes C1 and C2, C2 is called a
subcode of C1 if all codewords in C2 are in C1. The subcode
used in the proposed signature scheme is a binary (U ,U +
V )-code, where U and V are obtained by modifying the
RM codes. We design V and U⊥ to have a sufficient number
of common codewords, where U⊥ denotes the dual code
of U . Using the relationships between U and V , it is shown
that the proposed signature scheme resists the attack for
(U ,U + V )-codes in [29]. Further, an efficient and random-
ized decoding algorithm is proposed. This algorithm makes
it possible to reduce the key size and signature length. As the
codes in the proposed signature scheme are a modification of
RM codes, the decoding algorithmmakes use of the recursive
structure. The proposed signature scheme is an improvement
of pqsigRM [1] submitted to NIST for PQC standardization,
and it resolves the weaknesses of early versions of pqsigRM
by modifying the public code. Moreover, we ensure the dis-
tinguishability of the public code of the proposed signature
scheme.

The rest of this paper is organized as follows. In Section II,
we discuss FDH code-based signature schemes and
RM codes. A new code-based signature scheme, called
modified pqsigRM using modified RM code is proposed
in Section III. In Section IV, the security of the proposed
signature scheme is analyzed, and it is proved that the sig-
nature scheme is EUF-CMA secure. The proof is based on
two ad-hoc problems and the assumption that these are hard.

The two problems are analyzed in Section V. Consider-
ing state-of-the-art attacks, we suggest security parameters
in Section VI. The paper is concluded in Section VII.

II. PRELIMINARIES
A. BASIC NOTATION
A Vector is denoted in boldface in the form of a column
vector. (x0|x1) denotes the concatenation of two vectors x0
and x1. For example, h(m|r) means the hash function h with
input (m|r), where (m|r) represents the concatenation of
binary representation of vector m and a random value r .
Matrices are denoted by a boldfaced capital letter, for exam-
ple,A. Matrix multiplication is denoted by · or can be omitted
when it is unnecessary. Codes and probability distributions
are denoted in calligraphic fonts, for example C, and it can
be distinguished by context. xσ denotes that a vector x is per-
muted by a permutation σ , for example, xσ = (x1, x3, x2, x0),
where x = (x0, x1, x2, x3) and σ = (1, 3, 2, 0).

B. CFS SIGNATURE SCHEME
CFS signature scheme is an algorithm that applies the
FDH methodology to the Niederreiter cryptosystem. The
CFS signature scheme is based on Goppa codes, as McEliece
cryptosystem. A summary of CFS signature scheme is given
in Algorithm 1.

As described in Algorithm 1, the signing process iterates
until a decodable syndrome is obtained. The probability that

a given random syndrome can be decoded is
∑t

i=0 (
n
i)

2n−k '
1
t! .

Hence, the error correction capability t = n−k
log n should be

sufficiently small to reduce the number of iterations. Thus,
the high-rate Goppa codes should be used. Regarding the
key size, the complexity of the decoding attack on the CFS
signature scheme is known to be a small power of the key size,
namely, ≈ keysizet/2. Hence, the key size should be fairly
large to meet a certain security level. In summary, the CFS
signature scheme is insecure and inefficient owing to the use
of Goppa codes.

C. REED–MULLER CODES AND RECURSIVE DECODING
RM codes were introduced by Muller [23] and Reed [24].
and its decoding algorithm, so-called recursive decoding, was
proposed in [10]. There are various definitions of RM codes,
but we adopt a recursive definition here as recursive decoding
is defined by using this structure. An RM code RM(r,m) is a
linear binary (n = 2m, k =

∑r
i=0

(m
i

)
) code, where r and

m are integers. RM(r,m) is defined as RM(r,m) := {(u|u +
v)|u ∈ RM(r,m−1), v ∈ RM(r−1,m−1)}, where RM(0,m) :=

{(0, . . . , 0), (1, . . . , 1)} with code length 2m and RM(m,m) :=

F2m
2 . This is the well-known Plotkin’s construction, and its

generator matrix is given by

G(r,m) =

[
G(r,m−1) G(r,m−1)

0 G(r−1,m−1)

]
,

where G(r,m) is the generator matrix of RM(r,m).
Recursive decoding is a soft-decision decoding algorithm

that depends on the recursive structure of the RM codes;
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Algorithm 1 CFS Signature Scheme [2]
Key generation:

H is the parity check matrix of an (n, k) Goppa code
The error correction capability t is n−k

log n
S and Q are an (n − k) × (n − k) scrambler matrix and
n× n permutation matrix, respectively
Secret key: H,S, and Q
Public key: H′← SHQ

Signing:
m is a message to be signed
i← 1
Do
i← i+ 1
Find syndrome s← h(h(m)|i)
Compute s′← S−1s

Until a decodable syndrome s′ is found
Find an error vector satisfying He′T ← s′

* Compute eT ← Q−1e′T , and then the signature is
(m, e, i)

Verification:
Check wt(e) ≤ t and H′eT = h(h(m)|i)
If True, then return ACCEPT; else, return REJECT

it is described in detail in Algorithm 2, where y′ · y′′ denotes
the component-wise multiplication of the vectors y′ and y′′.
In recursive decoding, a binary symbol a ∈ {0, 1} is mapped
onto (−1)a, and it is assumed that all codewords belong
to {−1, 1}n.
First, y′′ (the second half of the received vector y) is

component-wisely multiplied by y′ (the first half of the
received vector). Then, a codeword from RM(r,m−1) (i.e., u)
is removed from y′′ as it is both in y′ and y′′, and then only v
and the error vector remain. This is regarded as a codeword of
RM(r−1,m−1) added to an error vector and is referred to as v̂.
Using v̂, we can remove the codeword of RM(r−1,m−1) from
the second half of the received vector. y′ is then added to y′′ ·v̂,
and the sum is divided by 2. This is regarded as a codeword
of RM(r,m−1) added to the error vector, and then decoding is
performed. Recursively, the received vector is further divided
into sub-vectors of length n/4, n/8, etc. Finally, we reach
RM(m,m) or RM(0,m), then the division terminates and themin-
imum distance (MD) decoding of RM(m,m) or RM(0,m), which
is trivial, is performed. The decoding for the entire code is
performed by reconstructing these results into (U ,U + V )
form.

III. MODIFIED REED–MULLER CODES AND PROPOSED
SIGNATURE SCHEME
In this section, we propose new codes, their decoder, and a
signature scheme that uses these codes and decoders. The pro-
posed code essentially has a (U ,U +V )-code as its subcode,
and recursively, U and V are also (U ,U + V )-codes. This
recursive structure allows the decoding of any given vector

Algorithm 2 Recursive Decoding of RM Code [10]
function RecursiveDecoding(y, r,m)

if r = 0 then
Perform MD decoding on RM(0,m)

else if r = m then
Perform MD decoding on RM(r, r)

else
(y′|y′′)← y
yv = y′ · y′′

v̂← RecursiveDecoding(yv, r − 1,m− 1)
yu← (y′ + y′′ · v̂)/2
û← RecursiveDecoding(yu, r,m− 1)
Output (û|û ·Ov)

end if
end function

in Fn2. Then, we can find an error vector with small Hamming
weight for any given syndrome corresponding to the received
vector. Starting from (U ,U + V )-codes, we replace certain
rows and append random rows on the generator matrix of
(U ,U + V )-codes. Thus, these codes are no longer (U ,U +
V )-codes. However, they have a (U ,U+V )-subcode and can
use the decoder for (U ,U + V )-codes.

A. PARTIAL PERMUTATION OF GENERATOR MATRIX AND
MODIFIED REED–MULLER CODES
New codes named modified RM codes are defined in this
section. We first present the core of the proposed codes,
which is a (U ,U+V )-code. Subsequently, we describe which
rows are replaced or appended to the generator matrix. The
rationale for these operations is provided in Section V.

For a code C, we define its hull by the intersection of
the code and its dual, in other words, hull(C) = C ∩ C⊥.
The proposed (U ,U + V )-code is designed to have a
high-dimensional hull, where dim(U⊥ ∩ V ), dimenstion of
U⊥ ∩ V , is large. In general, for a (U ,U + V )-code C,
a codeword (u|u+ v) ∈ hull(C) satisfies v = u⊥ and
u+ v = v⊥, where u ∈ U and v ∈ V . Hence, when
U⊥ ∩ V = {0}, hull(C) has only (u|u) codewords, and this
may reveal the secret key. To avoid this, the proposed code is
designed so that dim(U⊥ ∩ V ) is large.
For convenience, we focus on the generator matrix. First,

we construct the generator matrix G(r,m) of an RM code
and then permute its submatrices. An example is shown
in Figure 1, where σ 1

p and σ 2
p denote two independent

partial permutations that randomly permute only p out of
n/4 columns. As will be explained in Section VI-B, p is
related to the decoding performance. To generate σ 1

p and
σ 2
p , p column indices are randomly selected from the index

set {0, 1, . . . , n/4 − 1}, and the selected indices are ran-
domly permuted, whereas the others are not. Then, σ 1

p is
used to permute the submatrices corresponding to G(r,m−2)’s
in the first dim(RM(r,m−2)) rows, and σ 2

p is used to per-
mute the submatrix corresponding to G(r−2,m−2) in the last
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FIGURE 1. Generator matrix of partially permuted RM code with
parameter (r , m).

dim(RM(r−2,m−2)) rows, as shown in Figure 1. The codes
generated by the generator matrix in Figure 1 are called par-
tially permuted RM codes. It should be noted that, unlike in
the case of code-based cryptographic algorithms, we permute
submatrices of the generator matrix rather than the entire
matrix here. We note that the entire matrix should also be
permuted to design a signature scheme. This will be discussed
on the key generation in Section III-C.
dim(U⊥∩V ) is large for the following reasons. LetGU and

GV denote the generator matrices of U and V , respectively:

GU =

[
G
σ 1p
(r,m−2) G

σ 1p
(r,m−2)

0 G(r−1,m−2)

]
,

GV =

[
G(r−1,m−2) G(r−1,m−2)

0 G
σ 2p
(r−2,m−2)

]
.

Then, the generator matrix of the dual code of U is

G⊥U =

[
G
⊥σ 1p
(r,m−2) 0

G⊥(r−1,m−2) G⊥(r−1,m−2)

]
.

Thus, U⊥ ∩ V has a subcode that is the intersection of
the codewords generated by

[
G(r−1,m−2) G(r−1,m−2)

]
and

the codewords generated by
[
G⊥(r−1,m−2) G⊥(r−1,m−2)

]
. Its

dimension is min(dim(RM(r−1,m−2), dim(RM(m−r−2,m−2))),
as the dual of RM(r,m) is equal to RM(m−r−1,m) and
RM(r ′,m) ⊆ RM(r,m), where r ′ ≤ r .

With the partially permuted RM codes, the received vector
and the syndrome have the same parity, causing the signature
leak. Thus, the generator matrix in Figure 1 should be further
modified. That is, some rows are replaced with repetitions
of random codewords and random rows are appended to the
generator matrix. Considering GU , it is also an (U ,U + V )-
code, which can similarly be divided into (permuted) (U ,U+
V )-codes. By repeating this process 2m−r times, the rows of
the partially permuted RM code consist of the 2m−r repeated
generator matrices of RM(r,r), which are 2r × 2r identity
matrices. Then, RM(r,r) is replaced by a repeated random
(2r , krep) code such that its dual code has at least one non-zero
codeword with odd Hamming weight.

We now append random independent rows to the generator
matrix. One row to be appended is a random codeword of
the dual code. This should be independent of the existing

rows; i.e., it should not belong to the hull of the code. Further-
more, it should be verified that the hull has codewords with
Hamming weight that is not a multiple of four as a result of
appending this row. The others are kapp random independent
vectors including at least one vector of odd Hamming weight.
These kapp vectors are independent of the partially permuted
RM codes and independent of each other.

After all these modifications, the resulting code is called
a modified RM code. An example of its generator matrix is
given in Figure 2.

FIGURE 2. Generator matrix of modified RM code.

B. DECODING OF MODIFIED REED–MULLER CODES
Unlike the Niederreiter cryptosystem and CFS signature
scheme, it is required to find an error vector whose Ham-
ming weight is greater than the error correction capabil-
ity. Hence, there may exist several solutions e satisfying
HeT = sT and wt(e) ≤ w for a given syndrome s. Such
decoding can be achieved by the modified Prange decoder
using the (U ,U + V ) structure, as in the signature schemes
in [29], [35]. However, in this section, a new decoder is
proposed that uses the recursive structure of the subcode
of modified RM codes and it achieves better performance
than the modified Prange decoder. In other words, it finds
error vectors whose Hamming weights are less than the result
in [29]. This results in the smaller parameters, considering
attacks as in [28].

In addition to the decoding performance, a major differ-
ence between the proposed decoder and the modified Prange
decoder is their input. The input of the modified Prange
decoder used in [35] and [29] is a syndrome vector. In con-
trast, the input of the proposed decoder is an n dimensional
vector r satisfying HrT = s, which is called received vector
in coding theory, and the decoder outputs codewords close
to the received vector. An error vector with a small Hamming
weight is obtained by subtracting the output from the received
vector. Even if two different received vectors in the same
coset are given, the proposed decoder can return different
outputs. Besides, as the input of the decoder is a random
received vector, decoding can be performed even if random
rows are appended to the generator matrix.

As stated in the previous section, random rows (one from
the dual code and the others being kapp independent random
vectors) are appended to the generator matrix of the partially
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permuted RM codes. Let Capp be the code spanned by the
added kapp + 1 rows. The number of codewords increases by
2kapp+1 times when rows are appended by adding codewords
of Capp to each (U ,U + V )-codeword. Choosing a codeword
of Capp (including 0), subtracting it from the received vector r,
decoding it, and adding the subtracted codewords back is the
decoding process when rows are appended. Thus, the code is
decodable even if arbitrary random codes are appended to its
generator matrix.

Hence, it suffices to explain the decoding algorithm for
the (U ,U + V )-subcode of a modified RM code. This
decoding basically follows the recursive decoding of RM
codes [10]. The difference is the partial permutation and the
replacement of RM(r,r). Considering the decoding proposed
in [10], we have c = (u|u + v) for all c ∈ RM(r,m), where
u ∈ RM(r,m−1) and v ∈ RM(r−1,m−1). RM(r,m−1) and
RM(r−1,m−1) are also (U ,U + V )-codes, except for r = 0 or
r = m. Here, if the code corresponding to u or v is replaced
with a code other than the RM code and the decoding of
the replaced code can be performed appropriately, the entire
code c can also be decoded [15].
When the subcode of the RM code is replaced with its

permutation, the entire code can also be decoded by slightly
modifying the recursive decoding. Moreover, no decod-
ing failure occurs because the recursion eventually reaches
RM(0,m′), RM(r ′,r ′), or the (2r , krep) code to replace RM(r,r)
and there exists polynomial-time MD decoder for these
codes. Even the (2r , krep) random code is MD decodable in
constant time because it is a small code. To handle partial per-
mutations, when the code is decodable, it uses the fact that the
permutation is always decodable if the permutation is known.
Depermutation and decoding followed by permutation is the
decoding process for permuted codes.

In general, the output distribution of decoding is crucial
for security. Thus, we also propose a randomized decoding
method, the output of which is almost uniformly distributed.
Using the algorithm described above, a random decoder can
easily be designed. Algorithm 3 summarizes the randomized
decoding. It is easy to find a received vector (regardless of its
Hamming weight) for any given syndrome; a coset element
corresponding to the syndrome is randomly selected. This is
given to the decoder as an input. Finally, the decoder finds
a different error vector with a small Hamming weight for
different inputs.

C. PROPOSED SIGNATURE SCHEME
Herein, the proposed modified pqsigRM signature scheme
using the codes in the previous section is presented. Its decod-
ing algorithm is presented in Section III-B.

1) KEY GENERATION
Let G be the generator matrix of a modified (n, k) RM code,
and H be the parity check matrix. Let S be an (n − k) ×
(n−k) random non-singular matrix andQ be an n×n random
permutation matrix. Then, the public key is H′ = SHQ, and
the secret keys are H, S, and Q.

Algorithm 3 Decoding for Modified RM Code
function Decode(s;H)

r← Prange(H, s)
while True do

r← r+ random codeword
c←ModDec(r, r,m)
if wt(r+ c) ≤ w then

Output r+ c
end if

end while
end function

functionModDec(y, r,m)
y← yσ

−1

if r = 0 then
Output MD decoding on RM(0,m)

else if r = m then
Output MD decoding on RM(r, r)
or replaced (2r , krep) code

else
(y′|y′′)← y
yv = y′ · y′′

v̂←ModDec(yv, r − 1,m− 1)
yu← (y′ + y′′ · v̂)/2
û←ModDec(yu, r,m− 1)
y← (û|û · v̂)

end if
Output yσ

end function
*σ is σ 1

p or σ 2
p for permuted block and identity, otherwise.

2) SIGNING
To sign a given messagem, we randomly select a coin i from
{0, 1}λ0 . A binary vector s = h(h(m|H′)|i) is calculated,
where h : {0, 1}∗ → {0, 1}n−k is a cryptographic hash
function. Our goal is to find the error vector e satisfying
H′eT = SHQeT = s. Let s′ = S−1m.

Performing the decoding as in Algorithm 3, we find an
error vector e′ satisfying He′T = s′. If wt(e′) ≤ w,
we compute eT = Q−1e′T , and the signature is then given
as (m, e, i).

3) VERIFICATION
If wt(e) ≤ w and H′eT = h(h(m|H′)|i), we return ACCEPT;
otherwise, we return REJECT.

The key generation, signing, and verification processes
are summarized in Algorithm 4. For simplicity, let H rep-
resent all the secrets such as partial permutations σ 1

p and
σ 2
p , appended rows, and replaced codes. It should be noted

that in the signing process, we choose a random coset ele-
ment and perform ModDec(·). As ModDec(·) returns dif-
ferent outputs for different inputs even in the same coset,
we can achieve randomized decoding. The output distri-
bution of this randomized decoding output is analyzed in
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Section V. We add a salt λ0 to obtain a tight security
proof.

Algorithm 4 Modified pqsigRM Signature Scheme
Key Generation:

Using σ 1
p and σ 2

p , generate a partially permuted generator
matrix G
Generate H from G
Generate S and Q
Compute H′← SHQ
Secret key: H,S,Q
Public key: H′

Signing:
m is a message to be signed
i←↩ {0, 1}λ0
Find syndrome s← h(h(m|H′)|i)
s′T ← S−1sT

Perform decoding e′← Decode(s;H)
* Compute eT ← Q−1e′T , and then the signature is
(m, e, i)

Verification:
Check wt(e) ≤ w ∧H′eT = h(h(m|H′)|i)
If True, then return ACCEPT; else, return REJECT

IV. SECURITY ANALYSIS OF MODIFIED pqsigRM
In this section, the security of the proposed modified pqsi-
gRM will be analyzed. We will consider the best-known
algorithms for solving DOOM. Thereafter, we will discuss
the resistance of the proposed signature scheme against key
substitution attacks. Finally, it will be proved that the modi-
fied pqsigRM is EUF-CMA secure.

As the public key of the proposed signature scheme is a
modification of an RM code, one may consider key recovery
attacks on RM codes, such as Minder and Shokrollahi [13]
and Chizhov and Borodin [12] attacks, as well as square
code attacks [11]. However, owing to the partial permutation
as well as the appending and replacement of codewords in
the generator matrix, these attacks cannot be adopted here.
Table 1 shows the comparison between the proposed modi-
fied pqsigRM and the original pqsigRM.

TABLE 1. Comparison of the proposed modified pqsigRM and the
original pqsigRM.

A. DECODING ONE OUT OF MANY
Information set decoding is a brute-force attack method that
finds an error vector e such that HeT = s and wt(e) ≤ w,
where Stern improved the attack complexity in [14]. It has
been extensively studied, and Dumer’s algorithm [38] as well
as more involved variants in [39], [40] have been proposed.

In the variants of the CFS signature scheme, there are sev-
eral hash queries. Therefore, to launch a forgery attack, it suf-
fices to find an error vector with small Hamming weight for
any of the syndromes. Hence, the decoding problem DOOM
given below is adequate for tight security proof. The usual
FDH proof for existential forgery using syndrome decoding
would require a work factor ≥ qH · 2λ, where qH ≤ 2λ is
the number of hash queries. However, with DOOM, the work
factor is required to be ≥ 2λ. Although the work factor of
DOOM is greater than that of syndrome decoding, it provides
tighter bounds for security.
Problem 1 (DOOM):

Instance: A parity check matrix H ∈ F(n−k)×n
2 of an (n, k)

linear code, syndromes s1, s2, · · · , sq ∈ Fn−k2 , and an
integer w.

Output: (e, i) ∈ Fn2 × [1, q] such that wt(e) ≤ w and
HeT = sTi .

We consider the case in which the adversary has q instances
and M = max (1,

(n
w

)
/2n−k ) solutions for each instance. Of

course, in our case, w is not small, and thus M is
(n
w

)
/2n−k .

In [28], the work factor of solving DOOM is given as

WFMq = min
p,l

(
Cq(p, l)
PqM (p, l)

)
,

where

Cq(p, l) = max

(√
q
(
k + l
p

)
,
q
(k+l
p

)
2l

)
, q ≤

(
k + l
p

)
is the complexity of solving the DOOM problem using
Dumer’s algorithm and

PqM (p, l) = 1−

(
1−

(n−k−l
w−p

)(k+l
p

)(n
w

) )qM
is the success probability. This work factor is the reference for
choosing the parameters of the signature scheme. Although
advanced algorithms for information set decoding can be
adapted to DOOM to reduce complexity, this has not yet been
conducted. The proposed signature scheme is designed to use
codes with a high-dimensional hull. Hence, the attacker can
exploit this. However, to our knowledge, there is no algorithm
for information set decoding or DOOM that considers this.

B. SECURITY AGAINST KEY SUBSTITUTION ATTACKS
In a key substitution attack, the adversary attempts to find a
valid key that is different from the correct key and can be used
for signature verification. If the adversary knows the secret
key and the public key corresponding to a message–signature
pair, we have a weak-key substitution attack, whereas
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if the adversary knows only the public key, we have a
strong-key substitution attack. Both polynomial-time weak-
and strong-key substitution attacks on the CFS signature
scheme were proposed in [21]. A modification of the CFS
scheme that resists such attacks was also proposed in [21].
In this modification, the syndrome s is generated by hashing
the message, counter, and public key, rather than hashing only
the message and counter. It has been demonstrated that this
modified CFS signature scheme is secure against key substi-
tution attacks [18]. In the modified pqsigRM, the syndrome
is given as s = h(h(m|H′)|i), and thus it is also secure against
key substitution attacks.

C. EUF-CMA SECURITY
Here, we prove the EUF-CMA security of the modified pqsi-
gRM. The methods presented below are adapted from the
EUF-CMA security proof of SURF and Wave [29], [35].
It should be noted that although a key attack for SURF is
presented in [29], its proof technique is valid and generally
applicable. The proof is essentially the same except for the
code used for the key and the decoding algorithm for signing.

1) BASIC TECHNIQUES FOR EUF-CMA SECURITY PROOF
EUF-CMA is a widely used attack model against signature
schemes. In the security reduction task, EUF-CMA is viewed
as a game played between an adversary and a challenger. The
public key PK , hash oracleH, and signing oracle6 are given
to a (t, qH, q6, ε)-adversary A, where A can query at most
qH hash values and q6 signatures for inputs of its own choice.
Within a maximum computation time t , A attempts to find a
valid message–signature pair (m∗, σ ∗). A wins the game if
Verifying(m∗, σ ∗,PK ) = 1 and σ ∗ has not been provided
by 6; otherwise, the challenger wins the game. The winning
probability of the (t, qH, q6, ε)-adversary is at least ε.
Definition 1 (EUF-CMA Security): Let S be a signa-

ture scheme. We define the EUF-CMA success probability
against S as

SuccEUF−CMAS (t, qH, q6)

:= max(ε|∃(t, qH, q6, ε)-adversary).

The signature scheme S is called (t, qH, q6)-secure in EUF-
CMA if the above success probability is a negligible function
of the security parameter λ.

We use the statistical and computational distance as basic
metrics.
Definition 2 (Statistical Distance): The statistical dis-

tance between two discrete probability distributions D0 and
D1 over the same space E is defined as

ρ(D0,D1) :=
1
2

∑
x∈E
|D0(x)−D1(x)|.

Proposition 1 [29]: Let (D0
1, . . . ,D

0
n) and (D1

1, . . . ,D
1
n)

be two n-tuples of discrete probability distributions over the

same space. For all n ≥ 0, we have

ρ(D0
1 ⊗ · · · ⊗D0

n,D1
1 ⊗ · · · ⊗D1

n) ≤
n∑
i=1

ρ(D0
i ,D

1
i ).

Definition 3 (Computational Distance and Indistin-
guishability): The computational distance between two dis-
tributions D0 and D1 in time t is

ρc(D0,D1) :=
1
2
max
|A|≤t

(
AdvD

0,D1
(A)

)
,

where |A| denotes the running time of A, and AdvD0,D1
is

the advantage of distinguisher A, which returns b ∈ {0, 1}
against D0 and D1:

AdvD
0,D1
:= Pξ∼D0 (A(ξ ) outputs 1)

−Pξ∼D1 (A(ξ ) outputs 1).

The EUF-CMA security of the modified pqsigRM is
reduced to the modified RM code distinguishing problem and
DOOM with high-dimensional hull, which are defined as
follows.
Problem 2 (Modified RM Code Distinguishing Problem):

Instance: A code C with high-dimensional hull.
Output: A bit b ∈ {0, 1}, where b = 1 if C is a permutation

of the modified RM code; otherwise, b = 0.

Problem 3 (DOOM With High-Dimensional Hull):

Instance: A parity check matrix H′ ∈ F(n−k)×n
2 of an

(n, k) code with high-dimensional hull, syndromes
s1, s2, · · · , sq ∈ F(n−k)

n , and an integer w.
Output: (e, i) ∈ Fn2 × [1, q] such that wt(e) ≤ w and

HeT = sTi .
Definition 4 (One-Wayness of DOOM With High-

Dimensional Hull): We define the success of an algo-
rithm A against DOOM with high-dimensional hull and
parameters n, k, q,w as

Succn,k,q,w(A) = P(A(H, s1, . . . , sq)

is a solution of Problem 3),

where H is chosen uniformly from the parity check matrix
of (n, k) codes with a high-dimensional hull, si is chosen
uniformly in Fn−k2 , and the probability is taken over these
choices and the internal coin of algorithm A. The compu-
tational success of breaking DOOM with a high-dimensional
hull in time t is defined by

Succn,k,q,wDOOMHull(t) = max
|A|≤t

(
Succn,k,q,w(A)

)
.

We assume here that the probability is negligible (as a func-
tion of λ) for the parameters given in Table 2.
We will discuss these problems in greater detail in
Section V. It is worth noting that there are sufficiently many
codes with high-dimensional hull for the parameters given
in Tables 2 and 4 [25].
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TABLE 2. Parameters for each security level.

2) PROOF OF EUF-CMA SECURITY
Let SpqsigRM denote the proposed modified pqsigRM. The
following definitions as well as the theorem and its proof are
adopted from those in [29], [35].
Definition 5 (Challenger Procedures in the EUF-CMA

Game): The challenger procedures in the EUF-CMA game
corresponding to SpqsigRM are defined as follows:

proc Init(λ) proc Hash(m, i)
(PK , SK )← Gen(1λ)
H′ ← PK
(H,S,Q)← SK
return H′

return h(m, i)

proc Sign(m) proc Finalize(m, e, i)
i←↩ {0, 1}λ0
s← Hash(m, i)
e← Decode(S−1sT ;H)
return (eQ, i)

s← Hash(m, i)
return
H′eT = ST ∧ wt(e) = w

We note that the procedures in Definition 5 simplify
Algorithm 4. We can now modify the security reduction
in [29], [35] and prove the EUF-CMA security of the modi-
fied pqsigRM as follows.
Theorem 1 (Security Reduction): Let SuccEUF−CMASpqsigRM (t,

qH, q6) be the success probability of the EUF-CMA game
corresponding to SpqsigRM for time t when the number of
queries to the hash oracle (resp. signing oracle) is qH (resp.
q6). Then, in the random oracle model, we have for all t

SuccEUF−CMASpqsigRM (t, qH, q6)

≤ 2Succn,k,q,wDOOMHull(tc)+ qHEH′
(
ρ(DH′

w ,Us)
)

+ q6ρ(Dw,Uw)+ ρc(Dpub,Drand )(tc)+
1
2λ
,

where tc = t + O(qH · n2), DH′
w is the distribution of the

syndromes H′eT when e is drawn uniformly from the binary
vectors of weight w, Us is the uniform distribution over Fn−k2 ,
Dw is the distribution of the decoding result of Algorithm 3,
Uw is the uniform distribution over the binary vectors of
weight w, Drand is the uniform distribution over the random
codes with high-dimensional hull, and Dpub is the uniform
distribution over the public keys of modified pqsigRM.

Proof: Let A be a (t, qH, q6, ε)-adversary against
SpqsigRM , and let (H0, s1, . . . , sqH ) be a random instance

of DOOM with high-dimensional hull for the parameters
n, k, qH, and w. We stress that s1, . . . , sqH are random inde-
pendent vectors of Fn−k2 . Let P(Si) denote the probability that
A wins Game i.

Game 0 is the EUF-CMA game for SpqsigRM .
Game 1 is the same as Game 0 except for the following

failure event F : There is a collision in a signature query. From
the difference lemma in [41], we have

P(S1) ≤ P(S0)+ P(F). (1)

The following lemma is from [35].
Lemma 2: For λ0 = λ+ 2 log2(qH), we have P(F) ≤ 1

λ
.

Game 2 is obtained from Game 1 by changing Hash and
Sign as follows, where Sw denotes the set of vectors with
Hamming weight w in Fn2:
proc Hash(m, i) proc Sign(m)
if i ∈ Lm
em,i ←↩ Sw
return H′eTm,i
else
j← j+ 1
return sj

i← Lm.next()
s← Hash(m, i)
e← Decode(S−1sT ;H)
return (eQ, i)

Index j is initialized to 0 in the Init procedure.We introduce
the list Lm, which contains qH random elements of Fλ02 for
each message m. The list is sufficiently large so that all
queries are satisfied. The Hash procedure returns H′eTm,r if
and only if i ∈ Lm; otherwise, it returns sj. The Sign process
is unchanged unless i ∈ Lm.
The statistical distance between the syndromes generated

by matrix H′ and the uniform distribution over Fn−k2 is
ρ(DH′

w ,Us). This is the difference between Hash in Game 1
and Game 2 when i ∈ Lm. There are at most qH such
instances. Thus, by Proposition 1, it follows that

P(S2) ≤ P(S1)+ qHEH′
(
ρ(DH′

w ,Us)
)
. (2)

Game 3 is obtained from Game 2 by replacing Decode
with em,i in Sign procedure as follows:

Game 3 Game 5
proc Sign(m)
i← Lm.next()
s← Hash(m, i)
e← em,i
return (e, i)

proc Finalize(m, e, i)
s← Hash(m, i)
b← H′eT = ST ∧ wt(e) = w

return b ∧ (i /∈ Lm)

e is drawn according to the proposed decoding algorithm
Decode in Game 2, whereas it is now drawn according to the
uniform distribution Uw. By Proposition 1, we have

P(S3) ≤ P(S2)+ q6ρ(Dw,Uw). (3)

Game 4 is the game in whichH′ is replaced withH0. This
implies that the adversary is forced to construct a solution
for DOOM with high-dimensional hull. Here, if a difference
between Game 3 and Game 4 is detected, then this yields a
distinguisher betweenDpub andDrand . According to [29], the
cost to call Hash does not exceedO(n2), and thus the running
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time of the challenger is tc = t + O(qH · n2). Therefore,
we have

P(S4) ≤ P(S3)+ ρc(Dpub,Drand )(tc). (4)

Game 5 is modified inFinalize. The success of Game 5
implies i /∈ Lm and the success of Game 4. A valid forgery
m∗ has never been queried by Sign, and the adversary has
never accessed Lm∗ . As there are q6 signing queries, we have

P(S5) = (1− 2λ0 )q6P(S4).

Moreover, (1 − 2λ0 )q6 ≥ 1
2 because we assumed λ0 = λ +

2 log2(q6). Thus, this can be simplified to

P(S5) ≥
1
2
P(S4). (5)

P(S5) is the probability that A returns a solution for DOOM
with high-dimensional hull, which yields

P(S4) ≤ 2Succn,k,q,wDOOMHull(tc). (6)

Combining (1)–(6) concludes the proof.

V. INDISTINGUISHABILITY OF CODE AND SIGNATURE
IN THE PROPOSED SCHEME
It is challenging to prove the hardness of distinguishing a
public code of a code-based cryptographic algorithm from
a random code. As it is difficult to prove the hardness of
distinguishing the public code from a random code, several
cryptographic algorithms are designed by assuming it. In this
section, we will consider possible attack algorithms and con-
sider the difficulty of distinguishing the public code and sig-
natures. Moreover, the difficulty of distinguishing signatures
from random errors is also analyzed.

A. MODIFICATIONS OF PUBLIC CODE
For successful decoding of any received vector, a (U ,U+V )-
code should be used in the modified RM codes. To resist
the attack on (U ,U + V )-codes proposed in [29], we design
a code with high-dimensional hull. Generally, the expected
dimension of the hull of a random code is O(1), which is
smaller than d with probability ≥ 1 − O(d) [25]. This is a
difference between random and public codes. However, there
is currently no algorithm for solving the syndrome decod-
ing problem by taking advantage of the hull. We consider
that a high-dimensional hull is not a significant drawback
unless the hull has a certain structure that may reveal the
secret. Moreover, in [25], it is demonstrated that there are
a large number of codes with the high-dimensional hull.
Hence, we can expect the one-wayness of DOOM with the
high-dimensional hull as in Definition 4.

Cryptanalysis using hulls is widely used in code-based
cryptography. However, this is valid if the hull has a specific
structure that allows information leakage about the secret key.
Therefore, using only the fact that the dimension of the hull
is large, it is difficult to distinguish whether the code is public
or random code with the high-dimensional hull.

The EUF-CMA security proof requires the indistinguisha-
bility between public and random codes, i.e., ρc(Dpub,

Drand )(tc) should be negligible. We will discuss the design
methodology and how these modifications can ensure indis-
tinguishability.

Considering the key recovery attack in [29], a (U ,U +V )-
code used in code-based crypto-algorithms should have a
high-dimensional hull for security. Even though the public
code of the proposed signature scheme is not a (U ,U + V )-
code, it should contain a (U ,U + V ) subcode for efficient
decoding.

The attack on SURF in [29] uses the fact that for any
(U ,U + V )-code, the hull of the public code is highly
probable to have a (u|u) structure when U⊥ ∩ V = {0},
dim(U ) ≥ dim(V ). This (u|u) reveals information about the
secret permutation Q and enables the attacker to locate the U
and U +V codes. To avoid this, we should maintain the high
dimension of U⊥ ∩ V , implying that the public code should
have a high-dimensional hull. Hence, we define DOOMwith
high-dimensional hull and assume that the public code of
pqsigRM is indistinguishable from a random code with a hull
of the same dimension as that of the public code, rather than
any random linear code.

Moreover, kapp random rows are appended to the gener-
ator matrix, and 2r rows of the generator matrix, that is,
the repeated RM(r,r), are replaced by krep random rows;
furthermore, a codeword from the dual code is appended to
the generator matrix. These modifications are equivalent to
increasing the dimension of the code itself, the hull, and the
dual of the code, respectively, by appending random code-
words. Moreover, by adding random codewords, the code is
no longer a (U ,U +V )-code, and thus distinguishing attacks
are more difficult to perform.

We now explain the rationale for the aforementionedmodi-
fications, which are applied in addition to partial permutation.

1) kapp RANDOM ROWS ARE APPENDED TO THE
GENERATOR MATRIX
The Hamming weights of a random code are distributed.
However, the partially permuted RM code has only code-
words with even Hamming weight. This is because the Ham-
mingweights of codewords of RM(r,m) are even numbers, and
partial permutations do not affect parity.

By appending a random row with odd Hamming weight
to the generator matrix, the Hamming weights of the public
code become distributed binomially. The problem is that if
only one row with odd Hamming weight is appended, it can
easily be extracted. This can be resolved by appending more
than one codeword. Hence, we append kapp random rows such
that at least one has odd Hamming weight. By the nature of
the decoding process, it is still possible to decode the resulting
code.

2) APPENDING A RANDOM CODEWORD OF THE DUAL
CODE TO THE GENERATOR MATRIX
TheHammingweights of the codewords in the hull of the par-
tially permuted RM code are only multiples of four. However,
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the Hamming weight of the codewords in the hull of a random
code may be an arbitrary even number, not only a multiple
of four. As in the previous modification, a random codeword
is appended to the hull. Thereby, we force the codewords of
the hull of the public code to have arbitrary even Hamming
weights. As a randomly appended row to the generator matrix
is unlikely to be appended to its hull, appending a codeword
to the hull is more complicated. The following is the process
for appending a random codeword to the hull.

Let hull(C) be the hull of a code C. We define C′ and C′′ by
C = hull(C)+ C′ and C⊥ = hull(C)+ C′′, where hull(C), C′,
and C′′ are linearly independent. We can then generate a code
with a hull with dimension dim(hull(C))+ 1 by the following
procedure:

i) Find a codeword cdual ∈ C′′ such that cdual · cdual = 0.
This is easy because a codeword with even Hamming
weight satisfies it.

ii) Let Cinc = C + {cdual} = (hull(C)+ {cdual})+ C′.
iii) As cdual · (hull(C)+ {cdual}) = {0} and cdual · C′ = {0},

we have cdual ∈ C⊥inc, where for a vector x and a set of
vectors A, x · A is the set of all inner products of x and
elements of A.

iv) It can be seen that Cinc ∩ C⊥inc = (hull(C) + {cdual}).
Hence, Cinc is a code that has a hull of which dimension
is dim(hull(C))+ 1.

If the Hamming weights of the codewords of the hull are only
multiples of 4, then another cdual is selected, and the above
process is repeated.

3) REPEATED RM(r,r) IS REPLACED WITH RANDOM
(2r , krep) CODES
We note that by replacing repeated RM(r,r) by random
(2r , krep) codes, the dimension of the code is reduced by 2r −
krep; this is equivalent to appending 2r−krep rows to the parity
check matrix. The codewords of the dual code of the partially
permuted RM code have only codewords of even Hamming
weight owing to a subcode of the partially permuted RM
code. This can be resolved by replacing this subcode with
another random code such that its MD decoder exists. The
partially permuted RM code includes (RM(r,r)| . . . |RM(r,r)),
and the dual code of this has only codewords of even Ham-
ming weight by the proposition below. It is easy to verify
that the dual code of the partially permuted RM code is a
subset of the dual code of (RM(r,r)| . . . |RM(r,r)). That is,
(RM(r,r)| . . . |RM(r,r)) causes the dual code of the partially
permuted RM code to have only codewords of evenHamming
weight.
Proposition 2: Let C be a code such that its dual code has

only codewords of even Hamming weight. Then, the dual of
the concatenated code, {(c|c)|c ∈ C}, has only codewords of
even Hamming weight.

Proof: Let h ∈ (C|C)⊥, where C is an (n, k) code
and C|C is a concatenated code given as {(c|c)|c ∈ C}. We
define vectors h1 and h2 of length n so that h = (h1|h2).
Clearly, if h1 ∈ C⊥, then h2 ∈ C⊥. If h1 /∈ C⊥, we have

h1 · c + h2 · c = 0, i.e., h1 · c = h2 · c. This implies that
h1 = h2. Hence, wt(h) is even.

By replacing the repeated RM(r,r) with a random code such
that its dual code has codewords of odd Hamming weight,
we can force the dual of the public code to have codewords
with odd Hamming weight.

Clearly, the dual code of RM(r,r) is {0}. We replace RM(r,r)
with a random (2r , krep) code. We note that the dual code of
this (2r , krep) code must have codewords with odd Hamming
weight. The generator matrix is modified in this manner,
rather than by appending rows to the parity check matrix,
to ensure that the entire code is decodable.

B. PUBLIC CODE INDISTINGUISHABILITY
In the EUF-CMA security proof, ρc(Dpub,Drand ) is required
to be negligible, that is, the modified RM code distinguishing
problem should be hard. As it is challenging to find the
computational distance between public and random codes, in
this section, we study the randomness of the public code and
consider possible attacks.

1) PUBLIC CODE IS NOT A (U,U + V )-CODE
After random rows have been appended to the generator
matrix of a (U ,U+V )-code, the resulting code is unlikely to
be a (U ,U+V )-code. Considering the following proposition,
it can be seen that with probability O(2kU−n/2), a (U ,U +
V )-code remains a (U ,U + V )-code after a row has been
appended to its generator matrix.
Proposition 3: Let C be a (U ,U + V )-code. Then, for all

codewords (c′|c′′) ∈ C, (0|c′ − c′′) ∈ C.
It is expected that attacking the modified RM code is dif-

ficult because the appended codewords change the algebraic
structure of the code (i.e., the (U ,U + V ) structure), there is
considerable randomness, and there is currently no recovery
algorithm.

2) DISTINGUISHING USING HULL
When a random row is appended to the generator matrix,
it is unlikely to be included in the hull. To achieve this,
the appended row should be a codeword of the dual code,
and its square should be zero. Hence, we append a codeword
from the dual code to the generator matrix.

The appended row can be omitted when the attacker col-
lects several independent codewords with Hamming weight 4
from the hull. However, for any random code with a
high-dimensional hull, the same process can be applied, and
finally, there only remain codewords of which the Hamming
weight is a multiple of 4. Hence, this is not a valid distin-
guishing attack.

The hull of a random (U ,U + V )-code is {0} when kU <

kV and is highly probable to have codewords of (u|u) form
when kU ≥ kV . However, the hull of an RM code is also
an RM code, and in our case, the partial permutation ran-
domizes its hull and retains its large dimension. As shown in
Section VI, the hull is neither a subcode of the RM code nor
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a (U ,U + V )-code. Moreover, most of the hull depends on
the secret partial permutations σ 1

p and σ 2
p .

C. SIGNATURE LEAKS
In the EUF-CMA security proof, it is required that ρ(Dw,Uw)
is a negligible function of the security parameter λ. If this is
true, then the signature does not leak information. In several
signature schemes, such as Durandal, SURF, and Wave, this
is achieved and proved. In SURF and Wave, the rejection
sampling method is applied to render Dw indistinguishable.

To apply rejection sampling, the distribution of the decod-
ing output should be known. In SURF andWave, a simple and
efficient decoding algorithm is used, and thus it is easy to find
the distribution of the decoding output. However, in our case,
the decoding output exhibits a high degree of randomness,
and the structure of the decoder is complex. Therefore, it is
difficult to analyze the distribution of the decoding output.
Instead, we conduct a proof-of-concept implementation of
the modified pqsigRM using SageMath. Then, we perform
statistical randomness tests under NIST SP 800-22 [42] on
the decoding output, and we compare the results with random
errors in Fn2 with Hamming weight w. No significant differ-
ence is observed. However, it should be noted that the success
of a statistical randomness test does not imply indistinguisha-
bility. Thus, the indistinguishability of the signature should be
rigorously studied as future work.

VI. PARAMETER SELECTION
A. PARAMETER SETS
The constraint here is that n is a power of two. We can
numerically find the feasible ranges of w once n and k are
determined. If the security level λ is achieved in this range,
we accept the value; otherwise, we increase n. Considering
DOOM, a smaller value ofw implies higher security. Ifw is so
small that a large number of decoding iterations are required,
we could reduce the partial permutation parameter p. p is at
most n/4, and the characteristics of the codes are retained by
lowering p to a certain degree. The method for obtaining the
minimum values is described in the following subsection. The
discussed state-of-the-art algorithm for DOOM is used as a
basis for the parameters proposed in Table 2. We set kapp = 2
(the minimum value) and krep = 2r−2 (the maximum value).
Regarding the key size, the public key is a parity check

matrix given in the systematic form and requires (n−k)n bits.
The secret key does not include a scrambler matrix S because
it can be obtained from H′, Q, and H. Moreover H can be
represented by σ 1

p , σ
2
p , replacing code, and appending rows.

The comparison of parameter sets is given in Table 3.
The key size of the proposed modified pqsigRM is small
compared to other algorithms. We note that it is for reference
only, and the actual parameter size is given variously along
with trade-off with signing complexity, etc. The security level
in parallel-CFS is based on the generalized birthday algo-
rithm [5], and the distinguisher for high-rate Goppa code [4]
is not considered. For detailed information, see [3] and [35].

TABLE 3. Comparison of parameter sets of several code-based signature
schemes for given security.

B. STATISTICAL ANALYSIS FOR DETERMINING NUMBER
OF PARTIAL PERMUTATIONS
If w is excessively small, there is a low probability of finding
an error vector with Hamming weight less than equal to w.
We present two solutions. One is iterating until an appropri-
ate error vector is obtained, and the other is improving the
decoder. The number p of columns permuted in the partial
permutation varies from 0 to n/4. From numerical analysis,
it is demonstrated that small values of p result in low Ham-
ming weight of the decoding output. However, it should be
noted that when p = 0, the (U ,U + V ) part of the modified
RM codes becomes identical to the RM code except that
RM(r,r) is replaced. Hence, we propose the lower bound of p
that does not affect the randomness of the hull.

Regarding the modified RM code, its hull overlaps with
(but is not a subset of) the original RM code. If the hull is a
subset of the original RM code, and its dimension is large,
the codeword of minimum Hamming weight of the original
RM code may be included in the hull. Then, attacks such as
the Minder–Shokrollahi attack may be applied using code-
words withminimumHammingweight. Therefore, to prevent
attacks, the hull of the public code should not be a subset of
the original RM code, and hull(Cpub) r (RM(r,m) permuted
by Q) should occupy a large portion of the hull, where
Cpub denotes the public code, and r denotes the relative
complement.

As the permutation Q is not important for determining
the parameter p, we ignore it in this subsection, and the
term permutation refers to the partial permutations σ 1

p and
σ 2
p . When p = n/4, which implies that σ 1

p and σ 2
p are

full permutations, the average dimension of the hull and the
dimension of hull(Cpub)r RM(r,m) are given in Table 4. The
values may slightly change according to the permutation.

If p is small, the Hamming weight of the errors decreases.
Hence, the signing time can be reduced by using partial
permutation with p rather than full permutation. The aim is
to find a smaller value for p maintaining the dimension of
hull(Cpub)rRM(r,m) as large as that by the full permutation.
It can be seen that the average of the dimension of hull(Cpub)r
RM(r,m) tends to increase as p increases, and it is saturated
when p is above a certain value, as in Figure 3. Specifically,
the dimension of hull(Cpub)rRM(r,m) is saturated when p is
approximately equal to the average dimension of hull(Cpub)r
RM(r,m) with full permutation. Hence, we determine p as 130,
386, and 562 in Table 2.
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FIGURE 3. Dimension of hull (Cpub) r RM(6,12) for 128-bit security
parameters.

TABLE 4. Average dimension of hull (Cpub) and hull (Cpub) r RM(r ,m)
with p = n/4.

VII. CONCLUSION
We introduced a new signature scheme, called modified pqsi-
gRM, based on modified RM codes with partial permutation
as well as row appending and replacement in the generator
matrix. For any given syndrome, an error vector with a small
Hamming weight can be obtained. Moreover, the decoding
method achieves indistinguishability to some degree because
it is collision-resistant. The proposed signature scheme resists
all known attacks against cryptosystems based on the original
RM codes. The partially permuted RM code improves the
signature success condition in previous signature schemes
such as CFS and can improve signing time and key size.

We further modified the RM code using row appending/
replacement. The resulting code is expected to be indistin-
guishable from random codes with the same hull dimension;
moreover, the decoding of the partially permuted RM code
is maintained. Assuming indistinguishability and the hard-
ness of DOOM with a high-dimensional hull, we proved the
EUF-CMA security of the proposed signature scheme. The
challenge of rigorously verifying these two assumptions will
be addressed in the future.
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