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ABSTRACT Series arc fault is a common phenomenon in the power system, it will directly affect the
working reliability, but there is no mature method to detect it due to its concealment and chaos. Common
detection methods that build on the arc fault eigenvectors obtained by manual analysis are subjective
and incomprehensive. A series arc fault diagnosis and line selection method based on recurrent neural
network (RNN) for a multi-load system was proposed in this paper. Firstly, a series arc fault experiment
under a multi-load system was carried out, the training set and test set were built by using the data obtained
from the experiment. Then, the RNN model was built, trained, and tested through the training set and test
set. Finally, the fast-continuous detection method and the probability-based classification result correction
method were proposed, and the detection speed and accuracy were improved much further. The results show
that the proposed method is effective for diagnosing series arc fault and line selection under a multi-load
system, without analysis of arc fault characteristics.

INDEX TERMS Series arc fault, deep learning, recurrent neural network, RNN, fault diagnosis, fault line

selection.

I. INTRODUCTION

Series arc fault often occurs in power supply and distribution
systems due to poor contact and other reasons. It may cause
electrical fires and even personal injury and death. Owing
to its concealment and chaos, there is still a lack of mature
detection methods. Parallel asynchronous motors and fre-
quency converters are the main loads in the power supply and
distribution system. It will reduce the economic investment
of series arc fault detection by realizing the identification of
the branch and the phase of the series arc fault, through the
current signal of a single phase of the main circuit, under the
multi-load situation.

Since the main current and voltage are easy to obtain and
hardly interference by the external environment, it is popular
that to detect arc fault from current and voltage signals.
Various data mining algorithms are used to extract fault fea-
tures, then the arc fault was detected through classification
algorithms, in most studies.

Qiwei Lu proposed a DC series arc fault detection
method by using the information on line current and supply
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voltage [1]. Na Qu uses four features of current in time
domain and ten features of current in frequency domain as
fault feature [2]. Calderon-Mendoza Edwin extracted fault
features through a Kalman filter, then detect arc fault through
a Fuzzy logic processor [3]. Shengyang Liu proposed a
time and time-frequency domain analysis method combin-
ing the loop current and voltage for detecting the series
DC arc fault [4]. Nikola L Georgijevic detected arc fault
by calculating the modified Tsallis entropy of current [5].
Peiyong Duan used the fast wavelet transform to construct
characteristic parameters of the series arc fault [6]. Joshua
E Siegel used Fourier coefficients, Mel frequency cepstrum
coefficients, and wavelet coefficients as feature quantities
to train a neural network for arc fault recognition [7]. Gio-
vanni Artale obtained the characteristics of the arc fault
through the Chirp Z Transform (CZT) [8]. Guanghai Bao use
current transformer to extract high-frequency components
and proposed an arc fault detector based on the microcon-
troller unit (MCU) [9]. Fengyi Guo comprehensively used
wavelet packet theory, variational mode decomposition, and
Wigner-Ville distribution to extract the time domain and
time-frequency domain characteristics of arc faults, and used
particle swarm optimization and grid search optimization
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support vector machines to establish arc fault recognition
and selection model [10]. Hongxin Gao used an improved
singular value decomposition method to extract arc fault
features and used support vector machines (SVM) to identify
arc faults [11].

Recurrent neural network (RNN) is one of the deep learn-
ing algorithms developed at the beginning of the 21st century.
It focuses on sequence input and is widely used in natural
language processing, medical diagnosis, and other fields.

Zhe Li used FPGA to realize automatic speech recog-
nition (ASR) based on RNN [12]. Ryota Nishimura pro-
posed a method of searching between different media forms
(cross-media mapping) through RNN [13]. Umit Sentiirk
combined electrocardiogram (ECG) and photoplethysmogra-
phy (PPG) signal with RNN and proposed a new hybrid pre-
diction model to continuously estimate blood pressure [14].
Kandarpa Kumar Sarma used RNN as the main method to
research vowel phoneme detection, speech recognition, and
speech-to-text [15]-[17].

In this paper, a multi-load series arc fault experiment sys-
tem was built, arc fault diagnosis and line selection experi-
ment under different working conditions was carried out to
obtain the main current which was used to build the training
set and test set. The RNN model was built, trained, and tested
through the training set and test set, which can diagnosis
arc fault and select fault line through only one single-phase
current of the main circuit. The fast-continuous detection
method and probability-based classification result correction
method were proposed to further improve the detection speed
and accuracy, according to the signal characteristics of the
current time-series and the characteristics of the RNN.

Generally, deep learning method is hard to realize on
embedded devices, due to its complex network struc-
ture, many parameters, and massive calculation. The
fast-continuous detection method reduces the amount of cal-
culation and improves the detection speed by modifying
the network structure without retraining the network. And
the probability-based classification result correction method
improve accuracy by evaluating the probability. They can be
integrated in the embedded system to realize real-time online
detection.

Il. SERIES ARC FAULT DIAGNOSIS AND LINE

SELECTION EXPERIMENT

A. EXPERIMENTAL SYSTEM AND SCHEME

The main circuit of the experiment system is shown in Fig.1.
A 380V three-phase AC power supply drives two parallel
three-phase AC asynchronous motors M1 and M2. Among
them, M1 is an 11KW motor, and the load current of M1 can
be adjusted through a magnetic powder brake, and it can be
selected to run with or without the frequency converter. M2 is
a 7.5KW motor, running without load. P1-P9 are the access
points of the arc fault generator AF, and C1, C2, and C3 are
current transformers. The three-phase current data of the main
circuit and arc voltage data was saved to the computer through
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FIGURE 1. The main circuit of the experiment system.

TABLE 1. Experimental scheme.

M1 running  Frequency = M2 running

Group status converter status Fault point
1-9 No load off No load P1—-P9
10—18 17A off No load P1-P9
19-27 20A off No load P1-P9
28—36  17A to 20A off No load P1-P9
37—-45 No load on No load P1-P9
46—54 17A on No load P1-P9
55—63 20A on No load P1-P9
64—72  17A to 20A on No load P1-P9

the data acquisition card. And the experimental scheme is
shown in Table 1.

M1 with frequency converter and magnetic powder brake,
M2, experimental circuit, and AF which developed according
to the GB14287 standard are shown in Fig.2(a), Fig.2(b),
Fig.2(c), and Fig.2(d), respectively.

(c) Experimental circuit

(d) Arc fault generator

FIGURE 2. Experimental setup.
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B. ANALYSIS OF EXPERIMENTAL RESULTS

In the case of the P4 point (phase A of the M1 branch) fails
and the M1 runs without the frequency converter, the main
current is shown in Fig.3. Comparing Phase A and Phase
B current while the P4 point fails with the normal current
in Fig.3(a), it can be found that at the same time, the currents
of both phase A and phase B have obvious spike noise signals,
but the amplitude of phase B is a little bigger than that of
phase A, indicating that an arc fault occurs in one phase
can be reflected in the current signals of other phases. And
comparing with the three-phase current in Fig.3(b), it can be
found that the noise signal caused by the arc fault is shown in
all three-phase of the current and occurred at the same time.

' ‘----A-phase normal — A-phase fault
B-phase normal — B-phase fault

40 - ‘

Current (A)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time (s)

(a) Phase A and Phase B current under P4 fault without
frequency converter compared with normal state

40 ‘—A-phase B-phase —C-phase‘
ror
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=20 -

0 0.005 0.01 0.015 0.02
Time (s)

(b) Three-phase current under P4 fault without frequency
converter

FIGURE 3. The main current waveform under P4 fault without frequency
converter compared with normal state.

In the case of the P4 point fails and the M1 runs with
the frequency converter, the main current waveform is shown
in Fig.4. It can be seen that there is little difference in the
amplitude of the double- peaks of the current waveform
during normal state. When an arc fault occurs in phase A, both
amplitude of the double-peak of the fault phase decreases, and
the amplitude difference between the double-peaks increases.
In the other two phases, the amplitude difference between
the double-peaks also increases, but both amplitude of the
double-peak increases compared with the normal state. And
through comparison, it is found that the amplitude increases
of phase C, the leading phase of the fault phase, is greater than
the amplitude increases of phase B, the lagging phase of the
fault phase.

In the case of the P1 point (phase A of the main circuit)
fails and the M1 runs with the frequency converter, the main
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(b) Three-phase current under P4 fault with frequency con-
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FIGURE 4. The main current waveform P4 fault with frequency converter
compared with normal state.
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FIGURE 5. The main current waveform under P1 fault with frequency
converter compared with normal state.

current is shown in Fig.5. It can be seen that the amplitude of
all three-phase current changes. And the fault characteristics
appear as a superposition of the fault characteristics of both
two branches, due to its the main circuit fault. And there has
been an increase of harmonic content in all three phases, but
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the most in the fault phase. However, faults like single-phase
grounding may also lead to an increase in the harmonic
content of a certain phase of the power supply system. It is
not scientific enough to use only the harmonic content as a
diagnostic basis for the phase of the arc fault.

In summary, there are some patterns caused by arc fault
in the main current waveform, but it is relatively and not
obvious, thus it is difficult to judge by logic or threshold.
Therefore, the diagnosis and line selection model can be
established through deep learning.

lIl. THE ESTABLISHMENT OF SERIES ARC FAULT
DIAGNOSIS AND LINE SELECTION MODEL

Joshua E Siegel pointed out that the current signal can be
played in the form of audio to distinguish arc fault [7].
It means that arc faults can be diagnosed through the audio
processing method. Recurrent neural network (RNN) has a
wide range of applications in audio recognition processing
and other fields. In this paper, the advantage of RNN to be
good at processing time-series data was taken to establish the
arc fault diagnosis and line selection model.

A. ESTABLISHMENT OF SAMPLE LIBRARY

A neural network must be trained with enough data. The
sample library was built using the data obtained from the
experiment. Only one single-phase current of main circuit
should be used to detect the arc fault, but all three phases
current of main circuit were recorded in the experiment. It is
obviously that the phase A current when an arc fault occurs
on phase A should have the same fault characteristics with
the phase B current when an arc fault occurs on phase B,
under the same working condition, due to the symmetry of
the three-phase circuit. They should be regarded as the same
kind of fault, the measured phase fault. Therefore, by using
the concept of relative phase, the current of all three phases
can be used to train the neural network, which increased the
number of samples significantly. There are ten kinds of labels
were given in Table.2.

TABLE 2. Fault type label.

Fault type Label value
Measured phase main circuit fault 0
Measured phase M1 branch fault 1
Measured phase M2 branch fault 2
Leading phase main circuit fault 3
Leading phase M1 branch fault 4
Leading phase M2 branch fault 5
Lag phase main circuit fault 6
Lag phase M1 branch fault 7
Lag phase M2 branch fault 8
Normal 9

The sample library was built with 50289 samples. Each
sample contains 784 sampling points, about one period.
45,260 samples were randomly selected and built as the
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training set, and the remaining 5029 samples were built as
the test set.

To improve the accuracy and convergence speed of the
model, it is necessary to normalize the samples. The standard
deviation was used to normalize the sample data.

B. THE ESTABLISHMENT OF THE RECURRENT NEURAL
NETWORK
The recurrent neural network (RNN) is usually used to
describe sequence data. It currently has more successful
applications in speech recognition, natural language process-
ing, medical diagnosis, and other fields.

The RNN model used in this paper was built with 2 recur-
rent layers and three full connect layers. The detail of the
model structure is shown in Table.3.

TABLE 3. RNN model structure.

Number Number

Layer of of RNN Activation Output
type Nodes Parameters architecture function size
FC 128 3712 - None 28 x 128
RNN 128 32896 Many to tanh 28 x 128
many
FC 64 8256 - None 28 x 64
RNN 64 8256 Many to tanh 64
one
FC 10 650 - softmax 10

The unfolded diagram of the RNN structure is shown
in Fig.6. The forward propagation calculation process of this
network is shown in Fig.7.

TUO U,
X 1) 2)

FIGURE 6. The proposed RNN structure diagram.

The bias vectors and activation functions are omitted in
the unfolded diagram, among them, Uy, Uy, Uz, Vi, V2, Wy,
W,, are all neural network coefficient matrices, and bg to by
are the bias vectors. Both the coefficient matrices and the
bias vectors are obtained by training the network. The input
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FIGURE 7. The proposed RNN forward propagation flow chart.

sample data is cut into 28 segments x <!> to x<?8> which are
the inputs of the RNN. /'~ and /"> are the values of hidden
nodes of full connect layers at t-period. 4"~ and 5"~ are the
values of hidden nodes of recurrent layers at t-period. Among
them, h1<0> and h2<0>, both zero vectors, are the initial values
of the recurrent units. Finally, the classification result y is
obtained after 28 periods of calculation. y is a 10 x 1 column
vector, the 10 values of  represent the network’s estimate
of the probability of 10 possible outcomes, respectively. The
outcomes with the maximum probability will be the classifi-
cation results of the network.

C. RNN TRAINING AND TESTING

To train the RNN, it is necessary to measure the difference
between the true value and the estimated value of the RNN
output by using the loss function. The cross-entropy function

was selected as the loss function of the proposed RNN model,
see (1).

N M
=D i x logdy (1)

i=1 j=1

loss(Y, ?) =

In (1), Y is the true value, Y is the estimated value. N is
the number of samples, M is the number of labels, y;; is the
indicator variable (0 or 1), ¥;; is the probability that sample i
belongs to category j.
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The optimizer optimizes the neural network by adjusting
the network parameters to minimize the loss function. Adam
was used as the optimizer. It’s an algorithm for first-order
gradient-based optimization of stochastic objective functions,
based on adaptive estimates of lower-order moments. The
method is straight forward to implement, is computation-
ally efficient, has little memory requirements, is invariant to
diagonal rescaling of the gradients, and is well suited for
problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives
and problems with very noisy and/or sparse gradients. The
hyper-parameters have intuitive interpretation sand typically
require little tuning [18].

The network was trained 200 epochs, with a batch size
of 256, by using TensorFlow, and tested through both the
training set and test set. The accuracy and loss of the network
are shown in Fig.8.

1.4 ‘—Accuracy on training set—Accuracy on test set
Loss on Test set

—Loss on training set
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FIGURE 8. Accuracy and loss of the RNN.

Comparing the changes in the accuracy and the loss value,
it is found that the accuracy increases rapidly in the first
25 epochs of training, and the corresponding loss value
decreases rapidly. Subsequently, the increase in accuracy
tended to be flat, and finally remained at about 94%.

At the 147th epoch of training, it can be seen that the
accuracy of the network has decreased significantly, on both
the test set and the training set. And the corresponding loss
value has also increased. Since the Adam algorithm is essen-
tially RMSprop with momentum term, it was guessed that the
momentum term tries to jump out of the trap by increasing
the update amplitude when the loss value oscillates locally,
but the overall training process is relatively stable and the
convergence is relatively rapid.

After the 175th epoch, although the test results have a
little growth on the training set, and remain within a certain
range on the test set, and fluctuate without significant growth.
Therefore, to prevent the network from over fitting, the train-
ing should be stopped and the exported network model should
be saved.

IV. THE IMPROVEMENT OF SERIES ARC FAULT
DIAGNOSIS AND LINE SELECTION MODEL

In this section, the fast-continuous detection method and
probability-based classification result correction method
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were proposed to further improve the detection speed and
accuracy.

A. FAST-CONTINUOUS DETECTION METHOD
Both training and testing use fixed-length data and #<°> are
zero vectors of the unimproved RNN proposed in section III.
It outputs one classification result after every 28 periods,
which has a large amount of calculation and slow detection.
The network structure is modified, to increase the speed
and reduce the quantity of calculation. The second recurrent
layer was changed from many-to-one to many-to-many, and
the restriction on sequence length was removed, on the foun-
dation of keeping the coefficient matrices and the bias vectors
unchanged. By this way, the network will give a result after
every 28-sampling points input, continuously. The structure
of improved RNN is shown in Fig.9.

o
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(t-1) f) x<l+l>

X e

FIGURE 9. Improved RNN structure diagram.

It is hard for RNN to memorize the characteristics of
longer data sequences. The output result at a certain moment
is affected by the results of the previous moments, and the
influence decrease as the time interval increases. Therefore,
increasing the number of cycles will have little impact on the
output results, so that the network can perform rapid real-time
detection of continuous long sequences.

B. PROBABILITY-BASED CLASSIFICATION RESULT
CORRECTION METHOD

Comparing the output classification result of the improved
RNN with its corresponding probability, it is found that when
the network has misjudgment, the corresponding probability
will be relatively reduced. The latest classification result
can be corrected, according to the probability and historical
classification results. The final diagnosis and line selection
model is shown in Fig.10, which consists of two parts: an
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FIGURE 10. Improved diagnosis and line selection model.

improved RNN and a probability-based classification result
correction.

Given the input data x in the t-period, the label value
Tag='> and the corresponding probability P(Tag='>) can
be obtained through the improved RNN. Then Judge and
correct RNN classification result based on probability and
historical results. Only when the probability corresponding
to the label is high enough (bigger than the Threshold) will
the classification result of the improved RNN be accepted,
otherwise the classification result of the previous period will
be used as an alternative.

<t>

C. THE TEST OF THE IMPROVED DIAGNOSIS AND LINE
SELECTION MODEL

Three complete and continuous current time-series data of
different fault types are input into the improved diagnosis
and line selection model, the duration of all three pieces of
data is 15 seconds, and the continuous results output is shown
in Fig.11. The right vertical axis is the classification label
value output by the improved RNN (the blue points) and
the probability-based classification result correction (the red
X points). The corresponding relationship between the label
value and the fault type is shown in Table.2. The left vertical
axis is the probability corresponding to the classification label
value, and the horizontal axis is time. In Fig.11(a), it can be
seen that an arc fault occurs around 9.2 seconds, classification
results of 9 between 0 seconds and 9.2 seconds indicate that
no fault has occurred, and classification results of 0 between
9.2 seconds and 15 seconds indicate the measured phase
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FIGURE 11. The test of Improved diagnostic and line selection model.

main circuit fault. In Fig.11(c), it can be seen that the fault
occurred around 11.9 seconds, and the fault label value is 4,
which belongs to the leading phase M1 branch fault then the
fault disappears around 14.4 seconds. The system returns to
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normal. In Fig.11(d), it can be seen that a fault occurs near
10.9 seconds and the fault label value is 7, which belongs to
the lag phase M1 branch fault.

It can be seen that there are still misjudgment points in the
results of the RNN improved by the fast-continuous detection
method as shown by the blue isolated points in Fig.11. The
improved RNN has an accuracy of 97.6% for continuous
long-term current sequence, which is better than the unim-
proved RNN tested by random fragment data from the test
set. It is also found that there are more misjudgment points
at the beginning of detecting and before the arcing, but they
are relatively isolated. It is guessed that these two kinds
of misjudgments are mainly caused by too little input data,
and the increase in contact resistance before the contacts are
completely separated, respectively.

Zoom in Fig.11(a) from 1.78 seconds to 1.83 seconds to
obtain Fig.11(b). It has two misjudgment points from the
results of the improved RNN. Both misjudgment points have
a low probability. By using the probability-based classifica-
tion result correction method the misjudgment points were
easily fixed (the red X points).

Comparing the results of improved RNN and probability-
based classification result correction in Fig.11, the accuracy
of the latter is significantly higher, which reached 98.7%.

D. THE REALIZE OF THE PROPOSED METHOD IN
REAL-WORLD RUNNING SYSTEMS

The method proposed in this paper is programmed by Python
with the support of TensorFlow and runs on a computer. There
are two ways to realize it in a real-world running system.

1) Run the network on a Raspberry Pi which is a Linux
based micro-computer that can run Python code and
TensorFlow directly. Through the Raspberry Pi the
proposed method can be easily embedded into the
real-world running systems with slight modification.

2) The proposed method can also runs on a DSP or an
ARM chip like STM32. Since DSP and ARM can not
run TensorFlow directly, the Python code based on
TensorFlow should be rewritten in C language follow
the flow chart shown in Fig.10. The flash and ROM
of DSP and ARM may be not enough for network
parameters, therefore external storage is necessary.

The realizing on a DSP or ARM system of the proposed
method is recommended, due to its stability and reliability in
industrial applications, even if it is more complicated.

V. CONCLUSION

In this paper, series arc fault experiment under a multi-load
system was carried out, then a series arc fault diagnosis
and line selection method based on recurrent neural net-
work (RNN) for the multi-load system was proposed. The
proposed method can also be used in other fields to realize
series arc fault diagnosis and line selection, with appropriate
modification and enough training data. The conclusions are
as follows:
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1) In a multi-motor parallel system, whether it is a series

arc fault in the motor branch or the main circuit,
the main current will be distorted, but in different
degrees of the fault phase and normal phases.

2) By training the RNN with signal phase main current

data under different working conditions, series arc fault
diagnosis and line selection can be realized, which has
an accuracy of 94%, but without characteristic analysis
of the current signal.

3) The proposed fast-continuous detection method

and probability-based classification result correction
method can effectively improve the accuracy and speed
of diagnosis and line selection model with an accuracy
of 98.7%.
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