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ABSTRACT This article presents an economic nonlinear hybrid model predictive control strategy for
optimal energy management of parallel hybrid electric vehicles. Hybrid electric vehicles are controlled for
operation in various driveline modes and the associated optimal control problem involves both continuous
and discrete control variables. To solve the resultant mixed-integer nonlinear optimal control problem,
we propose a hierarchical supervisory control architecture that consists of demand prediction, driveline mode
determination, and real-time optimization. These three modules are designed independently and connected
in series to perform computer-aided control. The demand prediction module uses a times series model to
forecast the mechanical traction power requests of the driver over a prediction horizon based on vehicle
speed, road grade, acceleration pedal scale, brake pedal scale, and past and current power demands. For
a given forecasted power demand profile, the mode determination module decides a sequence of driveline
modes that are presumed to be operated over the prediction horizon. The model-based real-time optimization
corresponding to nonlinear model predictive control computes the optimal motor power over a prediction
horizon, and the receding horizon scheme as feedback control is applied to repeat the processes of the three
control modules. A dedicated case study with real driving data obtained fromHyundai IONIQ PHEV 2018 is
presented to demonstrate the effectiveness in fuel economy and emission reduction offered by the proposed
optimal energy management strategy. The proposed hierarchical real-time predictive optimization-based
strategy is competitive with any exiting power management strategies such as dynamic programming and
equivalent consumption minimization strategy in fuel economy and emission reduction while showing better
charge-sustaining capability. This trade-off between fuel economy and charge-sustainability can be further
improved by tuning the hyper-parameters in the proposed optimal control problem.

INDEX TERMS Optimal energy management, parallel hybrid electric vehicle, model predictive control
(MPC), mode transition control, Pontryagin’s minimum principle (PMP), equivalent consumption minimiza-
tion strategy (ECMS).

NOMENCLATURE
Voc Open-circuit voltage of a battery
RT Internal resistance of a battery
ξ State of charge (SOC) of a battery
Pm Motor power (mechanical)
Pb,Pl Batter power and power loss in a battery

(electrical)
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Pe,Pf Engine power (mechanical) and fuel power
(chemical)

P̂d Predicted demand power (mechanical)
Ib,Vb Current and voltage of a battery
α Battery power loss coefficient
e, η Engine and motor efficiency
Vb,min,Vb,max Minimum and maximum of Vb
ξmin, ξmax Minimum and maximum of ξ
ξ0 Initial value of SOC
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Pm,min,Pm,max Minimum and maximum motor power
Pe,max Maximum engine power
t0, tf , ts Initial, terminal, and sampling time
δ Driveline mode
χ State of engine clutch
N Prediction horizon of MPC
ṁf Fuel mass flow
˙mNOx , ˙mHC Mass flow of NOx and HC

s Co-state variable of ECMS
Kp,Ki Proportional and integral gain for s
Pon0 Kinetic friction loss of engine
Poff0 Static friction loss of engine
qδ, qDP Battery charge sustaining parameter of

NMPC and DP
qNOx , qHC Exhaust emission weighting parameter of

NOx and HC
BSFC Braking specific fuel consumption of engine
we,wm Engine speed and motor speed
Te,Tm Engine torque and motor torque
vd , ad Desired speed and required acceleration
γgear, γfinal Transmission gear and final drive ratio
Qlhv Lower heating value of gasoline

I. INTRODUCTION
In recent years, as environmental pollution draws atten-
tion of people across the world and related policies are
strengthened, regulations on exhaust gases of automobiles
are being reinforced. Moreover, there is a growing interest
in environmentally friendly energy sources (such as hydro-
gen and electricity) to replace fossil fuels. Consequently,
research investment and interest in developing new types
of vehicles with powertrain energy management strategies
that consume less fossil fuel and emit fewer pollutants than
conventional gasoline or diesel vehicles have been increasing
steadily. These new vehicles are primarily classified into three
types: battery electric vehicle (BEV), hybrid electric vehicle
(HEV), and fuel-cell electric vehicle (FCEV) [1]. In particu-
lar, HEV uses an electric motor (EM) as an additional traction
power source, together with an engine that is a conventional
power source [2]. Consequently, the new degree of freedom
achieved by distributing the required traction power demand
to the engine and motor affords the HEV lower pollutant
emissions than conventional vehicles while improving the
fuel economy [3]. Depending on the power splitting between
engine and motor, HEV has various modes of operation
determined by continuous and discrete control variables [4],
which result in challenges in real-time implementation of
optimization-based supervisory control strategies.

The fuel economy of the HEV highly depends on the
energy-management strategy that optimizes the operation
between two power sources [5], [6]. The energy-management
strategy of the HEV is primarily classified into three
categories: rule-based, optimization-based, and learning-
based [7]. The rule-based energy management strategy is
typically divided into deterministic rule-based and fuzzy

rule-based strategies. In general, deterministic rule-based
energy management strategy is based on rules designed with
regards to a discovery, intuition, or human expertise without
a priori information of the driving cycle [8]. Therefore, this
strategy works effectively only at certain powertrains and
cannot cope with small changes in the driving conditions.
Fuzzy rule-based EMS uses the concept of fuzzy logic to
increase the robustness against system uncertainty [9], [10].
To improve the transient response of the engine, fuzzy gain
scheduling was used in [11] to determine the appropriate
parameters of the proportional–integral (PI) controller. How-
ever, these rule-based energy management strategies have a
limitation in that the overall efficiency of the HEV system is
low and the solution is suboptimal due to the intrinsic nature
of non-inclusion of any optimization process.

The optimization-based energy-management strategy can
be classified into offline optimization and online (or real-
time) optimization energy-management strategies [12], [13].
The former obtains a global optimum that minimizes the cost
function (such as total fuel consumption or pollutant emis-
sions) during the entire driving cycle. This method requires
a priori information of the driving cycle, and dynamic pro-
gramming (DP) is representative of this method. DP is a
direct discrete-time method, and it decomposes the existing
optimization problem into a sequence of subproblems [12].
In this process, the value function, called optimal cost-to-
go, is calculated offline via backward induction; the curse
of dimensionality is among its disadvantages, wherein the
amount of calculation increases rapidly based on the dimen-
sions of the system variables [14], [15]. The advantage of
DP is that the optimal policy can be determined even with
nonlinear constraints, and a full range of optimal solutions
can be obtained [3]. Therefore, the result of DP is typically
used as a benchmark for comparing the obtained results
with other methods [16]. An improved rule-based control
strategy, which extracts implementable near-optimal rules by
interpreting the results obtained from the DP, is presented
in [17]. The determination of different hybridization ratios of
two types of parallel HEV, namely, torque assist parallel HEV,
and full parallel HEV using the DP algorithm is presented
in [18].

Unlike the global optimization energy-management
strategy, the real-time optimization energy-management
strategy, such as equivalent consumption minimization strat-
egy (ECMS) and model predictive control (MPC), can be
applied to a real-time control system. The advantages of
this strategy are its simple implementation and sufficient
robustness to respond to sudden changes in driving condi-
tions [5], [7]. ECMS is an approximate realization of the
Pontryagin’s minimum principle, and it transforms the orig-
inal global optimization problem into a local optimization
problem that minimizes the equivalent fuel consumption at
every instant [19], [20]. The equivalent fuel consumption
corresponds to the sum of the actual fuel consumption of
the internal combustion engine (ICE) and fuel consump-
tion converted from the energy storage system. The main
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difficulty when implementing the ECMS is the selection of
the equivalent factor that is associated with the driving cycle
and battery state of charge (SOC). If the value of the equiva-
lence factor is appropriately selected, the control performance
improves. Therefore, research on the effective identification
of the equivalence factor by predicting future driving infor-
mation has been actively pursued [16]. The application of
an on-line adaptation law for equivalence factor reduces the
computational burden and guarantees optimality, as described
in [21]. An effective penalty method using implicit Hamilto-
nian minimization is proposed in [22] to deal with problems
involving state and input constraints. In [23], the driving
cycle of a plug-in hybrid electric bus was divided into several
segments based on each bus stop. The equivalence factor
of each segment was optimized using linear weight particle
swarm optimization algorithm. In addition, the equivalence
factor oscillation problem in basic adaptive ECMS is solved
by using the bisection method, which is presented in [24].
In this article, the application of ECMS to determine the
operation mode of HEV is described in Section III-B.

MPC is an approach based on the receding horizon control
scheme and model-based batch predictions of the behaviors
of controlled dynamical systems. The MPC can be used to
systematically and explicitly handle multivariate and nonlin-
ear constrained control problems in real time [25]. In the case
of the HEV, the physical equations for the control system
are highly nonlinear, and the constraints on the operation
of each component are also considered. Therefore, MPC is
considered a suitable control method. The operation principle
of the MPC can be described as follows: the optimal control
sequence, which satisfies the constraint and minimizes the
cost function, is calculated over the prediction horizon; the
first term of the calculated optimal control sequence is con-
sidered; and this procedure is repeated at the next step [26].
The nonlinear and constrained optimal control problem of
power-split HEV is solved by using nonlinearMPCwith short
prediction length, which improves fuel economy and enables
online calculation [27]. The results of using MPC for energy
management of hybrid electric tracked vehicles are compared
with the results of the rule-based strategy and DP in general
driving conditions [28]. The integrated power management of
plug-in HEV (PHEV) with multiple energy sources is shown
in [29]. In particular, MPC was used to determine the output
power between the battery pack and ultracapacitor pack of
the hybrid energy storage system, and DP was also applied
to optimize the battery output current. Based on three test
driving cycles, the robustness of the proposed method was
verified. In this article, the formulation of the economic non-
linear MPC for optimal energy-management of the parallel
HEV is described in Section III-C.

Lastly, a learning-based energy management strategy, such
as reinforcement learning, enables the self-adaptation for dif-
ferent driving environments through learning from historical
driving data [7]. Therefore, research on the power distribution
of HEV is underway using this strategy because of the advan-
tage that future driving information is unnecessary [30]–[32].

Reinforcement learning is a type of machine learning in
which an agent learns based on rewards gained through inter-
actions with its environment. In general, it is a set of algo-
rithms (e.g., temporal difference(TD)-learning, Q-learning,
and deep Q Network) to solve problems represented as
Markov decision processes [15], [33]. Lin et al. [30] applied
a TD(λ)-learning algorithm with a high convergence rate
and performance even in a non-Markovian environment to
power management of parallel HEV. The application of deep
Q-learning to a power-split hybrid electric bus using a deep
neural network to approximate Q functions is described
in [34]. Upon comparing the proposed deep Q-learning-based
strategy with Q-learning, the performance was found to be
improved in terms of computation time and convergence
rate in case of the former. Han et al. [35] proposed double
deep Q-learning to prevent policy estimates from falling into
overoptimistic. The efficiency of the proposed method is
verified by comparison with conventional deep Q-learning
and DP.

In addition to the fuel efficiency, the important factors
to consider in energy energy management strategy for HEV
are reduction of exhaust emission and extension of battery
life. As the real driving NOx emission of a typical diesel-
engine vehicle does not comply with the regulations for
exhaust emission, the authors of [36] presents an ECMS
method considering real driving NOx emission of diesel-
engine HEV. In a hardware-in-the-loop experiment, they
show that compared to a conservative non-adaptive strategy
to meet the emission regulation, their ECMS-based method
results in a 7% improvement in fuel consumption. Another
approach to minimize the drivetrain cost, fuel consumption,
and exhaust emissions simultaneously is proposed in [37] that
uses a multi-objective particle swarm optimization technique.
In [38], a genetic fuzzy control scheme is proposed to exploit
traffic condition recognition and prediction for the purpose of
minimizing both fuel consumption and exhaust emission.

To avoid the frequent charging and discharging of electric
vehicles and to maximize regenerative braking energy, the
authors of [39] proposed a new hybrid energy storage system.
The multi-objective optimization problem for PHEV consid-
ering energy consumption and battery health at the same time
is solved by using stochastic dynamic programming and par-
ticle swarm optimization [40]. At this time, a semi-empirical
model considering the effects of battery temperature and
SOC was used as the battery lifetime model. To describe
the propagation of aging and life-span of advanced energy
storage systems, a control-oriented battery pack model
is proposed in [41]. The model predicts battery pack
aging, thermal, and electrical dynamics under actual PHEV
operation.

The main contributions of this study are summarized
below.
• To overcome some limitations and drawbacks in exist-
ing energy management strategies for parallel hybrid
electric vehicles, we present a modularized hierarchical
supervisor control architecture.
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• Three modules are designed independently and con-
nected in series to perform computer-aided control,
so the proposed method is scalable.

• The model-based real-time optimization corresponding
to the economic NMPC satisfies the sophisticated oper-
ating limits of the high-voltage battery, and the receding
horizon scheme as feedback control is applied to repeat
the processes.

• A regression model for exhaust emission was included
in the objective function to minimize fuel consumption
and to comply with environmental pollutant legislation.

• In this hierarchical architecture of supervisory control,
one can reduce the burden of real-time computation by
separating online and offline analysis and design and
increase reliability by redundancy and backup role of the
ECMS and MPC modules.

• As opposed to themost existing ECMSmethods, the rule
for determining the powertrain operation mode explic-
itly considers the engine efficiency obtained from a
commercial PHEV engine so that the optimality of fuel-
economy could be further improved.

The remainder of this article is organized as follows:
Section II describes the typical parallel HEV architecture and
the proposed simplified model. In Section II, mathematical
modeling of the operating constraints of the battery and
powertrain and the optimal control problem formulation for
optimizing fuel economy are presented. In Section III, a novel
hierarchical supervisory control that consists of the power
demand predictor, mode determiner, and real-time optimiza-
tion modules is detailed. An explanation of different opera-
tion modes based on the ECMS is provided in Section III-B.
Section III-C presents the solution of the optimal control
problem presented in Section II using the nonlinear MPC
based on the operation mode determined by the ECMS.
In Section IV, the effectiveness of the proposed method is
demonstrated by comparing the results with the ones of DP
solution and ECMS. For a case study, we use actual commut-
ing driving data obtained from a commercial PHEV. Finally,
the conclusions and future work are provided in Section V.

II. OPTIMAL CONTROL PROBLEM FOR ENERGY
MANAGEMENT OF PARALLEL HEV
In this section, we formulate the hybrid optimal control prob-
lem in which control variables have both continuous and
discrete values for optimal energymanagement of the parallel
HEV [4]. To formulate the problem, we first present power-
flow equations that describe the power links in the driveline
of a parallel HEV and the battery-state changes. In addition,
we consider the operating limits of the battery that impose
the state and control input constraints in the optimal control
problem corresponding to optimal energy management and
physical limits of engine and motor. The resultant optimal
control problem is formulated as an economic nonlinearMPC
in Section III-C wherein the control input is the only con-
tinuous variable. Furthermore, the cost function is divided

FIGURE 1. Driveline architecture of parallel HEV.

into two parts, namely, fuel usage, and battery usage, and
constraints are introduced corresponding to the operating
limits of the battery, engine, and motor.

A. DYNAMICAL SYSTEM EQUATIONS
In the parallel HEV, the ICE and EM are connected in parallel
to deliver the generated power to the wheel. As shown in
Figure 1, the clutch between the engine andmotor controls the
engine power as required. Therefore, when the power demand
is low, the motor operates alone, and when it is high, the
ICE operates alone. If the required power is higher than the
maximum power produced by the engine, the ICE operates
at the optimal operating line and uses the motor to generate
additional power. In the case of regenerative braking, the EM
acts as a generator to charge the battery.

1) LONGITUDINAL VEHICLE DYNAMICS
The longitudinal dynamics of the vehicle is represented
by [3], [42]:

Ftrac = Meqv
dvd
dt
+ Faero + Fgrade + Frolling

= Meqvad +
1
2
ρAf cdvd 2 +Mvg sin(θgrade)

+ crMvg cos(θgrade) (1)

where Ftrac is traction force, Faero is aerodynamic drag force,
Fgrade is gravitational force, and Frolling is rolling resistance
force. ρ is air density, Af is the aerodynamic frontal area,
cd is drag coefficient, cr is rolling friction coefficient, g
is gravitational acceleration, θgrade is the road slope. The
equivalent massMeqv is represented as

Meqv = Mv +
(Jw + γ 2Jm)

rw2

where Mv is vehicle mass, Jw, Jm is the inertia of wheel
and motor, respectively. γ is constant gear ratio, rw is wheel
radius. In general, the equivalent mass slightly varies with the
gear ratio γgear, but in this article, a constant gear ratio is used
for convenience. Table 1 shows a list of vehicle parameters
that are used for case studies presented in this article.

For a given driver’s desired speed profile, the required
acceleration is approximated as

ad (t) ≈
vd (t +1t)− vd (t)

1t
(2)
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TABLE 1. Vehicle parameter corresponding to the longitudinal dynamics.

that is assumed to be constant over the interval [t, t+1t]. If a
desired speed profile is given over a time interval [0,T ], then
the required acceleration profile can be calculated through (2)
and the traction force can be obtained based on the lon-
gitudinal dynamics (1). The mechanical power demand for
longitudinal traction is computed by

Pd (t) = Ftrac(t) vd (t) for t ∈ [0,T ] . (3)

For the implementation and experiment of supervisory con-
trol strategies of HEV with driving cycles, the power demand
for longitudinal traction is calculated by the above procedure.
This process of power demand calculation will be further
explained in Section IV-D1.

2) BATTERY MODEL
The battery is a reversible electrochemical energy storage
device and is a key element of an HEV. In the powertrain,
we consider a traction battery that is characterized in terms of
its power and capacity. The battery power and battery current,
denoted by Pb and Ib, must match the power links of the
electrical path for a given power demand requested by the
driver. The battery capacity, denoted by Q, must satisfy the
desired driving-operation specifications. The nominal battery
capacity, denoted by Qnom, is the integral of battery current
that can be delivered by a fully charged battery when com-
pletely discharged under a certain nominal condition.

Battery modeling in HEV energy management is primarily
aimed at predicting the changes in SOC or electrical energy
when the driving power demand, battery power, and motor
power are given. To describe and monitor the battery state,
we consider a dimensionless parameter, denoted by ξ , that is
defined as the ratio of current capacity to nominal capacity:

ξ (t) =
Q(t)
Qnom

(4)

Direct measurement of Q(t) is not possible in automotive-
battery-management systems. Instead, the time rate of
the battery charge is approximated by the balance
equation [43], [44]

dQ
dt

(t) = −
Ib(t)

η
sign(Ib(t))
c

(5)

FIGURE 2. Equivalent circuit of a battery in steady-state.

where Ib is positive when the battery discharges, and it is neg-
ative when it charges. The parameter ηc denotes a charging or
Coulombic efficiency, which models a fraction of the current
Ib that can be actually transformed into charge in the battery.
The function sign(Ib) has the values 1, −1, and 0 for Ib > 0,
Ib < 0, and Ib = 0, respectively.
A simplified model of a battery can be the equivalent

circuit shown in Figure 2 that corresponds to the circuit
in steady-state. The open-circuit voltage and internal resis-
tance in the equivalent circuit are described by Voc(ξ (t)) and
RT(ξ (t)) that primarily depend on the SOC. The regression
of dependency was performed in the form of a polynomial
function of the measured data. As the degree of the poly-
nomial function increases, there is a trade-off relationship
in which the complexity of the model increases but the root
mean square error (RMSE) decreases. In this study, the order
of regression is set to five, considering that the RMSE for
Voc(ξ (t)) and RT(ξ (t)) are improved by 26.8% and 36.1%,
respectively, when it changes from four to five. The depen-
dencies are shown in Figure 3.

Using Kirchhoff’s voltage law with a passive sign conven-
tion, we obtain the following equations:

Pb(t) = Voc(ξ (t))Ib(t)− RT(ξ (t))I2b (t) (6)

and

Ib(t) =
Voc(ξ (t))
2RT(ξ (t))

−

√
V 2
oc(ξ (t))

4R2T(ξ (t))
−

Pb(t)
RT(ξ (t))

(7)

Combining the equations (4), (5), and (7), we obtain a non-
linear differential equation for the battery SOC

dξ
dt

(t) = F(ξ (t),Pb(t)) (8)

=
1

η
sign(Pb(t))
c Qnom

×

(√
V 2
oc(ξ (t))− 4RT(ξ (t))Pb(t)− Voc(ξ (t))

2RT(ξ (t))

)
(9)

and the power dissipated in the battery is given by

P`(t) = RT(ξ (t))I2b (t)

=

(√
V 2
oc(ξ (t))−4RT(ξ (t))Pb(t)− Voc(ξ (t))

)2
4RT(ξ (t))

(10)
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FIGURE 3. Polynomial regression is used for the open-circuit voltage (Voc) and internal resistance (RT) for an
equivalent circuit model of a real-world high-voltage battery used in a commercial PHEV. The red dots and dashed lines
indicate measured data and polynomial regression, respectively.

FIGURE 4. The topology of power flow and links in parallel HEV.

3) ELECTRIC POWER LINKS
The topology of power flow and links in the driveline of a
parallel HEV are shown in Figure 4. The variable χ ∈ {0, 1}
refers to the state of the engine clutch; χ = 1 implies that
the engine is clutched, whereas χ = 0 implies the engine is
disengaged from the driveline. The brake operates in certain
situations, such as when the power demand is lower than the
minimum of motor power or to prevent overcharging. At each
time instance t , the power demand Pd (t) requested by the
driver must be delivered by the engine and motor, which are
the two driving power sources.

Pd (t) = Pm(t)+ Pe(t) (11)

where Pm(t) and Pe(t) are the electric motor power and
mechanical engine power, respectively. The fuel power Pf (t)
that is assumed to be proportional to the fuel-consumption
rate is expressed in terms of the associated engine power as
follows:

Pf (t) =
Pe(t)+ P0

e
χ (t) (12)

where the parameter e ∈ (0, 1) refers to the internal efficiency
of fuel to mechanical power conversion in engine, P0 denotes
a friction power that is required for engine cranking, and
χ (t) ∈ {0, 1} denotes the state of the engine clutch, as pre-
viously explained. As the motor serves as a generator, the

battery power is expressed as follows:

Pb(t) =
Pm(t)

ηsign(Pm(t))
(13)

where η ∈ (0, 1) denotes the efficiency of an electric motor.
The change of battery energy over time can be expressed

as the sum of the total power loss and the transmitted power.
If the battery is charging, the battery power is set to a negative
value. The differential equation for electrical energy of a
battery denoted by Eb is given by

dEb
dt

(t) = −Pb(t)− P`(Pb(t)) . (14)

Applying Taylor series expansion for linearization of (10)
around a nominal battery power Pb(t) = 0, the dissipated
power can be approximated as a quadratic function of the
battery power [45]:

P`(Pb(t)) ≈
RT(ξ (t))

V 2
oc(ξ (t))

P2b(t) = α(ξ (t))P
2
b(t) (15)

This quadratic approximation of power dissipation is particu-
larly useful for deriving an analytical solution of the ECMS-
based operating-mode determination in Section III-B. This
linearization plays a crucial role in obtaining the proposed
ECMS solution and solving the associated economic hybrid
MPC problem; however, it does not restrict the applicability
of the minimum principle. Without the linear approximation
of the power loss, numerical optimization should be per-
formed for the minimum principle to determine the optimal
control command of the motor power.

B. OPERATING CONSTRAINTS
1) BATTERY OPERATING LIMITS
In practice, the battery voltage Vb of the equivalent circuit
depicted in Figure 2 is limited to a narrow band around Voc,
Vb ∈ [Vb,min,Vb,max]. In the case of discharging, the power
Pb(t) is positive and has a maximum power P∗b = V 2

oc/4RT
when V ∗b = Voc/2 and the typical values of Vb,min are higher
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than V ∗b . For such cases, we obtain a maximum power that
can be delivered from the battery as follows:

Pb,max(ξ (t)) =
Voc(ξ (t))− Vb,min

RT(ξ (t))
Vb,min (16)

The corresponding limit of the discharge current is

Ib,max(ξ (t)) =
Voc(ξ (t))− Vb,min

RT(ξ (t))
(17)

In the case of charging, power Pb(t) is negative, and Vb(t) >
Voc(ξ (t)) and has a maximum power in absolute value that is
limited by the maximum allowed battery voltage Vb,max:

Pb,min(ξ ) = −
Vb,max − Voc(ξ )

RT(ξ )
Vb,max (18)

The corresponding limit of the charge current is

Ib,min(ξ ) = −
Vb,max − Voc(ξ )

RT(ξ )
(19)

The constraint for operating the battery in a safe region is as
follows.

ξ (t) ∈ [ξmin, ξmax] (20)

2) ENGINE AND MOTOR OPERATING LIMITS
In addition to battery operating limits, we should consider the
physical limitations on operating the powertrain, engine and
motor.

Pe(t) ∈ [0,Pe,max] and Pm(t) ∈ [Pm,min,Pm,max] (21)

where Pe,max is the maximum power that the engine can
deliver to the wheel, Pm,min is the minimum power with
negative sign that the motor can generate for charging a
battery, and Pm,max is the maximum power that the motor
can deliver to the wheel. To be more practical, the maximum
and minimum power of the engine and motor are determined
according to the angular speed of engine and motor. From a
real vehicle test with a commercial PHEV, a set of experi-
mental data {(ωie,T

i
e)} is obtained for tests of electric motor,

whereωie is the ith rotational engine speed and T
i
e is the corre-

sponding measured maximum engine torque. The maximum
torque and power of engine are obtained as piecewise linear
functions of engine speed in the form of

Te,max(ωe) =
T
i+1
e − T

i
e

ωi+1e − ωie

(
ωe − ω

i
e

)
+ T

i
e ,

Pe,max(ωe) = ωeTe,max(ωe)

for ωe ∈ [ωie, ω
i+1
e ]. The computed maximum torque curve

as a function of engine speed is shown in Figure 5.1

Similar to the engine tests, from a real vehicle test with a
commercial PHEV, a set of experimental data {(ωie,T

i
m,T

i
m)}

is obtained, where ωim is the ith rotational motor speed,
and T im and T

i
m are the corresponding measured mini-

mum and maximum motor torque, respectively. The max-
imum/minimum torque and power of a traction motor are

FIGURE 5. Maximum torque and power curve of the engine.

determined as piecewise linear functions of the motor speed
in the form of

Tm,max(ωm) =
T
i+1
m − T

i
m

ωi+1m − ωim

(
ωm − ω

i
m

)
+ T

i
m ,

Pm,max(ωm) = ωmTm,max(ωm) ,

Tm,min(ωm) =
T i+1m − T

i
m

ωi+1m − ωim

(
ωm − ω

i
m

)
+ T im ,

Pm,min(ωm) = ωmTm,min(ωm)

forωm ∈ [ωim, ω
i+1
m ]. The computed maximum andminimum

torque curve according to motor angular speed are repre-
sented in Figure 6.1

FIGURE 6. Maximum/minimum torque and power curve of the motor.

C. EMISSION MODEL
To consider the legislation of environmental pollutants, the
penalty for exhaust emission such as NOx and HC must be
included in the objective function. In this article, polynomial
regression functions for exhaust emission are determined
based on emission map data. The regression models for NOx
and HC are selected to be the 7th-order polynomial functions

1Owing to the proprietary nature of the technical specifications of the car
maker, the axis values are not specified.
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FIGURE 7. Hierarchical supervisory control architecture that consists of (i) Demand Prediction, (ii)
ECMS-based Mode Determination, and (iii) NMPC-based Real-time Optimization.

for engine speed and torque:

f̂NOx (ωe,Te) =
7∑
i=1

i∑
j=0

cj,i−jωjeT
i−j
e [g/kWh] ,

f̂HC(ωe,Te) =
7∑
i=1

i∑
j=0

dj,i−jωjeT
i−j
e [g/kWh] .

The associated models of the emission flow rates are repre-
sented as

ṁNOx (t) = Pe(t) · f̂NOx (ωe(t),Te(t)) ·
1

3600
[g/s] ,

ṁHC(t) = Pe(t) · f̂HC(ωe(t),Te(t)) ·
1

3600
[g/s]

where ωe(t) and Te(t) are the functions of the vehicle speed
v(t) and engine power Pe(t):

ωe(t) =
γgear(v(t))γfinal

rw
v(t), Te(t)=

rw
γgear(v(t))γfinal

Pe(t)
v(t)

.

D. FORMULATION OF ECONOMIC OPTIMAL CONTROL
PROBLEM
In this section, we propose an optimal control problem to
design a supervisory controller for energy management that
leads to minimum fuel consumption over a driving period
t ∈ [0, tf ]. The resultant optimal control problem is defined in
the form of a mixed-integer nonlinear dynamic optimization.

minimize
{Pm(t),χ (t)}

J =
∫ tf

t0

Pd (t)− Pm(t)+ P0
e

χ (t)dt

+

∫ tf

t0

{
ṁNOx (t)+ ṁHC(t)

}
dt

subject to
dξ
dt
= F(ξ (t),Pm(t)) , ξ (t0) = ξ0

ξ (t) ∈ [ξmin, ξmax]

Pm(t) ∈ [Pm,min(ωm),Pm,max(ωm)]

Pd (t)− Pm(t) ∈ [0,Pe,max(ωe)]

0 ≤ Pb(t) ≤ Pb,max(ξ (t)) for discharging

0 ≤ Ib(ξ (t),Pm(t)) ≤ Ib,max(ξ (t)) for discharging

Pb,min(ξ (t)) ≤ Pb(t) ≤ 0 for charging

Ib,min(ξ (t)) ≤ Ib(ξ (t),Pm(t)) ≤ 0 for charging

χ (t) ∈ {0, 1}

ξ (tf ) = ξ0 (22)

where Ib(ξ (t),Pm(t)) is obtained in (7) by replacing Pb(t) by
Pm(t)η−sign(Pm(t)). The switched dynamical system equation
defined by F(ξ (t),Pm(t)) follows the differential equation of
the battery SOC in (8) with (13). The dynamical system of
the battery SOC and the power flow equations are presented
in Section II-A. The operating limits of the battery, motor, and
engine are presented in Section II-B. The energymanagement
of an HEV aims at determining the power flow at each time
instance among the powertrain components while satisfying
these system equations and constraints. The equality state-
constraint ξ (tf )=ξ0, called the charge-sustaining constraint,
is introduced to ensure that the final battery SOC is equal
to the initial value. When this condition is relaxed, it can be
included in the cost function as a soft constraint rather than
a hard constraint. Its explicit representation is provided and
further investigated subsequently in Section III-C.

III. HIERARCHICAL SUPERVISORY CONTROL FOR
ENERGY MANAGEMENT OF PARALLEL HEV
Directly solving the optimal control problem (22) is not
trivial from a computational optimization perspective. This is
because there are various operating modes depending on the
type of operation of the engine clutch and motor. Moreover,
the battery and power-flow equations are highly nonlinear,
and the constraints corresponding to the operating limits
are discontinuous and nonlinear. To reduce the burden of
real-time computation and increase the control reliability,
we propose a hierarchical supervisory control architecture
depicted in Figure 7. As previously mentioned, this control
architecture consists of three separate modules: (i) demand
prediction, (ii) ECMS-based mode determination, and (iii)
NMPC-based real-time optimization. These three modules
can be designed independently and are connected in series
for performing computer-aided control.

When the current time is k and the prediction horizon
used in predictive control is N , the demand prediction mod-
ule forecasts the power requests of the driver P̂d (k) :=
[P̂d (0|k), P̂d (1|k), · · · , P̂d (N − 1|k)]> ∈ RN over the
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prediction horizon. By abuse of notation, for a signal x(t)
with t ≥ 0, we present x(i|k) := x((k + i)ts), k ∈ Z+ and
i = 0, 1, · · · ,N − 1, where ts is the sampling-interval.

At each time-step k , the ECMS-based mode determination
module decides the operating mode δ(k) based on the current
value P̂d (0|k) among the forecasted power demand profile.

Based on the forecasted power demand profile Pd (k)
and the determined operating mode δ(k), the model-based
real-time optimization module corresponding to the nonlin-
ear MPC computes the optimal motor power P∗m(k) :=
(P∗m(0|k), · · · ,P

∗
m(N − 1|k)) ∈ RN over the prediction hori-

zon. Then, the motor (or inverter) controller is requested to
deliver the mechanical power Pm(k) = P∗m(0|k). In actual
driving, on-board sensors and estimators provide feedback
information of the actual vehicle speed and the battery SOC,
or their changes, and the above process of computing the
required motor power is repeated. This feedback control
scheme is known as receding horizon control (RHC). The
three modules of the hierarchical supervisory control archi-
tecture are further investigated in subsequent subsections.

A. DEMAND PREDICTION
For forecasting the vehicle speed and traction-power demand,
we presume that both onboard sensors and vehicle-to-
everything (V2X) communication are available to acquire
information about the driving environment, and learn the
habits and dispositions of the driver. For demand predic-
tion, any forecasting method such as time-series, machine
learning, and extrapolation could be used in principle. The
forecasted power-demand can be also modeled as a Markov
process to consider the uncertainty of the power-demand of
the driver in various driving environments [46]. The authors
of [47] used a probabilistic driving route prediction system
trained using inverse reinforcement learning, and the route
choice of the driver was modeled as a Markov decision pro-
cess. In [48], a radial basis function neural network is devel-
oped for short-term velocity prediction. In addition, traffic-
information-based trip modeling using onboard GPS and GIS
to obtain a driving cycle is shown in [49]. It was conducted
differently on the local road and freeway situations.

In this study, we designed a demand prediction module
based on the time-series method with the autoregressive mov-
ing average (ARMA)model.When the current time is k andm
pieces of previous data are used as inputs, the predicted vehi-
cle speed v̂d (k) and demand power P̂d (k) can be expressed
as

v̂d (k) = A1f1(u1,m(k))+A2f2(u2,m(k))+A3f3(Pd,m(k)),

P̂d (k) = A1f1(u1,m(k))+A2f2(u2,m(k))+A3f3(Pd,m(k))

where Ai ∈ RN×m are the coefficient matrices, ui,m(k) =
[ui(k−1) ui(k−2) · · · ui(k−m)]> ∈ Rm are the input vectors,
fi : Rm

→ Rm are appropriate basis functions of inputs, for
i = 1, 2, 3, and m ∈ N is the horizon length of time lag.
The input vectors {u1, u2, u3} correspond to the vehicle speed,

acceleration, and demand power, respectively. They are the
the inputs to the demand prediction module in Figure 7.

In the case of real driving data, sensor-measured informa-
tion such as APS, BPS, road slope can be used as input of
the prediction module. However, other known driving cycles
do not have sensor-measured data, so only the above three
data are used for scalability of the demand prediction module.
The m-dimensional vector Pd,m(k) = [Pd (k − 1),Pd (k −
2), · · · ,Pd (k − m)]> ∈ Rm is a previous power demand
profile with finite memory of size m.Therefore based on the
above equation, it is possible to predict a power demand
profile P̂d (k) ∈ RN for the MPC prediction horizon of N .
In our case studies in Section IV, powertrain-related data
such as torque and power profiles of engine and motor are
obtained from on-board sensors of a real-world PHEV in
driving tests. For such a case, the power-demand prediction
can be directly performed with the output data Pd = Pe +
Pm. For conventional driving cycles, the longitudinal vehicle
dynamics in Section II-A1 with the pre-filtering procedure in
Section IV-D1 are used for power demand prediction.

In this study, 50% of the actual driving data is used as train-
ing data, and the remaining 50% is used as test data to com-
pare with the actual demand of traction-power. In Figure 8,
the actual vehicle speed/power-demand and the forecasted
vehicle speed/power-demand are compared. The normalized
root-mean-square-error (RMSE) of the forecasted vehicle
speed and power in test data are 0.03 % and 8.13 % after
correcting time-delay in powertrain control commands and
responses, respectively. This error analysis verifies that when
scheduling dual-source powertrain operation, the proposed
method of power-demand prediction can provide fairly accu-
rate forecasting traction-power requests.

B. ECMS-BASED MODE DETERMINATION
In this section, we present a rule-based strategy of determin-
ing the operating powertrain mode. The mode-determination
strategy is based on Pontryagin’s minimum principle that
gives necessary conditions for an optimal control strategy.
Based on the predicted instantaneous power-demand for vehi-
cle traction P̂d (0|k) that is computed by the demand pre-
diction module, the mode determination module in Figure 7
identifies which powertrain mode is recommended to operate
over a prediction horizon of planning in the subsequent real-
time optimization module.

The presented method is adopted from the results in [45]
with modifications in the adaptation law for updating the
co-state variable s and selecting varying parameters of the
battery power-loss coefficient α, the engine efficiency e,
and the friction loss of engine P0. When there are no con-
straints of motor and engine in the optimal control prob-
lem (22), the Hamiltonian is expressed as (23), shown at
the bottom of the next page, a piecewise function of motor
power, where Hbo(Pm; s,Pd ), Hth(Pm; s,Pd ), Hre(Pm; s,Pd ),
Hel(Pm; s,Pd ), H−el (Pm; s,Pd ) are the Hamiltonians of
the boosting, pure thermal operation, recharging, pure
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FIGURE 8. Actual vehicle speed/demand-power and forecasted vehicle speed/demand-power by applying time-series method
based on the real driving data with CD-CS mode.

electric propulsion, and pure electric recuperation modes,
respectively.

With the Hamiltonian defined in (23), and from the
Pontryagin’s minimum principle, the optimal control input
P∗m, the instantaneous motor power, necessarily minimizes
H (Pm; s,Pd ) for given (s,Pd ). Since H (Pm; s,Pd ) is piece-
wise continuous and differentiable for any given (s,Pd ), the
minimizer P∗m can be obtained by differentiating the Hamilto-
nians associated with given (s,Pd ) and comparing them each
other in terms of the conditions on (s,Pd ). To bemore precise,
one can rewrite the minimizer as P∗m(s,Pd ). This implies that
the optimal driving mode is determined by the values of s
and Pd . The conditions for the five operation modes of HEV
powertrain are defined in terms of the power demand Pd and
equivalence factor s as the following:

δ(k) =



1 if (Pd > Pbolim(s) > 0)
⋂
(s < η

e )

2 if (Pd > Pthlim(s) > 0)
⋂
( ηe ≤ s ≤

1
ηe )

3 if {(Pd > Prelim(s) > 0)
⋂
(s > 1

ηe )}⋃
{(Pd < 0)

⋂
(Pd > Prelim(s))}

4 if (Pd < 0)
⋃
(Pd < Pre-lim(s))

5 if otherwise

FIGURE 9. Disjoint regions of power demand and equivalence factor for
the five different operating modes of HEV powertrain.

where the boundaries of power limits associated operating
modes are defined as

Pbolim(s) = −A+
√
4BC

Pthlim(s) =
1
2B

(
−A+

√
A2 + 4BC

)
Prelim(s) =

1
2B

(
−A+

√
A2 − F2 + 4BC

)
Pre-lim(s) =

1
2D

(
−E +

√
4DC

)

H (Pm; s,Pd ) =



Hbo(Pm; s,Pd ) =
Pd + P0

e
+

(
s

η
−

1

e

)
Pm +

sα

η2
P2m if 0 < Pm < Pd

Hth(Pm; s,Pd ) =
Pd + P0

e
if Pm = 0 < Pd

[4mm]Hre(Pm; s,Pd ) =
Pd + P0

e
+

(
sη −

1
e

)
Pm + sαη2P2m if Pm < 0 < Pd − Pm

[4mm]Hel(Pm; s,Pd ) =
s

η
Pm +

sα

η2
P2m if Pm = Pd ≥ 0

[4mm]H−el (Pm; s,Pd ) = sηPm + sαη2P2m if Pm = Pd ≤ 0

(23)
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FIGURE 10. The change of zones for each operating mode according to one varying parameter with the other two fixed parameters of the tuple (α,e,P0).

with A = (s/η − 1/e), B = sα/η2, C = P0/e, D = sαη2,
E = (sη − 1/e), and F =

(
s/η − 1/eη2

)
. Figure 9 shows

the partitions of the (s,Pd ) domain into the five powertrain
operation modes of parallel HEV and the associated control
variables are described in Table 2. The hyper-parameters
characterizing the aforementioned rule-based ECMS algo-
rithm for determining the driving operation modes are α, e,
and P0. Figure 9 represents the zones of operating modes
when each parameter has a specific value, and the zones
for each operating mode is updated based on the parameter
values.

TABLE 2. Driving operation modes and the associated control variables.

First, α = RT/V 2
oc is a function of SOC and indicates

the loss coefficient when approximating the power dissipa-
tion to the quadratic function of battery power (15). If the
optimum motor power is determined, the SOC is updated
based on equation (8). With the updated SOC, Voc and RT
are obtained through the polynomial regression shown in
Figure 3, and α is updated simultaneously. Figure 10 rep-
resents the change of regions for operating modes for the
three different values of α = 1.55 × 10−6 �/V2, 1.1253 ×
10−6 �/V2, 1 × 10−6 �/V2. These values are carefully
chosen to make the rule-based operating mode determi-
nation to be state-dependent so that the charge-sustaining
capability can be further improved without knowing the
future driving conditions. This is another difference from the
existing ECMS-based strategies of the supervisory control
for HEVs.

Second, if the power required to be generated by the engine
is determined when the demand power is given, the engine
operates according to the engine optimal operating line based
on the brake specific fuel consumption (BSFC) data. The

engine speed and torque can be obtained from the operating
point determined by the operating line. Therefore, the engine
efficiency e is updated based on the engine efficiency map
at the operating point. When the engine efficiency is e =
0.071, 0.2, 0.38, the change of zones for operating mode is
shown in Figure 10b.

Lastly, P0 is the friction loss of engine which is dependent
on engine speed. In general, it is difficult to measure and is
assumed to be used as a constant. In this study, two values
(Pon0 ,P

off
0 ) are used for friction loss in consideration of the

coefficient of kinetic friction and static friction. The friction
loss is expressed as Pon0 due to the kinetic friction coefficient
when the engine state goes from χ = 0 to χ = 1. In addition,
when the engine state was continuously χ = 1 or switching
from χ = 1 to χ = 0, the friction loss due to the static
friction coefficient is expressed as Poff0 , and Pon0 has a larger
value than Poff0 , i.e., Pon0 ≤ Poff0 . Thus, it is possible to
reduce the frequency of transition of the engine state and
the transient phenomenon that occurs when switching from
χ = 0 to χ = 1 by setting the engine friction appropriately.
Figure 10c shows the change of zones for operating modes
when P0 = 0kW, 3kW, and 6kW. Based on these numerical
experiments, we use the values of Pon0 = 6 kW and Poff0 =

4.2 kW. Moreover, the parameters necessary for the rule-
based algorithm are not fixed but are set adaptively to be state-
dependent.

The co-state is updated via the following law of adaptation
to the current level of battery SOC:

s(k + 1) = s(k)+ Kp1ξ (k)+ Kits
k∑
i=1

1ξ (i) (24)

where 1ξ (k) = ξref(k)− ξ (k) is the deviation of the state of
charge from the reference value at time-step k . The variables
s(k) and ξ (k) are the co-state and battery SOC at time-step
k , respectively. Appropriate values of the tuning parameters
Kp and Ki can be determined only given the driving cycle.
In general, they can be found only when a driving cycle is
given. In this study, they are set as Table 4 based on numerous
numerical simulations.
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C. ECONOMIC NONLINEAR MODEL PREDICTIVE
CONTROL
The NMPC-based real-time optimization module defines a
nonlinear predictive control problem using a practical model
of the physical system such as the battery, engine, and motor.
The goal of NMPC is to optimize fuel efficiency, keep battery
SOC adequate, and reduce emissions to exhaust emissions.
The purpose of the nonlinear predictive control problem is
to optimize fuel efficiency, which is the goal of the original
optimal control problem, as well as to maintain battery SOC
properly. Therefore, the hard constraint in (22) was converted
into a soft constraint by using the battery charge sustaining
parameter qδ(i|k). As a weight for the proper adaptation of the
fuel usage and battery usage, the battery charge sustaining
parameter was multiplied by the battery usage. The unit of
cost function is then set as energy by multiplying the fuel
usage part by the sampling time ts and the battery use part
by QnomVoc. In addition, to consider the regulation of envi-
ronmental pollutants, the penalty for exhaust emission such
as NOx and HC was included in the objective function. The
unit of fuel and battery usage is J or kWh, and the unit for NOx
and HC usage is g. Therefore, in order to unify the meaning
of multi-objective for NMPC, qNOx and qHC were multiplied
by the NOx or HC usage.
The model predictive control problem reformulating the

optimal control problem given in (22) is expressed in (25).

minimize
{Pm(·|k)}

N−1∑
i=0

∣∣∣∣∣ P̂d (i|k)v(δ(k))− Pm(i|k)+ P0e(k)

∣∣∣∣∣ ts
+

N∑
i=1

∣∣qδ(k) · QnomVoc · (ξref(k)− ξ (i|k))
∣∣

+

N∑
i=1

ts
(
ṁNOx (i|k)qNOx + ṁHC(i|k)qHC

)
subject to

ξ (i+ 1|k) = Fd (ξ (i|k),Pm(i|k))

ξ (i|k) ∈ [ξmin, ξmax]

ξ (k|k) = ξ (k)

max
{
Pm,min(ωm), P̂d (i|k)− Pe,max(ωe)

}
≤ Pm(i|k)

Pm(i|k) ≤ min
{
Pm,max(ωm), P̂d (i|k)

}
0 ≤ Pm(i|k) ≤ η · Pb,max(ξ (i|k)) for discharging

Pb,min(ξ (i|k))/η ≤ Pm(i|k) ≤ 0 for charging (25)

where all constraints must be satisfied for all time indices
i = 0, 1, · · · ,N − 1. The decision variables are Pm(·|k) =
(Pm(0|k),Pm(1|k), · · · ,Pm(N − 1|k)) and the constraint on
the battery current (17) and (19) is omitted because the
operating limits on the battery power are precisely the same
as the operating limits on the battery current. The driveline
mode is assumed to be fixed within the prediction horizon
of the MPC, and we update the engine efficiency e(k) and
motor efficiency η(k) by following the regression model
which is described in Section IV-B. A time-discretized state

transition equation Fd (ξ (i|k),Pm(i|k)) corresponding to the
continuous-time SOC dynamics (8) is defined in (26) by
following the fourth-order Runge–Kutta method to obtain an
accurate prediction model:

ξ (i+ 1|k) = Fd (ξ (i|k),Pm(i|k))

= ξ (i|k)+
ts
6
(K1 + 2K2 + 2K3 + K4) (26)

where the coefficients are

K1 = F(ξ (i|k),Pm(i|k)) ,

K2 = F
(
ξ (i|k)+

ts
2
K1,Pm(i|k)

)
,

K3 = F
(
ξ (i|k)+

ts
2
K2,Pm(i|k)

)
,

K4 = F(ξ (i|k)+ tsK3,Pm(i|k)) .

Moreover, considering that the motor does not operate in pure
thermal operation mode, we used the variable v(δ(k)).

v(δ(k)) =

{
1 if δ(k) ∈ {1, 3, 4, 5}
0 if δ(k) ∈ {2}

The overall flowchart of the proposed hierarchical supervi-
sory control algorithm is shown in Figure 11.

IV. ILLUSTRATIVE CASE STUDIES
A. SIMULATION SETUP
To solve the NMPC problem involving nonlinear con-
straints (25), we use the built-in function fmincon in
MATLAB. The specifications of the computer for the simula-
tion are as follows: Intel Core (TM) i5-7400 CPU Quad Core
3.00 GHz; RAM 8.00 GB. The specific parameter values that
are necessary for the optimization are divided into the system
and the optimal control parameters. The parameters related
with the mode-determinationmodule,Pon0 andPoff0 are chosen
to be the values given in Figure 10c. Other system parameters
listed in Table 3 are selected from the actual specifications of
a commercial PHEV.

TABLE 3. System parameter values used in the simulation.

The parameters of adaptive ECMS, s0, Kp, and Ki, are
selected as appropriate values based on the given driving
cycle. The battery charge sustaining parameter qδ(k) should
be set considering the different purposes of each operating
mode. For example, the pure thermal operationmode operates
the engine only, and the pure electric propulsion mode oper-
ates so that the motor power is equal to the demand power.
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FIGURE 11. The flow chart for the proposed hierarchical supervisory control method.
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FIGURE 12. BSFC contour map (left) and motor efficiency contour map (right) based on the regression model.

TABLE 4. Optimal control parameter values used in the NMPC simulation.

Therefore, the battery charge sustaining parameter was set
to 0 for the above two modes because it is not necessary
to consider maintaining the SOC. In addition, as the battery
needs to be charged in the recharging mode, the battery
charge sustaining parameter should be set to a relatively large
value compared to other modes. The numerical values of the
optimal control hyper-parameters are given in Table 4.

B. FUEL CONSUMPTION CALCULATION
To evaluate the performance of the proposed method, the
fuel economy calculation was performed using the look-up
table of BSFC map for a commercial PHEV. BSFC is a value
obtained by dividing the fuel mass flow by engine output
power to evaluate the engine efficiency.

BSFC =
ṁf
Pe

3600 =
ṁf

we · Te
3600 [g/kWh]

Depending on the speed index and torque index of engine,
the BSFC is usually provided in the form of map data. In
this article, the regression model for BSFC was designed as a
polynomial function according to speed and torque based on
the BSFC map of a commercial PHEV. The order of regres-
sion is set to five, considering that the normalized RMSE of
BSFC is 2.5 %.

BSFC(ωe,Te) =
5∑
i=1

i∑
j=0

ej,i−jωjeT
i−j
e [g/kWh]

Once the BSFC is determined by regressionmodel, the engine
efficiency can be computed as the following:

e =
1

BSFC · Qlhv

where Qlhv = 0.012069[kWh/g] is the specific lower heating
value of gasoline. TheBSFC contourmap based on regression
model is represented in Figure 12.1 At this time, the engine
and motor speed is determined by the transmission gear ratio
according to the desired speed. The engine torque is obtained
by dividing the engine power determined by our hierarchical
supervisory control algorithm into speed.

In addition, the operation of motor is divided into the
conditions when the motor torque is greater than zero and
when it is smaller than zero, so that the motor operates in
traction mode and regenerative braking mode, respectively.
Likewise engine efficiency, the motor efficiency is given in
the form of map data according to the speed index and torque
index of motor. In this article, the regression model for motor
efficiency was designed as a polynomial function according
to speed and torque based on the motor efficiency map of a
commercial PHEV.

η(ωm,Tm) =
6∑
i=1

i∑
j=0

fj,i−jωjmT
i−j
m

The order of regression is set to five, considering that the
normalized RMSE of motor efficiency is 1.05 %. The motor
efficiency contour map based on regression model is also
represented in Figure 12.1

C. COMPARISONS WITH DP AND ECMS SOLUTIONS
In this section, validation of our method through numeri-
cal simulations based on actual-vehicle driving data from a
commercial PHEV is presented. To compare the performance
of our hierarchical supervisory control algorithm, the results
of using DP or ECMS only as a control method are also
provided.
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TABLE 5. A comparison of fuel economy resultant from different control
strategies in real driving data with CS mode.

TABLE 6. A comparison of fuel economy resultant from different control
strategies in real driving data with CD-CS mode.

Tables 5 and 6 present the fuel economy calculated
from the fuel economy measurement method described in
Section IV-B for real driving data with CD-CS mode and CS
mode, respectively.

1) DYNAMIC PROGRAMMING
The DP results are used to assess the performance of the pro-
posed hierarchical optimal control method, as the DP solution
is globally optimal. DP is a direct discrete-time method based
on the principle of optimality. It employs backward iteration,
which starts from the final step and proceeds backward using
sequential control and generates the optimal cost-to-go func-
tion referred to as value function. The advantage of DP is
that the optimal policy can be obtained even with nonlinear
constraints, and the global optimality is guaranteed.

Since DP is an off-line optimization method calculated
through backward induction, it is necessary to know the
whole power demand of the driving cycle. In addition,
we should discretize the entire possible state and input appro-
priately. However, if the discretized size is too small, the
phenomenon of the curse of dimensionality may occur. For
the numerical case studies in this article, the state variable ξ
is discretized by 0.025 to ξmin from ξmax and the control input
Pm is discretized by 1 W to Pm,min from Pm,max evenly. If we
use a smaller discretized step for higher accuracy, the longer
computation time would result. The engine efficiency ek is
updated by the BSFC regression model which is described in
Section IV-B.

The discrete DP is formulated with the following sets of
state and input variables:

ξk ∈ Qx = {ξ
1, ξ2, · · · , ξnx } ,

Pm,k (ωm,k ) ∈ Qu = {P1m,k ,P
2
m,k , · · · ,P

nu
m,k}.

We define the value function as follows:

VN (ξN ) :=

{
φ(ξN ) if ξN ∈ XN

∞ otherwise

Then, the value function at k stage Vk (ξk ) is the solution of
the optimization problem below.

minimize
{Pm,k ,χk }

(
Pd,k − Pm,k + P0

ek
χk

)
ts

FIGURE 13. Partitions of the domain of power demand and equivalence
factor for different operating modes considering engine and motor
constraints.

+
{
ṁNOx (Pm,k )qNOx + ṁHC(Pm,k )qHC

}
ts

+ qDPQnomVoc(ξk ) |(ξref − ξk)| + Vk+1(ξk+1)

subject to

ξk+1 = (qk ◦ fk )(ξk ,Pm,k )

ξk+1 ∈ [ξmin, ξmax]

max
{
Pm,min(ωm),Pd,k − Pe,max(ωe)

}
≤ Pm,k

Pm,k ≤ min
{
Pm,max(ωm),Pd,k

}
χk ∈ {0, 1} (27)

where the recursion k proceeds fromN−1 to 0 backward, the
function qk : [0, 1]→ Qx is the state-quantization map with
a user-defined resolution of discretization, χ is a switching
variable which indicates the engine clutch, and φ denotes the
penalty function of terminal state. The weighting parameter
of emission qNOx and qHC was set the same as the value used
in the NMPC simulation. In addition, the battery operation
is highly dependent on battery charge sustaining parameter
qDP, and it was set to 4×10−4, which is an appropriate value
through numerical experiments.

The value table of discrete DP for optimal control problem
is computed to obtain the optimal motor power of each dis-
cretized state at every stage. Therefore, the optimal trajectory
can be obtained in any initial or current state of battery SOC.

2) ECMS
The application of only ECMS is similar to the description
in Section III-B; however, a difference is that the engine and
motor constraints (20) are considered. Therefore, the operat-
ing mode in which three modes due to constraints are added
to Figure 9 is represented in Figure 13. The equations for the
equivalence factor limits sm,bolim and sm,relim are as follows [45]:

sm,bolim ,
η2

e(2αPm,max + η)

sm,relim ,
1

ηe(1+ 2αηPm,min)
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In addition, the engine efficiency e and motor efficiency η
was fixed to 0.2 and 0.9 respectively. The co-state was set to
5.65 through numerical simulations. The solution of ECMS
is a simple closed-form and an open-loop system without
feedback. As a result, the computational burden is extremely
low, and the computation time required for the simulation was
approximately 10 s.

However, it is not possible to consider limitations on
the maximum torque of the engine and motor described in
Section II-B, as well as the constraints on SOC to operate in
a safe region (20). If the engine torque exceeds the maximum
torque Te,max(ωe) according to the engine speed, the value
of BSFC and emission (NOx, HC) which is generated by the
regressionmodel are not ideal. In addition, if themotor torque
exceeds the maximum torque according to the motor speed,
the value of the motor efficiency obtained by the regression
model is not ideal. As a result, as shown in Figure 17, the bat-
tery SOC in real driving with CS mode becomes smaller than
ξmin in time intervals [1030 s, 1165 s] and [1338 s, 1670 s].
In addition, the battery SOC in real driving with CD-CSmode
becomes smaller than ξmin after time 2313 s. This leads to
excessive discharge of the battery, and thus has a serious
impact on the stable operation of the battery.

D. CASE STUDIES
This section describes a case study with real driving data
obtained from a commercial PHEV and well-known driving
cycle such as HWFET and FTP-75 to demonstrate effective-
ness and fuel economy offered by the proposed hierarchical
supervisory control algorithm. In the case of real driving data,
there are cases in which the initial SOC is set as small as
0.1690 to operate only in CS mode like HEV operation, and
the case in which the initial SOC is set as 0.3040 to show
CD-CS mode.

1) PRE-FILTERING OF REAL DRIVING DATA
As input data of demand prediction module, previous power-
demand profile is needed. For real driving data, the power
used in powertrain (enigne and motor) is measured from the
sensor, so it can be used as the previous power-demand profile
without consideration of longitudinal dynamics. However,
known driving cycles do not have powertrain data, so pre-
vious demand-power must be obtained through longitudinal
dynamics. This section compares the powertrain data for real
driving of a commercial PHEV with demand-power obtained
by longitudinal dynamics (1).

The actual speed and required acceleration are shown by
the blue dashed line in Figure 14 and 15. The reason why the
required acceleration is heavily noisy is that the noise compo-
nent included in the measured driving speed is differentiated.
Therefore, a pre-filtering process is required to remove these
noise components, and we designed based on the Kalman
filter. The pre-filtered acceleration represented by the red
line in Figure 15 shows a similar tendency to the calculated
acceleration from the measured vehicle speed. In addition,
the re-calculated speed from the pre-filtered acceleration is

FIGURE 14. Actual vehicle speed and re-calculated speed from
pre-filtered acceleration.

FIGURE 15. Required acceleration from measured speed and pre-filtered
acceleration.

the same as the blue dashed line in Figure 14, which verifies
the validity of the pre-filtered acceleration.

The power obtained by applying the pre-filtered acceler-
ation and actual vehicle speed to the longitudinal dynamics
is shown as the red line in Figure 16. The difference of
power occurs due to the loss of powertrain and the inac-
curacy of the model caused by not considering tire dynam-
ics or lateral dynamics in longitudinal dynamics of vehicle.
Unlike known driving cycles such as HWFTP and FTP-75,
real driving data has powertrain (engine and motor) data
measured from the sensor, so it has the advantage of ver-
ifying the validity of power determined from longitudinal
dynamics.

2) REAL DRIVING DATA WITH CS MODE
When the initial SOC is 0.1690, the commercial PHEV oper-
ates in CS mode due to the characteristics of the vehicle
as shown in Figure 17. The fuel economy of actual driving
data is 19.7569 and the SOC at terminal time is 0.1520,
which is similar to the operation of a hybrid electric vehicle.
In addition, the battery SOCs for different control strategies
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FIGURE 16. Demand power from powertrain data and longitudinal
dynamics.

FIGURE 17. A comparison of the SOC determined by control strategies
based on real driving data with CS mode.

are shown in Figure 17. The initial SOC of different control
strategies was set to 0.1690, which is the same as the actual
vehicle.

First, in the case of the ECMS only, the constraint on SOC
is not considered, so the battery is operated in an unstable
area after 1000 s. As a result, the SOC at the terminal time is
0.0820, which is smaller than the lower bound ξmin. Second,
in the case of DP, the SOC varies greatly depending on
qDP, and it was set to 4 × 10−4 through numerical experi-
ments. At this time, SOC is equal to ξmin in time intervals
[750 s, 1080 s] and [1380 s, 1430 s], which means that qDP
needs to be adjusted more precisely in order to operate the
battery in a safe area. Lastly, in the case of the proposed
method, it can be seen that the tendency is similar to actual
driving data, except that the overall SOC operation is per-
formed in a low area due to large discharge in the time interval
[0 s, 200 s].
The change of operating mode and co-state determined by

the proposedmethod are shown in Figure 18 and 19. Since the
SOC becomes very low after about 240 seconds, the operation
mode mainly stays in the recharging mode except for the

FIGURE 18. Changes of operating mode determined by the proposed
method based on real driving data with CS mode.

FIGURE 19. Changes of the associated co-state determined by the
proposed method based on real driving data with CS mode.

TABLE 7. Comparison of NOx and HC emissions for different control
strategies based on real driving data with CS mode.

conversion to pure electric propulsion mode or pure electric
recuperation mode according to demand power and co-state
values. The ECMS-based mode determination module of our
hierarchical supervisory control algorithm is updated based
on the PI controller, as represented in equation (24). By prop-
erly setting s0, Kp, and Ki, the co-state is changed smoothly
and the frequency of converting operating modes is also
reduced.

Figure 20 shows the results of forecasted power, motor and
engine powers determined by the proposed method. In order
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FIGURE 20. Time-series based forecasted demand, engine and motor power obtained by using the proposed method based on
the real driving data with CS mode.

FIGURE 21. A comparison of NOx emissions determined by control strategies based on real driving data with CS mode.

to operate the battery in a stable area, the engine mainly
operates. Moreover, the engine efficiency modeled through
the regression function is reflected in real time to the opti-
mization problem so that the engine can operate at a point of
high efficiency when it is operated once. As a result, the fre-
quency of transition of engine state and transient phenomenon
that occurs when switching from the χ = 0 to χ = 1 is quite
reduced.

Based on real driving data with CS mode, the results of
NOx and HC emissions according to the control strategies
are shown in Figure 21 and 22, respectively. Table 7 com-
pares NOx andHC emissions for different supervisory control

strategies. For real driving data, it was estimated by applying
regression model described in Section II-C based on the
actual speed and torque of engine. The ECMS-only method
shows the lowest NOx and HC emissions. This is because the
ECMS-only results in charge-depletion beyond the minimum
operation limit, which could degrade the battery performance
and life. Compared to the DP solution, the proposed con-
trol strategy shows 2.04% improvement in NOx emission
and 3.60% degradation in HC emission. Moreover, com-
pared to the real data, the propose method results in 32.99%
improvement in NOx emission and 1.61% improvement in
HC emission.
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FIGURE 22. A comparison of HC emissions determined by control strategies based on real driving data with CS mode.

FIGURE 23. A comparison of the battery SOC determined by control
strategies based on real driving data with CD-CS mode.

FIGURE 24. Changes of operating mode determined by the proposed
method based on real driving data with CD-CS mode.

FIGURE 25. Changes of the associated co-state determined by the
proposed method based on real driving data with CD-CS mode.

3) REAL DRIVING DATA WITH CD-CS MODE
Similar to the simulation of real driving data with CS mode
which is described above, this section presents the verifica-
tion of the effectiveness of the proposed method by compar-
ing the simulation results obtained by DP and ECMS. First,
the battery SOCs for different control strategies are as shown
in Figure 23. The initial value of SOC for different control
strategies was set to 0.3040, which is the same as the actual
vehicle.

The SOC behavior of real driving data and the proposed
method are almost the same up to 460 seconds, but the varia-
tions of SOC afterwards are significantly different depending
on how much the motor is used for 460 ∼ 490 seconds.
After 1000 seconds, the enginemainly operates and themotor
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FIGURE 26. Time-series based forecasted demand, engine and motor power obtained by using the proposed method based on
the real driving data with CD-CS mode.

charges the SOC slightly through regenerative braking so
that it does not lower to ξref. The NMPC-based real-time
optimization module of our hierarchical supervisory control
algorithm contains a soft constraint for battery usage to the
cost function; hence, the battery SOC at the final time has a
larger value than the lower bound ξmin. It is possible to operate
the battery in a safe region and attain our goals via appropriate
setting of the optimal control parameters of the NMPC. As
the ECMS only cannot consider the constraints, the SOC
becomes lower than ξmin after 2310 seconds. In the case of
DP, as all information on the entire driving cycle is known,
the motor and engine are appropriately used for 1700 sec,
and the SOC value at the final time varies heavily depending
on the battery charge sustaining parameter, qDP. At this time,
SOC is equal to ξmin in time intervals [1750 s, 2050 s] and
[2330 s, 2385 s], which means that qDP needs to be adjusted
more precisely in order to operate the battery in a safe area.

The change of operating mode and co-state determined
by the proposed method are shown in Figure 24 and 25.
Unlike the ECMS only, presented in Section IV-C2, where
the co-state is fixed to an appropriate constant, the ECMS-
based mode determination module of our hierarchical super-
visory control algorithm is updated based on the PI controller,
as represented in equation (24). In Figure 24, the reason
why the change of operating modes appears to be frequent is
caused by the power demand and co-state values. Figure 26
represents the results of engine and motor powers determined
by the proposed method as well as forecasted power demand
using the time-series method in real driving data. The fre-
quency of transition of engine state and transient phenomenon
that occurs when switching from the χ = 0 to χ = 1 is
reduced.

Based on real driving data with CD-CS mode, the results
of NOx and HC emissions according to the control strategies

TABLE 8. Comparison of NOx and HC emissions for different control
strategies based on real driving data with CD-CS mode.

are shown in Figure 27 and 28, respectively. Table 8 com-
pares NOx andHC emissions for different supervisory control
strategies. The ECMS-only method shows the lowest NOx
and HC emissions. This is because the ECMS-only results in
charge-depletion beyond the minimum operation limit, which
could degrade the battery performance and life. Compared to
the DP solution, the proposed control strategy shows 9.09%
improvement in NOx emission and 4.52% degradation in HC
emission. Moreover, compared to the real data, the propose
method results in 29.73% improvement in NOx emission and
1.10% degradation in HC emission.

4) CONVENTIONAL DRIVING CYCLES
In the previous case studies, the driving cycle used for
comparisons of the proposed energy management strategy
with the existing methods is of real driving data obtained
from real-world commuting drive with a commercial PHEV,
in which both urban and highway driving exist and powertrain
data is available as well as vehicle speed data. To further
demonstrate the effectiveness in saving fuel consumption and
reducing greenhouse gas emissions, the proposed hierarchical
energy management strategy is applied to two well-known
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FIGURE 27. A comparison of NOx emissions determined by control strategies based on real driving data with CD-CS mode.

FIGURE 28. A comparison of HC emissions determined by control strategies based on real driving data with CD-CS
mode.

conventional driving cycles, HWFET (highway fuel economy
test cycle) or FTP-75 (federal test procedure). The speed
profiles of these driving cycles are shown in Figure 29.

Since these driving cycles do not have the powertrain
data, the demanded traction power for tracking a given speed
profile is calculated from the longitudinal dynamics (1) and
the formula (3). The computed power-demand profiles are
used for training the power-demand prediction module and
forecasting the vehicle speed and power-demand. Figures 30
and 31 show the comparisons of the true and predicted vehicle

speed and power-demand for theHWFET and FTP-75 driving
cycles, respectively. The normalized RMSE of the predicted
vehicle speed and power in test data based on the HWFET
and FTP-75 driving cycles are given as follows:

v̂d P̂d
HWFET 0.22 % 3.76 %
FTP-75 1.24 % 0.78 %

This error analysis verifies that the proposed method
of power-demand prediction can provide fairly accurate
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FIGURE 29. Desired speed for HWFET (left) and FTP-75 (right).

FIGURE 30. Actual vehicle speed/demand-power and forecasted vehicle speed/demand-power by applying time-series method
about HWFET driving cycle.

FIGURE 31. Actual vehicle speed/demand-power and forecasted vehicle speed/demand-power by applying time-series method
about FTP-75 driving cycle.

forecasting traction-power requests and be used for schedul-
ing dual-source powertrain operation of hybrid electric
vehicles.

The proposed optimal energy management strategy is
highly dependent on the initial SOC value.Wewant to investi-
gate the performance of the proposed hierarchical supervisory
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FIGURE 32. Battery SOC according to change of initial value of SOC about HWFET and FTP-75 driving cycle.

TABLE 9. Comparison of NOx and HC emissions for different ξ0 based on
HWFET driving cycle.

control strategy with varying initial SOC values when driving
for the cycles, HWFET and FTP-75, whose total driving
distances are 16.45 km and 17.77 km, respectively. Since
the driving distances are relatively short, if the initial SOC is
about 0.3 then it would operate only with an electric machine.
If the initial SOC is lower than 0.3, regenerative braking of
the motor is essential to prevent the battery from being dis-
charged when operating only with the motor and the optimal
power distribution between motor and engine becomes criti-
cal in fuel economy and emission reduction. Figure 32 show
the battery SOC profiles with the four different initial SOC
values (0.3, 0.25, 0.2, 0.15) resultant from our hierarchical
supervisory control algorithm. FTP-75 has a negative sign of
demand power periodically, so the motor frequently operates
with regenerative braking so that the battery is frequently
charged.

In addition to fuel economy, Tables 9 and 10 compare
NOx and HC emissions for different ξ0 based on HWFET
and FTP-75 driving cycles, respectively. For the initial SOC
ξ0 = 0.3, the total generated and average values of emission
are quite small because it is mainly operated in the charge-
depletion mode. On the other hand, for the initial SOC ξ0 =
0.2 or ξ0 = 0.15, the total generated and average values of
emission are relatively large because it is mainly operated in
the charge-sustaining mode. In conclusion, the simulation
results verify that the proposed power management strategy
is well applied to conventional driving cycles.

TABLE 10. Comparison of NOx and HC emissions for different ξ0 based
on FTP-75 driving cycle.

V. CONCLUSION AND FUTURE WORK
In this article, we present a novel method of model-based
optimal control for energy management in parallel HEVs.
The battery model of an equivalent circuit was utilized to
derive a highly nonlinear SOC dynamics model. In addi-
tion, the proposed optimal controller explicitly considers
the operating limits of battery power and current as well
as constraints for the stable and durable operation of the
battery. The resultant optimal control problem involved both
continuous and discrete control variables corresponding to
the motor power and engine clutch, respectively. To avoid
expensive computations that might not be feasible in real-
time control, we proposed a modularized hierarchical super-
visor control architecture that consists of three separate
modules: time-series based demand prediction, ECMS-based
mode determination, and NMPC-based real-time optimiza-
tion. Numerical case studies with comparisons to existing
supervisory control strategies of HEV for a set of real
driving data and several conventional driving cycles illus-
trate and verify the effectiveness in energy-saving and emis-
sion reduction of the proposed real-time optimization-based
strategy.
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