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ABSTRACT Preference-inspired co-evolutionary algorithms (PICEAs) consider the target vectors as the
preferences, and then use the domination relationship between the candidate solutions and target vectors
to increase their selection pressure. However, the size of dominating objective space varies with the
different positions of candidate solutions and it leads to the imbalance of the evolutionary ability of whole
population. To solve this problem, this paper proposes a preference-inspired coevolutionary algorithm
based on a differentiated allocation strategy (PICEAg-DS). First, it sets up an external archive to save
the nondominated solutions and then extracts the convergence and diversity information from it. Second,
it divides the objective space into several subspaces and designs a space distance operator to evaluate their
optimization difficulty. Finally, it dynamically assigns the target vectors and guides more computational
resource to the difficult to optimize subspaces, and thus drives the whole population evolution. To prove
the advantages of differentiated resource allocation strategy, the PICEAg-DS is compared with two classic
coevolutionary algorithms (PICEAg, CMOPSO) and two classic MOEAs based on resource allocation
strategy (EAG-MOEAD, MOEAD-DRA). The experimental results show that PICEAg-DS performs better
than the other algorithms on many WFG test problems. To further analysis the effectiveness of PICEAg-DS,
compare it with two MOEAs based on domination relationship (NSGAII, SPEA2) and two MOEAs based
on decomposition (RVEA, MOEA/D-M2M) on MOP and UF test suite. The experimental results show
the PICEAg-DS has a better convergence than the other comparison algorithms, especially on 3-objective
MOP6-7 and UF8-9.

INDEX TERMS Coevolutionary, multiobjective optimization, objective space partition, resource allocation.

I. INTRODUCTION

In many practical optimization problems, there are many
optimization objectives that conflict with each other; these are
called multiobjective optimization problems (MOPs). Many
studies have shown that multi-objective evolutionary algo-
rithms (MOEAs) can effectively solve MOPs. Because an
evolutionary algorithm is actually a heuristic method that
simulates biological evolution, it can develop a set of uni-
formly distributed solution sets in a simulation and obtain a
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set of trade-off Pareto-optimal (P-O) solutions that approxi-
mate to the Pareto front (PF).

In recent years, many evolutionary algorithms and
their variants have been proposed, which can be divided
into the three categories: 1) The MOEAs based on a
Pareto-domination relationship, such as NSGA-II [1] and
SPEA2 [2], have been proved that their ability often getting
worse with the increase of the number of objectives [3],
because their selection pressure decreased sharply in many-
objectives optimization problems. 2) The MOEAs based on
decomposition, which have an efficiency in balance the con-
vergence and diversity by divided the objective space into
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several subspaces and optimize them simultaneously, named
MOEA/D [4], and in past decade, more variants have been
proposed such as MOEA/D-M2M [5] and RVEA [6]. 3) The
MOEAs based on indicator, which use a performance metric
to guide the population evolution, such as ISDE+ [7] and
HyPE [8], but their optimization results may only perform
well on this performance metric.

The coevolutionary algorithms are different from the above
three categories because their fitness values are obtained by
cooperating with different individuals in different popula-
tions or other individuals in the same population [9], com-
pared to the individuals in traditional evolutionary algorithms
that obtain their fitness values by themselves. Therefore,
the coevolutionary algorithm is an extension of traditional
evolutionary algorithms. And many researchers have proven
that coevolutionary algorithms have good performance in
many MOPs [3], and these algorithms called coevolutionary
multi-objective evolutionary algorithms (CMOEAs). With
more effort into this framework, CMOEAs have expanded
into the three branches of cooperative CMOEAs, competitive
CMOEAs, and competitive-cooperative CMOEAs [10].

The cooperative CMOEAs decompose a MOP into sev-
eral low-dimensional subproblems with partial variables
of the original problem and then optimize these sub-
problems cooperatively, such as IBCCMOEA [11] and
CCMOEA-HSU [12]. But how to determine the number of
subproblems and choose an appropriate method to divide the
decision variables have a great impact on their performance.

The competitive-cooperative CMOEAs consider both the
cooperative and competitive relationships among the subpop-
ulations and drive the whole population evolution, such as
COMOEA [13] and CMOPSO [14].

The competitive CMOEAs divide the population into sev-
eral subpopulations and use the competitive relationships
to guide the population evolution. Competitive CMOEAs
can be further divided into three categories: 1) based
on predator-prey models, such as PPBBO [15] and
MPP [16]; 2) based on moderate competition, such as
C-RMOEA/D [17] and SPEA2-CE [18]; 3) based on the
coevolution of solutions, such as CGA [19] and NNCA [20].
Of these, the CMOEA s based on the coevolution of solutions
have attracted many attentions. Lohn ef al. [19] proposed
the CGA, which used target objective vectors (TOVs) as
the preferred solutions and utilized the competition relation-
ship between the TOVs and candidate solutions to guide the
population evolution. Purshouse and Fleming [21] further
improved the CGA and proposed preference-inspired coevo-
lutionary algorithms (PICEAs), which also used the TOVs as
the preference solutions and used the dominant relationship
between the preference and candidate solutions to coevolve
them.

The preference points in PICEAs are not the prefer-
ence information of decision-makers in some sense, but
they randomly generate for increasing the selection pres-
sure of the candidate solutions. Wangetal. [22] pro-
posed a preference-inspired coevolutionary algorithm for
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many-objective optimization (PICEAg), which is a popular
one of PICEAs. It used the target vectors as preferences and
adaptively generate to drive the population toward the PF.
The simulation experiments have shown that the PICEAg
outperforms many traditional evolutionary algorithms on
many-objective optimization problems [23].

But we find the PICEAg has a disadvantage that in the
course of evolution, the target vectors are randomly generated
in objective spaces, but the sizes of the objective spaces
dominated by the candidate solutions are different, which
affects the fitness values obtained by the candidate solutions.
It causes the search ability of different individuals to be differ-
ent. Therefore, this paper proposes a collaborative evolution-
ary algorithm based on a differentiated resource allocation
strategy (PICEAg-DS). In PICEAg-DS, an external archive is
set up to save the non-dominated solutions; a space distance
operator is designed to divide the objective space into several
subspaces and measure the subspace hardness; then a differ-
entiated resource allocation strategy is proposed to allocate
target vectors dynamically and assigns more target vectors
to the sparse subspace which denotes the subspace with few
non-dominated solutions and poor convergence. It aims to
increase the evolutionary ability in sparse subspaces and drive
the whole population evolution. Besides, we use the IGD indi-
cator to analyze the parameter setting and choose the optimal
number of groups that divides the objective space. To prove
the advantages of our proposed differentiated resource allo-
cation strategy, we compare the PICEAg-DS with PICEAg,
COMPSO, MOEAD-DRA and EAG-MOEAD. The first two
are classic algorithms of CMOEAs, and last two are MOEAs
based on resource allocation strategy. The five comparison
algorithms are tested on 2- and 3- objective WFG1-9 test
problems and utilize the SP, GD and IGD indicators to
evaluate their distribution, convergence and comprehensive
performance, respectively. To further verify the effectiveness
of our proposed PICEAg-DS, we compare it with NSGAII,
SPEA2, RVEA, MOEA/D-M2M on MOP1-7 and UF1-9 test
problems. The first two are MOEAs based on domination
relationship, and the last two are MOEAs based on decom-
position. And utilize the GD indicators to evaluate their con-
vergence performance.

The key contributions of this paper are as follows:

1) A novel method to partition the objective space, which
designs a space distance operator to calculate the space dis-
tance of non-dominated solutions and then divides them into
several uniform groups, and defines the maximum distance of
each group as a subspace. Therefore, different subspace may
have a different size, which can clearly show the distribution
sparsity of non-dominated solutions in each subspace.

2) We propose a resource allocation method to solve the
shortcoming of PICEAg that individuals in different position
have a different evolutionary ability, which by allocating
more target vector to sparse subspaces and enhance their
evolutionary ability.

3) On the basis of the above strategy, a preference-
inspired coevolutionary algorithm based on differentiated
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resource allocation strategy, named PICEAg-DS, is designed
for multi-objective optimization.

The rest of paper is organized as follows. In section II,
we introduce the framework of PICEAg and our moti-
vation. In section III, we present the proposed algorithm
(PICEAg-DS) and describe the differentiated resource allo-
cation strategy in detail. In section IV, we compare the
performance of the proposed PICEAg-DS with PICEAg,
COMPSO, MOEAD-DRA and EAG-MOEAD on 2- and
3- objective WFGI-9 test problems and NSGAII, SPEA2,
RVEA, MOEA/D-M2M on MOP1-7 and UF1-9 test prob-
lems. In section V, we make a summary for this paper.

Il. RELATED WORK

A. PICEAg

In PICEAg, the candidate solutions can obtain their fitness
values by dominating the number of target vectors, as defined
in equation (1), and the target vectors can also obtain their fit-
ness values by candidate solutions, as defined in equation (2).

1

Fo=0+ deG&JGcls<g @ M
1
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1, ng =20
Mg , otherwise )
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where G is the target vector set at current generation and Gc¢
is the offspring target vector of G; s is the candidate solution;
N is the size of s; g is a preference that dominated by s; n, is
the number of solutions that dominate the g and F is the sum
of the reciprocal of the ng that are dominated by s. If s does
not dominate any g, the Fj is defined as 0.

B. OBJECTIVE SPACE PARTITION METHODS

There are many methods to partition the objective space into
several multiple small subspaces. In most of MOEA/D and
their variants, the weight vectors are generated uniformly
to decompose the complicated multi-objective optimization,
such as, MOEA/D [4] uses a number of scalar subproblems
to decompose the MOP into several simple subproblems
and each subproblem is optimized by utilizing the infor-
mation mainly from its several neighboring subproblems.
In MOEA/D-M2M [5], it uses K unit vectors to partition the
objective space into K subregions, and generate K subpopu-
lations to search each subregion in order to enhance the pop-
ulation diversity. However, the uniformly distributed weight
vectors cannot produce uniformly distributed P-O solutions
when the PF is complex [24] or irregular [25]. Therefore,
several works have adopted alternate ways of decomposi-
tion, such as, in RVEA [6], a reference vector adaptation
method is proposed, which can generate a uniformly weight
vector according to the ranges of the objective values. And in
pai-MOEA/D [26], the weight vectors automatically adapt
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according to the geometrical properties of the PF. Gener-
ally, the uniformity of weight vectors can ensure the diversity
of the P-O solutions, however, it cannot work as well when
the target MOP has a complex PF (i.e., discontinuous PF
or PF with sharp peak or low tail). To solve this problem,
in MOEA/D-AWA [24], it firstly generates a set of prede-
termined weight vectors and then periodically remove them
from the crowed part and added to sparse regions, which
can effectively save the computing efforts that devoted to
subproblems with duplicate optimal solution.

C. RESOURCE ALLOCATION METHODS

It well known that some parts of the PF are difficult to
converge than others [27]. Therefore, it is necessary to allo-
cate different computational resources to different hardness
subproblems in MOEAs based on decomposition. But how
to determine the difficulty of different subproblems and how
to guide the resource allocation are key issues in the opti-
mization process. With increasing effort, the resource alloca-
tion methods can be divided into offline resource allocation
(OFRA) and online resource allocation (ONRA).

The OFRA measures the subproblem difficulty in an
offline manner. For example, it calculates the improvement
value of different subproblems before and after 50 genera-
tions. The subproblem with a lower improvement value is
regarded as difficult to optimize. However, the OFRA meth-
ods always have a low efficiency.

The ONRA methods are different from the OFRA meth-
ods, which dynamically measure the subproblem difficulty
in the whole evolutionary process. Additionally, experi-
mental studies have shown that the ONRA methods are
more practical than the OFRA methods [28]. There are
many studies of ONRA methods, in terms of decom-
position based on MOEAs. Zhang proposed a dynamic
resource allocation strategy based on MOEA/D, named
MOEA/D-DRA [29], which designed a utility function to
measure the subproblem difficulty and allocated more com-
puting resources to the subproblem with the higher util-
ity function value. Zhou and Zhang [28] further improved
MOEA/D-DRA and proposed a generalized resource alloca-
tion strategy, named MOEA/D-GRA, which uses a proba-
bility of improvement (Pol) vector and determines whether
a subproblem is chosen for invest according to its Pol
vector and a random number. Cai ef al. [30] proposed the
EAG-MOEA/D to extract the convergence and diversity
information from an external archive, which can identify the
potential subproblems and then guide the population evolu-
tion. Lin er al. [31] proposed a diversity-enhanced resource
allocation strategy, named MOEA/D-IRA; it assigns more
computational resources to the subproblem with fewer solu-
tions in its neighboring area and more relative improvement
on the aggregated function value. Chen etal [32] pro-
posed an adaptive resource allocation strategy for objective
space partition-based multi-objective optimization, named
OPE-MOEA; it firstly partitions the objective space into N
subspaces evenly and then defines a metric to measure the
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contributions of subspaces to the population convergence,
and according to the contributions to allocate computational
resources. In terms of decomposition of decision variables,
some studies allocate the computational resources to different
subgroups by measuring their improvement [33], contribu-
tion [34]-[36] and the importance degree of their decision
variables [37].

Test Problem: WFG4
Generation: 100

o * true PF
& O obtained solution
* o

0

0 0.5 1 1.5

FIGURE 1. PICEAg execution on a 2-objective WFG4.

D. THE SHORTCOMING ANALYSIS OF PICEAg

In PICEAg, we can find the individuals are concentrated
in the center regions of objective space and also have a
better convergence performance, while the individuals in the
sharp and tail of PF are more difficult to converge. From
Fig. 1, it can be seen that the individuals in the region of
f(x1) € [0, 1] are significantly more sparse than the indi-
viduals in the region of f(x;) € [l,2], and the number
of target vectors in the region of f(x;) € [0, 1] are also
significantly less than that in the region of f(x;) € [1,2].
In terms of the ordinate of f(x»), it can also be seen that
individuals in the region of f(x2) € [3.5, 4] are more sparse
than the individuals in the region of f (x2) € [0.5, 3.5], and
the individuals in the region of f(x;) € [0, 0.5] are more
sparse than individuals in the region of f(xp) € [0.5,3.5].
Additionally, the number of target vectors is consistent with
the distribution of individuals.

The above phenomenon can be attributed to the individuals
in different position that have different evolutionary ability.
To further analyze this problem, the size of the objective space
dominated by the candidate solutions is considered, as shown
in Fig. 2. It can be seen that the candidate solutions in different
position have different sized dominating spaces, whether it is
a convex or concave optimization problem.

In Fig. 2(a), the candidate solution Py dominates the A + C
space and P, dominates the B + C space. In Fig. 2(b),
P dominates the E 4+ G space and P, dominates the F 4+ G
space. We can calculate the area of the dominating space,
i.e., the space size of A 4+ Cis 2.6 * 0.4 = 1.04 and, using the
same calculation, B+ C=1.12,E4+G=2.8andF + G =4.
Additionally, we can see that the candidate solutions in the
center position of the PF have a larger dominating space
than those in the sharp and tail of the PF in both convex
and concave optimization problems. In PICEAg, the fitness
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(a) Concave function

(b) Convex function

FIGURE 2. The size of objective spaces dominated by candidate solutions.

values of candidate solutions are related to the number of
target vectors that are dominated by them, the more target
vectors are dominated, the higher the fitness value. The
candidate solution with a higher fitness value more easily
survives. However, the size of the objective space dominated
by candidate solutions is different and the target vectors are
randomly distributed in the objective space; thus, this fitness
calculation method is unfair. Additionally, it leads to differ-
ent evolutionary abilities of candidate solutions in different
positions.

Therefore, it is important to allocate more computational
resources to the candidate solution with lower evolutionary
ability and promote the evolution of whole population.

Inspired by the exist methods of objective space partition
and resource allocation. This paper proposed a novel dif-
ferentiated allocation strategy based on PICEAg and named
it PICEAg-DS. The framework of PICEAg-DS can be seen
in Fig. 3.

O Sparse subspace

O dense subspace

° H=————- Initialization @

Subspace Si
t
s Gc'y
ND_P's; [ ox---1-==O
- wf O
Genetic ND_P sal G ¢
Operator ! C random

O
—

|
|

: t
ND_P'si)\ © TG R @)
ND_P';\ Of=--1==-"50O

Allocate target vectors
I—Fitness calculation

Truncate selectionJ

5

FIGURE 3. The framework of PICEA-DS.

As shown in Fig. 3., the main idea of PICEAg-DS is using
the convergence and diversity information of nondominated
solutions to divide the objective space, and then generating

205801



IEEE Access

Q. Qiu et al.: PICEA Based on Differentiated Resource Allocation Strategy

different numbers of target vectors in the subspaces. p’ is the
candidate solution at ¢ generation, pc’ is the offspring of p’,
NP _pg ; is the nondominated solution set in subspace si, G’ is
the target vector set at t generations and Gc' is the offspring
of G'. A detailed description of PICEAg-DS is provided in
section III.

IIl. PREFERENCE-INSPIRED CO-EVOLUTIONARY
ALGORITHMS BASED ON DIFFERENTIATED

ALLOCATION STRATEGY

A. THE MAIN FRAMEWORK OF PICEAg-DS

The pseudo code of the proposed MOEA/D-DS is described
in Algorithm 1.

Algorithm 1 The General Framework of PICEAg-DS
Input: The max generation: Maxgen, Population size: N,
the number of target vectors is Ngoal and the number of
subspaces is d.

Output: The optimal solution P

1. Initiate the population: P = [p1, p2, ..., pN];

2. Randomly generate the target vectors in the objective
space: G = [gl’ 8254 gNgoal];

3. Set up an external archive to save nondominated
solutions: Archive = [ND_p1, ND_p», --- , ND_p;]

4. Fort = 1 To Maxgen Do

5. Generate the offspring population: Pc, =
GeneticOperator [P, N1,

6. Update the external archive by Pc;: Archive =
[ND—ptl’ ND_ptz, T ND—PJIL

7. IF size(Archive, 1) < N THEN

8. Randomly generate the offspring target vectors in the
objective space.

9. ELSE

10. Generate the offspring target vectors by a
differentiated resource allocation strategy: Gc¢; =
DifferentialSpace_GenerateGoal [N eoal s Archive] in
Algorithm 2.

11. End IF

12. Calculate the fitness of P; U Py, Gy U Gc; using
equation (1) through (3).

13. Truncate the selected P;i1, Gi+1 by the fitness
values of P; U Py and G; U Gcs: [Pig1, Gi+1] =
truncateselected[P; U P, G; U G¢;]

14. End for

As shown in Algorithm 1, the N individuals and Ngoal
target vectors are randomly initialized (lines 1-2), and then
set up an external archive to save the non-dominated solutions
(line 3), which is used for extract the convergence and diver-
sity information from the objective space. After initializing,
the PICEAg-DS enters the main loop (lines 4-14), which
includes two core functions: 1) Generate offspring (lines
5-8): generate offspring solutions (line 5) and update the
external archive by these offspring solutions (line 6). Then,
according to the space distance of non-dominated solutions

205802

in external archive (line 7) to decided generate target vectors
by randomly (line 8) or differential allocation (Algorithm 2).
2) Update the population and target vectors (lines 12-13).

B. THE DIFFERENTIATED RESOURCE ALLOCATION
STRATEGY OF PICEAg-DS

To realize the dynamic resource allocation in PICEAg, this
paper proposed a differentiated resource allocation strategy.
The pseudo code of the differentiated resource allocation
strategy of PICEAg-DS is provided in Algorithm 2.

Algorithm 2 The Differentiated Resource Allocation
Strategy
Input: The nondominated solutions in the external archive:
ND_pi(i=1,2---,jlj = N), the number of target vec-
tors: Ngoal and the number of subspaces d.
Output: The offspring target vectors: Gc¢ =
[gclv 8C2y -+ gCNgoal]
1. Calculate the mean value of each objective of P; and Pc;,
and obtain the center point A.
2. Mapping the A and ND_p' to a 2-objective space, obtain-
ing ND_p" and central point A(ay, ).
3. Calculate the Euclidean distance between the ND_ p’/
and A (ay, a) using formulas (4) and (5).
4. Sort the distance in descending order, divide the ND_p’
into d subgroups: S;, and calculate the distribution distance
of each subgroup: SDs;(i=1,2,....4) using equation (6).
5. Divide the objective space into d uniform subspaces:
SDean using formula (7).
6. FORi=1T0OdDO

7. IF SDg, > SDyeqn THEN

8. Generate Ngoal/d target vectors in the subspace
Si.

9. END IF

10. END FOR

11.Calculate the number of target vectors that have been
allocated: Ngoal ,;;.

12.Randomly generate Ngoal — Ngoal ;.
in the objective space using equation (8).

target vectors

As shown in Algorithm 2, there are four core functions:
1) itdesigns a space distance operator to calculate the distance
between the nondominated solutions with central point (lines
1-3); 2) divides the non-dominated solutions into d uniform
groups and calculate the subspace distance SDy; of each
group (line 4); 3) calculates d uniformly partitioned subspace
distances: SDjeqn (line 5); 4) compare the SDy; with SD,yeqn,
and generate different number of target vectors in different
subspace (lines 6-12). The detailed calculation methods are
defined as follows:

1) Mapping the nondominated solutions ND_p’ and
center point A to a 2-objective space. For example, for
the 3-objective optimization in Fig. 4, the center point
A(ay, az, a3) mapping to the 2-objective space is A'(az, az);
in the same manner, map the ND,pﬁ to a 2-objective space.
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FIGURE 4. Mapping the center point and population to a 2-objective
space.

2) Calculate the Euclidean distance between the ND_p'
and A(ay, a2). InFig. 3, a straight line passing through the two
points of A’(ay, a3) and O(0, 0) can be defined as follows:

azz—ay =0 “)

Then, calculate the Euclidean distance between each
ND_pi(i=1,2---,jlj = N) and A'(a2, a3), as follows:

aiz —azy

V@ +H(=a2)?

When vd < 0, the nondominated solution ND_p' is below L,
which is in the nonshaded region of Fig. 4(b). When vd > 0,
the nondominated solution ND_p' is above L, which in the
shaded region in Fig. 4(b).

3) Divide the nondominated solutions ND_p§ into d sub-
groups, and calculate the distribution distance of each sub-
group S;(i=1,2,---,d), as follows:

vd; = &)

SD = |Vd{"" — vdg" | (6)

where the Vdgf P¢"" is the maximum distance of the nondomi-
nated solutions in S; and Vd é‘;w‘” is the minimum distance of
the nondominated solutions in S;.

4) Divide the objective space into d subspaces and calcu-
late the space distance of each subspace, as follows:

SDpean = |Vdmax - Vdmin| /d (7)

where Vd ., is the maximum of vd;(i = 1,2,---, N)and
Vd in 1s the minimum of vd;(i = 1,2, --- , N).

IV. EXPERIEMENT AND ANALYSIS
A. THE EXPERIMENT PARAMETER SETTINGS
The simulation experiments are executed in Matlab R2016a
PlatEMOv1.3. To verify the effectiveness of differential
resource allocation in PICEAg-DS, we choose the WFG test
suite [38] as the test problems. The WFG is not only a
scalable test suite, but also contains many function attributes,
which can be seen in Table 1.

‘We choose two classic coevolutionary algorithms (PICEAg
and CMOPSO) and two classic evolutionary algorithms
based on resource allocation strategy (EAG-MOEAD and
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TABLE 1. The attributes of the WFG test suites.

Pro. Attributes
WFGI  Convex, mixed, biased, separable
WFG2  Convex, discontinuous, indecomposable
WFG3 Linear, degenerate, single-modal, indecomposable
WFG4  Concave, multimodal, decomposable
WFG5  Concave, deceptive, decomposable
WFG6 Concave, monomodal, indecomposable
WFG7  Concave, monomodal, biased, decomposable
WFG8  Concave, monomodal, biased, indecomposable
WFG9 Concave, multimodal, deceptive, biased, indecomposable

MOEAD-DRA) as the comparison algorithms for our
proposed PICEAg-DS. For each test problem, the five algo-
rithms run 20 times, and their means and variants are cal-
culated as their final results. To ensure the fairness of
the comparison experiment, the parameters of each com-
parison algorithm are consistent except for their specific
parameters. The experiment parameter settings are shown
in Table 2.

B. PERFORMANCE INDICATORS

The optimization results of MOEAs are a group of optimal
solutions that approximate to the PF, but it is difficult to mea-
sure the quality of the nondominated solutions. Therefore,
this paper uses the GD [39], SP [40] and IGD [41] as the
performance measuring methods to evaluate the convergence,
distribution and comprehensive performance of the obtained
solutions.

1) GENERATION DISTANCE (GD)

It calculates the average Euclidean distance between each
solution and its nearest true solution. The smaller the GD
value, the better convergence of the obtained solution set.

2) SPACING (SP)

It calculates the mean square error of the distance between
every two adjacent solutions. The smaller the SP value,
the better the distribution of the obtained solution set.

3) INVERSE GENERATION DISTANCE (IGD)

It calculates the average distance between the true solutions
and every obtained solution. The smaller the IGD value,
the better the comprehensive performance of the obtained
solution set.

C. PARAMETER ANALYSIS

To further analyze the number of subspaces d that influence
the performance of PICEAg-DS and determine the optimal
number of subspaces d, this paper sets the comparison exper-
imentstod = 8,d = 9,d = 10,d = 11 andd = 12,
which correspond to the algorithms of DS8, DS9, DS10,
DS11 and DS12, respectively. The parameter comparison
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TABLE 2. The experiment parameters of the comparison algorithms.

Algorithms Common parameters Specific parameters
Ngoal = 100
PICEAg-DS (1) MaxGen = 300 a =12
2)N = 100 d=10
(3) The crossover probability Pc = 1 Ngoal = 100
PICEAg (4) The mutation probability P,, = 1/n a = 1.2
(n is the number of decision variables)
CMOPSO (5) The distribution of polynomial mutation: none
N = 20 -
EAG-MOEAD | (6) The distribution of simulated binary Learning algebra:
crossover: 7, = 20 LGS = 8
MOEAD-DRA Update P; : Agern= 10

experiments are tested on the WFG1-9 test problems. And
set the N = 100, Ngopy = 100 and Maxgen = 250. The
number of decision variables in 2-objective test problem is
D = 12 and in 3-objective test problem is D = 13. The exper-
iment results are shown in Table 3, and the bold in Table 3
indicates the IGD results of DS8-12 that are better than
PICEAg.

461

PICEAg DSB8 DS  DS10  DS11  DS12

FIGURE 5. The rank of the parameter comparison algorithms on 2- and
3-objective WFG2-9 test problems whend =8,d =9,d =10,d = 11 and
d=12.

To further calculate the average ranking of each parameter
setting in Fig. 5., we can find the average ranking of DS10
performs better than others, therefore, the optimal group
number of subspaces in PICEAg-DS is d = 10.

D. THE PERFORMANCE ANALYSIS OF PICEAg-DS

ON WFG TEST SUITE

To prove the effectiveness of the differentiated resource allo-
cation strategy in PICEA-DS, we use the GD, SP and IGD
indicators to measure the convergence, solution distribution
and comprehensive performance of the solutions obtained
by PICEAg-DS, PICEAg, CMOPSO, EAG-MOEAD and
MOEAD-DRA are compared. And in Table 4 to Table 7,
the “-’, “+”, and “="" indicate that the performance of the
comparison algorithm is significantly worse than, better than,
and not significantly different than that of PICEAg-DS with
rank sum test.
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1) THE DISTRIBUTION ANALYSIS

To analyze the solution distribution of the comparison algo-
rithms, the five comparison algorithms are executed on the
WFG1-9 test problems 20 times. The means of the SP values
are recorded in Table 4. The smaller SP value, the better the
distribution of the obtained solutions.

In Table 4, it can be seen that the PICEAg-DS has an
improvement in solution distribution on 2-objective WFG4,
6-9 and 3-objective WFG2, 8 functions, and its SP value
is significantly better than CMOPSO, EAG-MOEAD and
MOEA/D-DRA. The reason is that differentiated resource
allocation strategy of PICEAg-DS divides the objective space
according to the distribution of individuals and then allocates
more target vectors to the sparse region to enhance population
evolution in the sparse region, Therefore, it can balance the
solution distribution both in dense and sparse subspaces.

To observe the change in SP values in the process of
optimization. The Fig. 6. shows the curve of SP values of
each algorithm on the 2-objective WFG2-9 functions; each
node is the recorded SP value every ten generations. From
Fig. 6(a)-(h), we can see that the SP value of PICEAg-DS
declines sharply in the early stages of evolution, which
means the solution distribution improved greatly. Because of
the population random initialization, the distribution perfor-
mance of each algorithm is poor in the early stage. However,
the differentiated resource allocation strategy in PICEAg-DS
can effectively allocate resources according to the individual
distribution and improve the individual evolution in the sparse
subspace, which can balance the distribution of different
subspaces to some extent. Note that there always a fluctuation
in the curve of SP values in Fig. 6(a)-(e). This is because
the fitness evaluation method in PICEAg-DS selects the opti-
mal solutions based on their objective functions but ignores
their distribution; this causes the SP values to decline for a
short time.

2) THE CONVERGENCE ANALYSIS

From Table 5, it can be seen that the PICEAg-DS has an
improvement in convergence on 2-objective WFGI1, 3-4,
7-9 and 3-objective WFG4, 8 functions, and its GD value
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TABLE 3. The IGD results of the parameter setting of d.

Pro PICEAg DS8 DS9 DS10 DS11 DS12

5 2 1.1808e-1(3.85e-2)  1.1013 e-1(2.33 e-2)  1.1218 e-1(3.53 e-2)  1.0933 e-1(4.07 e-2)  1.3663 e-1(3.94 ¢-2) 1.1765 e-1(3.22 e-2)
E 3 39734e-1(6.61e-2)  4.1462e-1(495e-2)  3.8598 e-1(6.09 e-2)  3.8500 e-1(7.05e-2)  4.0823 e-1(5.42 ¢-2) 4.0835 e-1(6.19 e-2)
8 2 1.6058 e-1(3.71e-3) 1.6142 e-1(4.71e-3)  1.6004 e-1(4.49e-3)  1.5790 e-1(3.56e-3) 1.5475 e-1(3.19¢-3) 1.5520 e-1(3.68e-3)
= 3 1.1872e-2(620e-4) 12078 e-2(6.22e-4) 12079 e-2(4.79¢-4)  1.1973 e-2(4.40e-4) 12141 e-2(5.40e-4) 1.2438 e-2(7.54e-4)
] 2 5.4082 e-2(4.35¢-3) 5.2931 e-2(4.34e-3)  5.3060 e-2(4.98e-3)  5.1069 e-2(3.70e-3) 5.3452 e-2(4.17e-3) 7.4044 ¢-2(3.80 ¢-2)
E 3 1.3713 e-2(6.87¢-4) 1.3670 e-2(7.14e-4)  1.3696 e-2(7.52e-4)  1.3713 e-2(7.02¢-4) 1.3803 e-2(7.18¢-4) 1.4174 €-2(9.94¢-4)
3 2 2.1288 e-1(1.90e-3) 2.1267 e-1(1.92¢-3)  2.1336 e-1(1.76e-3)  2.1235 e-1(2.38e-3) 2.1287 e-1(2.90e-3) 2.1699 e-1(2.77¢-3)
= 3 14818e-2(8.62e-4)  14842e-2(8.50e-4)  14935e-2(1.13e-3)  1.4565 e-2(8.88e-4)  1.4291 e-2(6.17e-4) 1.4152 e-2(5.41e-4)
8 2 22398 e-1(1.80e-3) 2.2219 e-1(1.48e-3)  2.2297 e-1(1.41e-3)  2.2248 e-1(1.78e-3) 2.2191 e-1(2.32¢-3) 2.2771 e-1(2.49¢-3)
= 3 63946e-2(2.09e-4) 63962 e-2(1.96e-4) 64301 e-2(1.41e-3)  6.4012e-2(7.70e-4)  6.3903 e-2(1.53e-4) 6.4080 e-2(8.28¢-4)
] 2 23960 e-1(1.19¢-2) 2.4103 e-1(1.03e-2)  2.4096 e-1(7.23¢-3)  2.3793 e-1(8.50e-3) 2.4426 e-1(9.95¢-3) 2.5092 e-1(1.42¢-2)
E 3 8.6194e-2(237e2)  9.6562e-2(2.30e-2) 92116 e-2(2.19¢-2)  9.7892 e-2(1.82¢-2) 9.0543 e-2(2.07 e-2) 8.8633 e-2 (2.08 e-2)
5 2 2.1397 e-1(2.83¢-3) 2.1492 e-1(2.58e-3)  2.1277 e-1(2.57e-3)  2.1592 e-1(3.19¢-3) 2.2177 e-1(7.41e-3) 2.3557e-1(7.25¢-3)

= 3 13769e-2(3.42e-4) 13564 e-2(1.96e-4)  1.3568 e-2(2.93e-4)  1.3494 e-2(3.02e-4)  1.3391 e-2(2.63e-4) 1.3571 e-2(3.85¢-4)
% 2 3.1189 e-1(4.97¢-3) 3.0897 e-1(5.91e-3)  3.0789 e-1(4.97¢-3)  3.0867 e-1(5.48e-3) 3.0723 e-1(4.22¢-3) 3.0883 e-1(4.68¢-3)
= 3 1.1423e-1(2.03e-3)  1.1471e-1(2.17e-3)  1.1698 e-1(5.55¢-3)  1.1502e-1(1.81e-3)  1.1680 e-1(4.79%-3) 1.1576 e-1(3.86¢-3)
) 2 2.0969 e-1(1.71e-3) 2.0980 e-1(2.08¢-3)  2.1025e-1(2.72¢-3)  2.1052 e-1(1.87¢-3) 2.1220 e-1(2.02¢-3) 2.2414 e-1(7.55¢-3)
E 3 2.1795 e-2(2.77¢-3) 2.0875 e-2(3.06e-3)  2.1572 e-2(2.86e-3)  2.0939 e-2(2.79¢-3) 1.9264 e-2(2.39¢-3) 2.0432 e-2(4.51e-3)

Total (superior than PICEAg) 8 10 12 9 7
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FIGURE 6. The curves of the SP values of the five comparison algorithms on the 2-objective WFG2-9 test problems.

is significantly better than CMOPSO, EAG-MOEAD and

MOEA/D-DRA. And the its GD value is significantly better
than PICEAg on 2-objective WFG1, 3, 4, 7,9 and 3-objective

WEFG 4, 8

VOLUME 8, 2020

From Figs. 7(c) and 7(h), we can see the GD values
of PICEAg-DS decline sharply at gen
its convergence speed is greater than the other algorithms.

[0, 50], and

However, it is well known that WFG4 and WFG9 are two
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TABLE 4. The SP results of the five comparison algorithms on the WFG1-9 test problems.

CMOPSO

Mean (variance)

EAG-MOEAD

Mean (variance)

MOEAD-DRA

Mean (variance)

Problems PICEAg-DS PICEAg
Mean (variance) Mean (variance)
WEFG1 2 1.2957 e-1(2.37 e-2) 1.2031 e-1(5.36 e-2) =
3 2.9411 e-1(2.51 e-2) 2.9887 e-1(9.56 e-2) =
WFG2 2 9.7520 e-3(1.58 e-3) 9.6893 e-3(1.63 e-3) =
3 8.0314 e-2(7.06e-3) 8.3463 ¢-2(7.58e-3) =
WEFG3 2 9.6006 e-3(7.36¢-4) 9.6513 e-3(1.29 ¢-3) =
3 5.6811 e-2(7.62¢-3) 5.5269 e-2(8.09¢-3) =
WFG4 2 1.2397 e-2(2.45¢-3) 1.3527 e-2(2.55¢-3) =
3 9.6774 ¢-2(9.10e-3) 9.5979 e-2(8.70e-3) =
WFGS5 2 1.0786 e-2(9.82¢-4) 1.0375 e-2(9.44e-4) =
3 9.4349 e-2(1.09 e-2) 9.3987 e-2(5.84e-3) =
WFG6 2 1.0906 e-2(1.06e-3) 1.1117 e-2(9.45¢e-4) =
3 9.8796 e-2(8.83¢-3) 9.7707 e-2(7.71e-3) =
WFG7 2 1.0966 e-2(1.18¢-3) 1.1136 e-2(1.01e-3) =
3 9.7071 e-2(7.87e-3) 9.5264 e-2(9.57e-3) =
WFGS8 2 1.5059 e-2(6.23e-3) 1.5591 e-2(9.69¢-3) =
3 1.0604 e-1(9.76e-3) 1.0633 e-1(9.04¢-3) =
WFG9 2 1.1919 e-2(2.05e-3) 1.3621 e-2(4.15¢-3) =
3 1.0136 e-1(9.30e-3) 9.3226 e-2(1.01 e-2) +

2.1153 e-1(3.07 e-2) -
3.4073 e-1(6.10 e-2) =
8.8779 e-3(1.27 e-3) =
1.5615 e-1(4.04e-2) -
9.2427 e-3(1.02 e-3) =
6.9241 ¢-2(6.34¢-3) -
3.6402 e-2(1.35 e-2) -
1.4597 e-1(1.31e-2) -
1.3517 e-2(1.40e-3) -
1.2905 e-1(1.58¢-2) -
1.4263 e-2(1.39¢-3) -
1.4403 e-1(1.36¢-2) -
1.6453 e-2(2.92¢-3) -
1.4265 e-1(1.17¢-2) -
1.9466 e-2(5.06¢-3) -
1.2940 e-1(1.30e-2) -
1.5192 e-2(2.13¢-3) -

1.3019 e-1(1.27¢-2) -

5.3544 e-2(4.39 e-2) +
2.2395 e-1(1.57 e-1) =
3.5220 e-2(2.23 e-2) -
3.1093 e-1(5.55¢-2) -
6.2908 e-2(1.62 e-2) -
1.7866 e-1(1.45¢-2) -
2.2485 e-2(3.65¢-3) -
2.5359 e-1(2.41e-2) -
2.1986 e-2(2.32¢-3) -
24121 e-1(2.84¢-2) -
7.0525 €-2(3.66 e-2) -
2.6669 e-1(4.14¢-2) -
6.7359 -2(2.28 e-2) -
2.5273 e-1(3.95¢-2) -
1.0380 e-1(4.23¢-2) -
2.9646 e-1(3.27¢-2) -
2.0356 e-2(2.85¢-3) -

2.2945 e-1(2.41e-2) -

3.2007 e-1(8.25 e-2)-
5.1753 e-1(1.58 e-1) -
5.2824 ¢-2(3.94¢-3) -
24387 e-1(1.01 e-1) -
24731 e-2(8.56e-4) -
23771 e-1(4.11e-2) -
5.6121 e-2(2.41 e-2) -
3.6819 e-1(2.07¢-2) -
2.8519 e-2(7.78¢-4) -
3.5544 e-1(1.22¢-2) -
2.8856 e-2(3.62¢-3) -
3.9001 e-1(3.71e-2) -
2.7059 e-2(9.27¢-4) -
4.0234 e-1(4.18¢-2) -
2.8920 e-2(4.29¢-3) -
4.2958 e-1(3.86¢-2) -
2.7897 e-2(1.90e-3) -

3.5236 e-1(1.69¢-2) -

Total (+/-/=) 1/017

0/15/3 1/16/1 0/18/0

multimodal functions, which is easy to fall into the local
optimal and it must be iterated many times in the early stage
to convergence. But PICEAg-DS performs well on these two
test problems, which reflects its advantage on multimodal
problems. Moreover, WFG7-9 are biased functions, which
makes them difficult to improve population convergence and
maintain diversity. However, the convergence performance of
PICEAg-DS on the WFG7-9 functions is better than the other
algorithms, which reflects the advantage of PICEAg-DS
to improve the convergence performance on discontinuous,
biased or multimodal test problems to some extent. We can
also see that the convergence performance of PICEAg-DS is
inferior to that of the other algorithms in the early stage of
optimizing the WFG2-4 test problems. That is, because of
the population random initialization after the differentiated
resource allocation strategy in PICEAg-DS, which allocates
more target vectors to the sparse subspaces and promotes their
convergence. Therefore, the convergence of PICEAg-DS is
faster than the other algorithms. For the WFG7-9 test prob-
lems, the convergence speed of PICEAg-DS is slightly lower
than that of PICEAg and CMOPSO when gen = [1, 50].
That is because the PICEAg-DS focus on the convergence
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in some subspaces that difficult to optimizing, which ignored
the convergence of the entire objective space to some extent.
However, in the later stage, PICEAg-DS is faster than the
PICEAg and CMOPSO, and finally outperforms the other
comparison algorithms.

3) THE COMPREHENSIVE PERFORMANCE ANALYSIS

From Table 6, we can find the IGD values of PICEAg-DS
outperform the other algorithms on WFG1-5 and WFG7-9 in
2-objective optimization problems and WFG1-3, WFG4 and
WEFGS in 3-objective optimization problems. However, it is
well known that WFG2, WFG3 and WFG6 are indecom-
posable functions, which are more difficult to optimize
than the decomposable functions of WFG4 and WFGS.
WFG7-9 are biased functions, which makes it difficult to
improve their diversity, and WFG9 is a complex problem
that has the characteristics of decomposable, multimodal,
deceptive and biased. Therefore, WFG9 is more difficult
than the other test problems. Moreover, the variance of
PICEAg-DS is better than the other algorithms in most test
problems, which means the PICEAg-DS has a good robust-
ness. In summary, the PICEAg-DS has a good comprehensive
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TABLE 5. The GD results of the five comparison algorithms on the WFG1-9 test problems.

Problems PICEAg-DS PICEAg CMOPSO EAG-MOEAD MOEAD-DRA
Mean (variance) Mean (variance) Mean (variance) Mean (variance) Mean (variance)
WFGI1 2 6.2904 e-3(2.57 e-3) 6.9792 e-3(3.01 e-3) - 9.2394 e-2(1.03 e-2) - 7.2639 e-2(2.08 e-2) - 1.0726 e-1 (2.03 e-2) -

3 24134 e-2(5.28 e-3)

WFG2 2 3.0605 ¢-4(8.63¢-5)
3 65477 e-3(1.71 e-3)
WFG3 2 5.2871 e-4(6.74¢-5)
3 5.2977 e-2(6.09¢-3)
WFG4 2 4.6426 e-4(9.13¢-5)
3 3.4126 e-3(2.18¢-4)
WFG5 2 6.3182 e-3(3.09¢-5)
3 8.8989 e-3(6.02¢-4)
WFG6 2 7.1659 e-3(1.86 ¢-3)
3 1.1625 e-2(2.47¢-3)
WFG7 2 3.7599 e-4(7.30e-5)
3 3.6874 ¢-3(3.30¢-4)
WFGS 2 1.1606 e-2(1.75¢-4)
3 2.3521 e-2(7.70e-4)
WFG9 2 1.3250 e-3(4.90¢-4)

3 5.4654 ¢-3(4.46¢-4)

2.0763 e-2(5.40 e-3) =
3.3234 e-4(5.84e-5) =
6.3047 e-3(1.10 e-3) =
6.3928 e-4(1.27 e-4) -
5.4831 e-2(8.45¢e-3) =
5.8248 e-4(1.25 e-4) -
3.9224 e-3(3.46¢-4) -
6.3145 e-3(3.61e-5) =
8.3141 e-3(2.70e-4) +
7.9421 e-3(2.22 e-3) =
1.1380 e-2(2.41e-3) =
4.8456 e-4(7.67¢-5) -
3.7443 e-3(2.13e-4) =
1.1674 e-2(1.31e-4) =
2.4014 e-2(5.86e-4) -
1.6420 e-3(3.12¢-4) -

4.9394 e-3(3.11e-4) +

14484 e-1(1.61 e-3) -
3.5281 e-4(4.03¢-5) -
2.0301 e-2(7.47¢-3) -
6.5357 ¢-4(9.09¢-5) -

96469 e-2(2.14e-3) -

14995 ¢-2(6.70e-4) -
6.6043 ¢-3(1.01e-4) -
13010 e-2 (9.43¢-4) -
1.3797 e-3(9.47e-4) +
1.0860 e-2(1.32¢-3) =
86368 c-4(7.43¢-5) -
1.0793 ¢-2(1.08¢-3) =
1.2104 e-2(4.17e-4) -
2.7619 e-2(1.34¢-3) -
2.1474 ¢-3(1.38¢-4) -

7.9621 e-3(9.61c-4) -

4.0386 e-3(1.45 e-3) -

4.8230 ¢-2(1.49 ¢-2) -
1.3291 e-3(1.17 e-3) -
42791 -2(1.10 e-2) -
9.6796 e-3(2.80 e-3) -
1.1693 e-1(4.11e-3) -
5.5906 c-4(1.59 ¢-4) -
8.1323 e-3(3.31 e-3) -
6.4540 ¢-3(6.86e-5) -
9.7134 e-3(2.13 e-3) =
1.2654 e-2(2.88¢-3) -
4.8282 e-2(6.23¢-3) -
5.6129 e-3(2.47 e-3) -
2.9610 e-2(4.37¢-3) -
3.1512 e-2(1.97 e-2) -
5.5672 e-2(5.11e-3) -
5.7850 e-3(3.39 e-3) -

1.2790 e-2(7.75¢-3) -

1.

8428 e-1(1.81 -2) -

9.7692 e-4(2.17 e-4) -

1.2656 €-2(9.69¢-3) -

1.

1945 e-3(2.27e-4) -

1.1256 e-1(2.48¢-3) -

8.8950 ¢-3(9.31e-4) -

1.4046 e-2(9.64¢-4) -

6.0731 e-3(1.55e-5) +

7.9615 e-3(2.38e-4) +

9.9763 e-3(7.55 e-3) =

2.2677 e-2(4.93¢-3) -

4.9864 e-4(1.35 e-4) -

7.1999 e-3(1.33 e-3) -

1.

2082 e-2(1.04e-3) -

3.8078 e-2(9.34e-3) -

6.0249 e-3(8.27 e-3) -

9.3194 ¢-3(6.21 ¢-3) -

Total (+/-/=) 2/719 1/15/2 0/17/1 2/15/1
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FIGURE 7. The curves of the GD values of the five comparison algorithms on the 2-objective WFG2-9 test problems.

performance in most of WFG test problems. It owes to the
contribution of the differentiated resource allocation strat-
egy, which allocates more target vectors to the individual
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sparse subspace that not only balances the solution dis-

tribution in both the sparse and dense subspaces but also
enhances the evolution ability of individuals in the sparse
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TABLE 6. The IGD results of the five comparison algorithms on the WFG1-9 test problems.

Problem PICEAg-DS PICEAg CMOPSO EAG-MOEAD MOEAD-DRA
Mean (variance) Mean (variance) Mean (variance) Mean (variance) Mean (variance)
2 9.9579 e-2(2.33 e-2) 1.1942 e-1(2.98 ¢-2) - 9.5639 e-1(7.04 e-2) - 7.3956 e-1(1.91 e-1) - 9.5375 e-1(8.22 ¢-2) -
wret 3 3.1497 e-1(4.34 e-2) 3.3004 e-1(4.83 e-2) = 1.5028 e+0(1.49 e-2) - 8.2797 e-1(2.01 e-1) - 1.5842 e+0(8.10 e-2) -
2 1.1648e-2 (3.86e-4) 1.1972e-2 (6.36¢-4) = 1.1888¢-2 (2.45¢-4) - 5.1594e-2 (3.75e-2) - 2.5769¢-2 (3.36¢-3) -
wrez 3 1.5897e-1 (3.48e-3) 1.6058e-1 (3.71e-3) = 1.8010e-1 (4.35¢-3) - 3.0443e-1 (2.71e-2) - 3.4989¢-1 (3.03e-2) -
2 1.3188e-2 (3.62¢-4) 1.3774e-2 (7.61e-4) - 1.3804e-2 (4.54e-4) - 1.8588e-1 (3.28e-2) - 1.9351e-2 (1.72e-3) -
wres 3 5.2068e-2 (5.24¢-3) 5.4082e-2 (4.35¢-3) = 1.5492e-1 (1.37e-2) - 3.1640e-1 (5.61e-2) - 1.9687e-1 (2.79¢-2) -
2 1.4129e¢-2 (6.73e-4) 1.4702e-2 (7.52e-4) - 4.5275e-2 (1.44e-2) - 1.6805e-2 (1.78e-3) - 8.2307e-2 (9.64e-3) -
wred 3 2.127%¢-1 (2.32¢-3) 2.1288e-1 (1.90e-3) = 2.6342¢-1 (3.78e-3) - 3.2382¢-1 (1.60e-2) - 3.8713e-1 (1.32e-2) -
2 6.3919¢-2 (1.58e-4) 6.3947e-2 (1.90e-4) = 6.7618e-2 (2.71e-3) - 6.5599¢-2 (5.96e-4) - 6.9735e-2 (7.41e-5) -
Wres 3 2.2436¢-1 (2.88¢-3) 2.2398e-1 (1.80e-3) = 2.4887e-1 (5.58e-3) - 3.7606¢-1 (1.91e-2) - 3.3676e-1 (3.16e-3) -
2 7.2078e-2 (1.78e-2) 7.9654e-2 (2.14e-2) = 2.0009e-2 (7.40e-3) + 2.4227e-1 (3.32¢-2) - 1.0126e-1 (7.46e-2) =
wree 3 2.3993¢-1 (1.18e-2) 2.3960e-1 (1.19¢-2) = 2.4034e-1 (7.18e-3) = 6.2858¢-1 (3.70¢e-2) - 4.4043¢-1 (2.49¢-2) -
2 1.3346e-2 (2.43e-4) 1.3795¢-2 (3.65¢-4) - 1.6742¢-2 (8.44¢-4) - 1.5730e-1 (3.38¢-2) - 1.5252¢-2 (7.09¢-4) -
wrer 3 2.1634e-1 (3.84¢-3) 2.1397e-1 (2.83e-3) + 2.3963e-1 (5.56e-3) - 5.5977e-1 (3.27e-2) - 3.6851e-1 (8.28e-3) -
2 1.1362e-1 (1.86e-3) 1.1490e-1 (2.07e-3) - 1.1855¢e-1 (3.82¢-3) - 3.1854e-1 (2.96¢-2) - 1.1448e-1 (9.05¢-3) =
wres 3 3.0862e-1 (5.81e-3) 3.1189%-1 (4.97e-3) = 3.3841e-1 (8.95¢-3) - 6.5143e-1 (2.98e-2) - 4.7304e-1 (6.01e-2) -
2 1.9503e-2 (3.95¢-3) 2.1979¢-2 (2.77e-3) - 2.6534e-2 (1.84e-3) - 5.9040e-2 (3.10e-2) - 7.1048e-2 (8.37e-2) -
wre 3 2.1137e-1 (2.51e-3) 2.0969e-1 (1.71e-3) + 2.2301e-1 (5.44¢-3) - 3.2680e-1 (3.99¢-2) - 3.4718e-1 (2.85e-2) -
Total (+/-/=) 2/6/10 1/16/1 0/18/0 0/16/2
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FIGURE 8. The PF obtained by the five algorithms on the 2-objective WFG2-9 test problems.

subspace, thus improving the overall convergence of the

population.

4) THE PF COMPARATIVE ANALYSIS

To intuitively show the optimization results of the five
comparison algorithms, Fig. 8. shows the PF obtained

205808

by the comparison algorithms on the 2-objective WFG2-9
test problems. From Fig. 8, we can see that the PF
obtained by PICEAg-DS all converge to the true PF on
most of the test problems (except for EFG5 and WFGS).
On the WFQG2 test problem, although the PF obtained by
MOEAD-DRA and EAG-MOEAD all converge to the true
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TABLE 7. The GD results of the five comparison algorithms on the UF1-9 and MOP1-7 test problems.

MOEA/D-M2M
Mean (variance)

NSGAII
Mean (variance)

SPEA2
Mean (variance)

Problem M Mz;i]?g%{a’;ie) Mear}} (Y/]:r?ance)
UF1 2 1.5880e-4 (2.40e-4) 1.3315e-2 (1.18e-2) -
UF2 2 7.1059¢-4 (4.13e-4) 5.0003¢-3 (7.79¢-4) -
UF3 2 2.7884e-3 (2.59¢-3) 3.4364e-3 (3.05e-3) =
UF4 2 2.4133e-3 (1.10e-5) 1.0646e-2 (7.90e-4) -
UF5 2 2.4543¢-2 (1.30e-2) 5.3660¢e-2 (1.33e-2) -
UF6 2 1.1231e-2 (9.87¢-3) 2.8299¢-2 (1.93e-2) -
UF7 2 4.1861¢-4 (3.94¢-4) 4.3916e-3 (1.09¢-3) -
UF8 3 1.3770e-3 (3.12¢-4) 3.2129¢-1 (4.92¢-2) -
UF9 3 9.6551e-3 (6.06e-3) 1.1407e-1 (9.02¢-2) -

MOP1 2 2.0885¢-4 (7.79¢-5) 2.5107e-2 (3.88e-3) -
MOP2 2 1.1324¢-17 (7.09¢-18) 2.6131e-2 (6.86e-3) -
MOP3 2 7.0767¢-3 (7.06e-3) 7.7508e-2 (2.11e-2) -
MOP4 2 2.6697e-4 (1.36e-4) 9.9165¢-3 (4.20e-3) -
MOP5 2 7.1401¢-2 (2.04e-2) 4.8865¢-2 (9.15¢-3) +
MOP6 3 1.6941e-4 (1.66¢-6) 1.6510e-2 (2.44¢-3) -
MOP7 3 1.9969¢-4 (2.51e-6) 8.2615¢-3 (3.37¢-3) -

2.1949e-3 (4.19¢-3) -
1.3953e-3 (3.12¢-3) =
3.9992e-3 (3.79¢-3) =
2.5719e-3 (6.84e-5) -
4.0668¢-2 (2.41e-2) =
1.5362¢-2 (9.41e-3) =
8.0511c-4 (3.88¢-4) -
1.3578e-1 (2.36e-2) -
1.7980e-1 (3.15¢-2) -
1.8416e-3 (1.05¢-4) -
1.9850e-3 (1.73e-3) -
1.1482e-3 (7.86e-4) +
6.2069¢-4 (2.54¢-4) -
2.2974e-3 (2.24¢-4) +
6.4606¢-3 (1.91¢-3) -

3.3284¢-3 (6.19e-4) -

5.4240e-4 (7.02¢-4) -
5.0478¢-4 (1.11e-4) =
8.9897e-4 (8.16e-4) +
2.4514e-3 (1.63e-5) -
2.8974e-2 (1.64¢-2) =
2.5312e-3 (3.47e-3) +
2.6886e-4 (1.45e-4) =
1.7714e-1 (2.46¢-2) -
5.4821e-2 (3.51e-2) -

1.9076e-4 (1.22¢-4) =

8.518 e-18 (5.82¢-18) =

3.0919¢-3 (1.31e-3) =
8.3589¢-4 (6.43e-4) =
4.5987e-2 (2.21e-2) +
1.6952¢-4 (2.66¢-6) =

2.1396e-4 (4.49¢-5) =

3.1334e-4 (6.15¢-4) =
4.4918¢-4 (1.53¢-4) +
1.1723¢-3 (8.68¢-4) +
2.4380e-3 (1.44e-5) -
1.8410e-2 (1.31e-2) =
6.1149¢-3 (9.69¢-3) =
3.2066e-4 (2.30e-4) =
1.7500e-1 (5.61¢-2) -
4.0794e-2 (1.57¢-2) -
2.1997e-4 (1.05e-4) =
0.0000¢+0 (0.00e+0) +
2.0731e-2 (9.09¢-3) -
4.3075¢-4 (4.38¢-4) =
4.0923e-2 (2.51e-2) +
1.7005¢-4 (2.05¢-6) =

2.1562e-4 (4.47e-5) =

Total (+/-/=) 171411

3/9/4 2/10/4 4/4/8

PF, their solution distribution is poor and some regions
have no solutions. On the WFG3 test problem, the PF
obtained by PICEA-DS, CMOPS and MOEAD-DRA all
converge to the true PF, while the PF obtained by PICEAg
and EAG-MOEAD are not the true PF; thus, their solu-
tion distribution is poor. On the WFG4 test problem,
the convergence of PICEA-DS and PICEAg are better than
the others. The solutions obtained by EAG-MOEAD and
MOEAD-DRA both have an even distribution, and CMOPSO
has no convergence and poor distribution in some areas.
On the WFGS test problem, the five algorithms do not
fully converge to the true PF, but their distribution is
fairly good. On the WFG6 test problem, the solutions
obtained by PICEAg-DS, PICEAg and CMOPSO all
converge to the true PF, but the EAG-MOEAD and
MOEAD-DRA do not convergence and their solution dis-
tributions are poor. On the WFG?7 test problem, except for
the EAG-MOEAD, the other algorithms all converge to PF.
On the WFGS test problem, all the algorithms do not fully
convergence, but the PF obtained by MOEAD-DRA and
CMOPSO perform better than the others. On the WFG9 test
problem, PICEAg-DS and PICEAg fully converge to the
true PF, while the EAG-MOEAD does not convergence and
CMOPSO and MOEAD-DRA do not converge in some areas.

In summary, except for the WFGS5 and WFGS test prob-
lems, the solutions obtained by PICEAg-DS all converge to

VOLUME 8, 2020

PICEAg-DS RVEA MOEA/D-M2M NSGAII SPEA2

FIGURE 9. The average ranking in GD metric of five algorithms on
MOP1-7and UF1-9 test problems.

the true PF and have a good distribution on the other test prob-
lems. It can be seen that the differentiated resource allocation
strategy proposed in this paper can effectively improve the
convergence and distribution of the population.

E. THE PERFORMANCE ANALYSIS OF PICEAg-DS ON
MOP AND UF TEST SUITE

To further analysis the performance of PICEAg-DS on MOPs
with complicated PF shape, such as UF test suite [29]
and a combination test suite, such as MOP test suite [5].
We compare PICEAg-DS with some popular algorithms,
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FIGURE 10. The box charts of GD values for the five comparison algorithms on the 2-objective UF1-7 and MOP1-5 test problems.

such as NSGA-II, SPEA2, RVEA, MOEA/D-M2M on
these test problems. And using the GD indicator to eval-
uation their convergence performance. The NSGA-II and
SPEA2 are MOEAs based on a domination relationship
and the RVEA and MOEA/D-M2M are MOEAs based
on decomposition, which are all representative MOEAs.
The parameter of simulated binary crossover (SBX) and
polynomial mutation are same setting with Table 2.
Besides, the number of subproblems in MOEA/D-M2M
is K = 10; the control parameter of RVEA is a =2
and set the N = 100, Maxgen = 3000 for 2-objective
MOP1-5 and N =300, Maxgen = 3000 for 3-objective
MOP6-7; N = 300, Maxgen = 1000 for 2-objective UF1-7
and N =300, Maxgen = 1000 for 3-objective UF8-9.
Besides, the differential resource allocation in PICEAg-DS
aims to promote the evolution in whole objective space.
Therefore, we using the GD indicator to evaluate their conver-
gence. To ensure the fairness of the comparison experiment,
each algorithm runs on each test problem for 20 times, and
then calculate their mean and variance as the final results,
which can be seen in Table 7.

In Table 4, it can be seen that the PICEAg-DS has
an improvement in convergence on 2-objective UF14,
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MOP4 and 3-objective UF8-9, MOP6-7 functions, and its GD
value in UF4,8-9 is significantly better than the other four
comparison algorithms. And the average ranking in GD met-
ric of five comparison algorithms is shown in Fig. 9. And we
can find the proposed PICEAg-DS ranking first, and followed
SPEA2, NSGAII, MOEA/D-M2M and RVEA. It proved that
the PICEAg-DS also has a good convergence in both MOPs
with complicated PS shape and combinational test suite. It not
only contributes the PICEAg-DS that combine the advantage
of decomposition and domination strategies, but also has a
differential resource allocation to balance the evolutionary
ability of the whole population.

Figs. 10 and 11 show the box charts of the GD val-
ues of the five algorithms in 2-objective UF1-7, MOPI1-5
and 3-objective UF8-9, MOP6-7 test problems. In these
box charts, “4” represents an abnormal value and the five
horizontal lines from top-to-bottom represent the maximum
value, the upper quartile, median, the lower quartile and the
minimum value of the GD values for 20 times. From the
Fig. 10, it can be seen that PICEAg-DS has a low column
height and few outliers in most of 2-objective MOP and
UF test problems, it proves that PICEAg-DS has a robust
convergence performance in these test problems. From the
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FIGURE 11. The box charts of GD values for the five comparison algorithms on the 3-objective UF8-9 and MOP6-7 test problems.
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FIGURE 12. The PF obtained by the five comparison algorithms on the 3-objective UF8-9 and MOP6-7 test problems.

Fig. 11, we can see the PICEAg-DS has the minimum mean
value of GD and lowest column height in all 3-objective
MOP and UF test problems. Therefore, PICEAg-DS has a
better convergence performance and robustness in these test
problems than MOEA/D-M2M, NSGAII and SPEA2. It also
shows the PICEAg-DS can maintain the convergence perfor-
mance with the number of objective increased.

To intuitively show the optimization results of the five
comparison algorithms in 3-objective test problems. The
Fig. 12. shows the PF obtained by each comparison algorithm
on UF8-9 and MOP6-7 test problems. From the Fig. 12,
the PF obtained by PICEAg-DS converges to the true PF
that is superior than the other algorithms, and it can be
clearly observed in Fig. 12(a) and (b). It is proved the effec-
tiveness of differential resource allocation in PICEAg-DS
that can enhance the evolutionary ability of whole popu-
lation and promote the convergence. But we also find the
PICEAg-DS has a poor performance in diversity, the reason
is that some regions of true PF are difficult to convergence,
when the algorithms are not fully convergence, the solutions
are well-distributed in objective space, and it can be seen
the SPEA2 in Fig. 12(a)-(b). But when they approach to
the true PF, the solutions tend to concentrate in the easy
optimization region, such as the PICEAg-DS, NSGAII and
SPEA?2 in Fig. 12(c)-(d). Thus, a larger population or more
evolutionary algebra may help to enhance the diversity. But
we also find PICEAg-DS has a fast convergence ability than
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the other comparison algorithms under the same experiment
condition.

V. CONCLUSION

To solve the problem of the imbalance in evolutionary ability
of the whole population, this paper proposes a preference-
inspired coevolutionary algorithm based on a differentiated
resource allocation strategy (PICEAg-DS). In PICEAg-DS,
a space distance operator is designed to divide the objective
space into several subspaces and evaluate the sparsity of each
subspace. Based on this, it realizes the dynamically resource
allocation and assigns more target vectors to the sparse sub-
spaces to increase the selection pressure and thus improve
the evolutionary ability. The effectiveness of differentiated
resource allocation strategy and PICEAg-DS are proved in a
series of simulation experiments. In the future work, we will
consider an adaptive resource allocation strategy in different
stage and further improve the performance on many-objective
problems.
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