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ABSTRACT Emotion recognition using miniaturised wearable physiological sensors has emerged as a
revolutionary technology in various applications. However, detecting emotions using the fusion of multiple
physiological signals remains a complex and challenging task. When fusing physiological signals, it is
essential to consider the ability of different fusion approaches to capture the emotional information contained
within and across modalities. Moreover, since physiological signals consist of time-series data, it becomes
imperative to consider their temporal structures in the fusion process. In this study, we propose a temporal
multimodal fusion approach with a deep learning model to capture the non-linear emotional correlation
within and across electroencephalography (EEG) and blood volume pulse (BVP) signals and to improve
the performance of emotion classification. The performance of the proposed model is evaluated using
two different fusion approaches — early fusion and late fusion. Specifically, we use a convolutional neural
network (ConvNet) long short-term memory (LSTM) model to fuse the EEG and B VP signals to jointly learn
and explore the highly correlated representation of emotions across modalities, after learning each modality
with a single deep network. The performance of the temporal multimodal deep learning model is validated
on our dataset collected from smart wearable sensors and is also compared with results of recent studies. The
experimental results show that the temporal multimodal deep learning models, based on early and late fusion
approaches, successfully classified human emotions into one of four quadrants of dimensional emotions with
an accuracy of 71.61% and 70.17%, respectively.

INDEX TERMS Emotion recognition, electroencephalography, blood volume pulse, convolutional neural
network, long short-term memory, temporal multimodal fusion.

I. INTRODUCTION

Automated emotion recognition using lightweight body sen-
sors and advanced machine learning technologies has been
used in different application domains such as computer
games [1], e-health [2], [3] and road safety [4]. Lightweight
wireless sensors in headbands and smart watches can be used
by individuals as they carry on their daily life activities. These
sensors can record physiological signals like blood volume
pulse (BVP), electroencephalograms (EEG), skin tempera-
ture and skin conductance in a minimally invasive manner.
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Among the various physiological signals available, EEG and
BVP have been found to be useful in inferring emotional
states. A strong correlation has been observed between such
physiological signals and basic emotions like sadness, anger,
surprise etc. [5], [6].

In recent research, multimodal data are utilised to improve
the performance of emotion classification [7]-[9]. Data from
multiple sources are correlated and can provide comple-
mentary emotion-related information. To capture such infor-
mation, it is important to capture the correlation between
modalities with a compact set of latent variables. However,
learning the latent emotion information in heterogeneous
physiological data like EEG and BVP signals is a challenging
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problem. This is because EEG and BVP signals are comprised
of heterogeneous time-series data and there are some emotion
structures within and across modalities over time.

Several approaches have been presented to address the
multimodal fusion problem. Early fusion refers to feature
concatenation in early integration. As this sort of approach
addresses the classification problem based on the extracted
features from each modality separately, it is not able to learn
patterns that exist across multiple data modalities. Therefore,
the early fusion approach is not able to capture the non-linear
correlation across modalities. This is due to the fact that the
correlation between features within each modality is stronger
than the cross correlation [10].

Therefore, to build a robust emotion recognition system
using multimodal physiological signals, it is essential to pro-
pose a multimodal fusion model that can capture and learn
the inherent changes within each modality as well as across
modalities. We believe that a good fusion model based on
multimodal data should be able to simultaneously learn a
joint representation of multimodal data, including temporal
structure within each modality.

Recently, deep learning techniques and architecture are
becoming well-known in capturing non-linear correlation
across multimodal data such as audio-visual [11] and phys-
iological signals [12], [13] and have obtained state-of-the-
art performance [10], [14]. The proposed multimodal fusion
methods are able to jointly learn the highly correlated repre-
sentation across modalities. Physiological signals are inher-
ently temporal in nature, which means that the current pattern
in the signal is influenced by the previous ones. However,
the multimodal networks like deep Autoencoder, and the
Boltzmann Machine do not model the temporal multimodal
fusion.

To address these challenges, we employ temporal deep
learning models with the aim to improve the performance of
emotion classification based on the fusion of EEG and BVP
signals from lightweight sensors.

Fig. 1 shows a simple illustration of the temporal mul-
timodal fusion model. The raw EEG and BVP signals are
segmented into consecutive windows. In each window (time
slice), the EEG signals and BVP signals are jointly learned
using the proposed networks. The learned joint represen-
tations across modalities in different windows are directly
connected from start to end, which makes the current window
learn using the previous window.

To build an automatic emotion recognition model based
on the conventional models, first features are extracted from
physiological signals. The features are concatenated and then
the generated multimodal feature set is passed into a clas-
sifier to determine the emotional states. However, our sys-
tem is trained in an end-to-end fashion. Using end-to-end
learning, the constructed features using ConvNet are trained
jointly with the classification step as a single network.
Moreover, in an end-to-end learning approach, the network
is trained from the raw data without any a priori feature
extraction.

225464

Time 1 Time 2

" EEG signals h EEG signals

|

!
= = == = 3
Joint : > Joint |JE:II:I'—"{ Joint

reavwwes [ BRSNS I mwsvesvyvye:

BVP signal BVP signal BVP signal

FIGURE 1. The proposed model demonstrates temporal multimodal
fusion. The EEG channels and BVP signal are segmented into windows.
The sequence of windows from each channel is fed into a deep learning
network and the output forms the joint representation across modalities.
The generated joint representation based on the current window depends
on the previous windows.

This is the first emotion recognition work that fuses
EEG and BVP signals from lightweight sensors using an
end-to-end temporal multimodal fusion model. The tempo-
ral multimodal fusion models based on convolutional neu-
ral networks (ConvNet LSTM networks) can fuse EEG and
BVP signals temporally to capture the temporal structures
of emotions within and across the modalities. Two types of
temporal multimodal fusion methods, early and late fusion,
are investigated in this study and compared with other recent
methods.

In this study, emotional states based on dimensions of
arousal and valence are categorised into four quadrants
(Fig. 2): HA-P which is High Arousal-Positive emotions;
LA-P which is Low Arousal-Positive emotions; HA-N which
is High Arousal-Negative emotions; and LA-N which is Low
Arousal-Negative emotions.

Arousal

HA-N HA-P

Valence

LA-N LA-P

FIGURE 2. Emotions categorised into four quadrants.

In summary, the contributions of the proposed framework

are as follows:
o We compare two temporal multimodal deep learning

models based on early and late fusion approaches using
a ConvNet LSTM model with end-to-end learning.
The goal of these two emotion classification models
is to improve the performance by obtaining tempo-
ral, emotion-related information from EEG and BVP
signals.

VOLUME 8, 2020



B. Nakisa et al.: Automatic Emotion Recognition Using Temporal Multimodal DL

IEEE Access

o We evaluate the performance of two temporal multi-
modal fusion models using different window sizes and
a sliding window strategy. We compare the proposed
models with non-temporal multimodal deep learning
models based on a trial-wise strategy. In trial-wise train-
ing, the entire duration of a raw physiological signal
per video clip, called a trial, is used as input and the
corresponding trial emotion label is used as the target
for training.

o« We demonstrate that temporal multimodal fusion
models can outperform, in regard to accuracy, the hand-
crafted features extraction method to classify emo-
tions into four quadrants from a dataset collected from
lightweight physiological sensors, namely Empatica

(E4) wrist bands and Emotiv headsets.
The paper is organised as follows: Section 2 provides a

theoretical background and a review of the related works. The
proposed methods are presented in Section 3. In Section 4,
we evaluate the performance of our systems for emotion
recognition based on our dataset collected using wearable
Sensors.

Il. BACKGROUND AND RELATED WORKS

Human emotion recognition based on physiological sig-
nals is becoming more popular as a research topic [15].
Two major components in our body are responsible for any
changes related to inner emotion: the Autonomic Nervous
System (ANS) and the Central Nervous System (CNS). Inner
emotional states can affect the body’s physiological signals
such as EEG and BVP signals which originate from these
two components [5], [6]. As EEG signals come directly
from the CNS, these signals can strongly capture emotional
states. It has been shown that emotion classification has often
improved when EEG signals are combined with different
modalities [15]-[17]. One of the best indicators of different
emotions is the BVP signal [5], [18], [19]. The BVP signal
indicates the blood flow rate controlled by heart pumping
activity and is regulated by the ANS. External stimuli and
emotional states modulate the activity of the ANS. The BVP
signal is measured using a photoplethysmography (PPG)
sensor. Although the accuracy of BVP is lower than that
of electrocardiograms (ECGs), due to its simplicity BVP is
widely used in biosensors developed for applications like
office workers” mental workload prediction [20].

A. EMOTION CLASSIFICATION FRAMEWORK
To build an automatic emotion recognition system, three main
steps should be considered: pre-processing, feature extraction
and emotion classification. In the pre-processing step, the raw
physiological signals are prepared for data modelling. In this
step, the noise and artefacts are removed to form purer sig-
nals. In the next step, a set of features of the denoised signals
are extracted. Then, a classifier is applied to classify different
emotions.

One of the most challenging steps in the pipeline of auto-
matic emotion classification is feature extraction. There are
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two main approaches for feature extraction: handcrafted
feature extraction methods and deep learning techniques.
To date, most of the reported approaches to recognise dif-
ferent emotions rely on extracting handcrafted features. This
process is accomplished either by taking advantage of human
expert knowledge or using a conventional feature extraction
algorithm.

Several useful EEG features from the time and frequency
domains are proposed and used to recognise different emo-
tional states. In our recent study [21], we reviewed a com-
prehensive set of extractable features from EEG signals, and
found the best salient subset of features and channels using
different evolutionary algorithms. There are some studies
that focus on extracting features from the time and fre-
quency domains from the BVP signal [22]-[24]. Some of
the time-domain features such as standard deviation, mean,
and variance from peak have been used in recognising dif-
ferent emotions. It has been shown that the power spec-
trum density from three sub-frequencies: VLF (0-0.04 Hz),
LF (0.05-0.15 Hz) and HF (0.16-0.4 Hz), and the ratio of
LF/HF can accurately distinguish different emotions.

It should be noted that the performance of the emotion
recognition model significantly depends on the quality of
the extracted features. As a result, it is always desirable
to extract the most relevant and critical features. However,
extracting salient features needs expert knowledge which
is time-consuming. Moreover, extracting features from dif-
ferent physiological signals is challenging as the extracted
features are not always robust to variations like noise and
signal resolution.

Recently, deep learning (DL) methods have increasingly
emerged to solve challenging problems. DL methods have
strong capabilities in constructing reliable features in differ-
ent domains like speech recognition [25] and time-series data
analysis [26], [27]. It has been shown that DL techniques
are more reliable for effective modelling compared to the
popular feature extraction-based methods [11], [28], [29].
One of the DL methods, which has been successfully used
for automatic feature extraction, is a convolutional neural
network (ConvNet). As a ConvNet has a strong capability for
learning features, it is suitable for multidimensional signal
processing applications. By using its convolution compo-
nent, a ConvNet can learn local patterns in data. It firstly
extracts local, low-level features from the raw input, and then
increasingly extracts more global and high level features in
deeper layers. Some studies have applied a ConvNet with a
different number of layers to physiological signals to classify
different emotions [28], [30]-[32]. However, in these studies,
they extracted some features from raw physiological signals,
and then applied ConvNet techniques to extract higher-level
features and classify different emotions.

Another advanced technique that has achieved high accu-
racy is LSTM-based emotion recognition. This technique
has been applied to EEG signals to recognise emotions
in three dimensions: arousal, valence and liking. Another
study applied a stacked autoencoder to extract better EEG
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features [33]. It should be noted that some features such as
power spectral density were extracted from raw 32-channel
EEG signals. PCA techniques were applied to reduce the
high dimensionality and improve the performance of the
model. Although different deep learning techniques have
been applied and have achieved good performance, these
techniques have been applied to full-scale EEG signals with
32 channels.

B. MULTIMODAL DATA FUSION FOR EMOTION
CLASSIFICATION

Using multimodal input has improved the accuracy of emo-
tion recognition compared to using inputs of a single modal-
ity. This is because the multimodal data provide additional
information which results in higher accuracy of the overall
result or decision. Generally, there are two types of fusion
for different modalities: early fusion and late fusion. In early
fusion, different features are first extracted from each modal-
ity, then all features are concatenated to construct a joint
feature vector. The joint feature vector is then used to build an
effective classifier. Using the early fusion approach, we are
able to identify the correlated features that improve recog-
nition accuracy. However, with this approach there is little
control over the contribution of each feature set from each
modality on the final result. Moreover, the joint feature space
from different modalities can result in high dimensionality
and a more difficult classifier design. Therefore, large train-
ing sets are typically required for model training.

Furthermore, the derived features from the various modal-
ities are different in many aspects like sampling rate.
Therefore, multimodal learning at this level is sometimes
difficult. Some studies have shown early fusion can improve
the performance of emotion recognition based on different
modalities [7], [34], [35].

In contrast, in a late fusion approach, the feature set of each
modality is examined and classified independently, then the
results from each modality are fused into a decision vector.
The benefit of using late fusion compared to early fusion
is that it is easier to combine asynchronous data. Another
advantage of this fusion model is that every modality utilises
its best classifier which is suitable for the task. This may
help to increase the performance of the model. Late fusion is
most commonly used with a the combination of gestures and
speech [36]. However, it is almost certainly incorrect to use
late fusion in real-time approaches. Using late fusion method,
each modality is treated independently, and then combine
their results at the end. In a real-time environment, people
produce audio, video and tactile interactive signals containing
both complementary and redundant information. Both early
and late fusion approaches have a weakness in capturing the
non-linear correlation across modalities [10].

Deep learning has become the most effective method used
in fusing different modalities in different domains, particu-
larly in audio-visual speech recognition [10], [37] and affec-
tive computing [11], [37]-[39]. For example, two Deep Belief
Networks (DBNSs) with the multimodal Restricted Boltzmann
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machine are combined [37], where each DBN is used to train
one modality. The proposed multimodal DBN has surpassed
the multi-stream HMM models. The Multimodal Restricted
Boltzmann machine has shown to be effective in fusing both
audio and visual modalities to generate a joint representation.
However, in the proposed deep learning networks, the tempo-
ral information was not considered, which apparently devi-
ates from the natural properties of time-series data.

From the literature review on emotion classification using
physiological signals, most of the proposed solutions found
are not based on an end-to-end method. It means that some
features are first extracted from the physiological signals
and then deep learning techniques are applied. Moreover,
the advanced fusion techniques based on deep learning
approaches are not well explored in this domain.

In this study, we propose multimodal deep learning models
based on early and late fusion using an end-to-end learn-
ing approach. We investigate the performance of the models
on data comprised of the fusion of EEG signals with only
5 channels and BVP signals captured via lightweight sensors.
This investigation can help build an application to be used in
real-time situations.

Ill. MODELS

This section presents the proposed temporal multimodal
(EEG and BVP signals) fusion with deep learning mod-
els to capture the temporal emotion structures within and
across the modalities. The proposed deep learning models
are based on end-to-end ConvNet LSTM networks and two
different fusion approaches: early and late fusion. Using an
early fusion model, the raw EEG and BVP data are fed
into a ConvNet network to extract features, and then all the
generated features are concatenated to form a joint feature
vector. The created joint feature vector is fed into the LSTM
network followed by a dense and soft-max layer for emotion
classification.

Using a late fusion model, the raw EEG and BVP data
are fed into a ConvNet followed by the LSTM network and
dense layer. The generated features from each network are
combined and then fed into a dense and softmax layer for
emotion classification.

These models were evaluated on the dataset collected using
wearable physiological sensors (Empatica E4 and Emotiv
Insight). The Empatica E4 and Emotiv capture BVP and EEG
signals, respectively.

The dataset is described in Section A and the data prepara-
tion for the temporal multimodal deep learning is described in
Section B. We then present two new frameworks for temporal
multimodal deep learning based on early and late fusion (Sec-
tions C and D). Finally, the ConvNet architecture designed for
this study is presented in Section E.

A. DESCRIPTION OF DATASET

We investigated the performance of the temporal multimodal
model on a dataset collected from 20 subjects, aged between
20 and 38. Each participant watched nine video clips used
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in the MAHNOB dataset [40] to induce different emotions.
These video clips contain movie scenes selected from popular
movies such as Gangs of New York, Earworm, and The
Pianist and the videos are annotated by psychology experts.
The videos were selected based on the highest number of tags
in different emotion classes. For example, the video clips with
the highest number of happiness tags were selected to induce
happiness. While the participants watched the video clips
their brain activity (EEG) and heart activity (BVP) was cap-
tured using lightweight sensors. We used Emotiv insight and
Empatica E4 to capture EEG and BVP signals, respectively
(see Fig. 3). The Emotiv insight contains only 5 channels
(AF3, AF4, T7, T8, and Pz) with 2 reference channels. The
channels are located based on the international 10-20 system
(see Fig. 4).

(2) (b)

FIGURE 3. (a) The Emotiv Insight headset (link), (b) the Empatica
wristband (link).

FIGURE 4. The location of the five channels of the Emotiv sensor are
indicated by black dots. The nose is placed at the centre front, with an ear
on each side.

To acquire the raw BVP and EEG signals, Empatica
Connect and TestBench software was used. After watching
each video clip, each participant was asked to express their
emotional state (anger, happiness, disgust, surprise, neutral,
anxiety, amusement, sadness and fear) using a keyboard.

In this study, the presented emotional states were mapped
into four quadrants of dimensional emotions. In the first step,
the participants were asked to close their eyes and relax for
about one minute while their baseline EEG and BVP signals
were recorded with the least amount of ocular noise. One
minute silence was allowed between each video clip to help
to prevent mixing up the current emotion with the previous
emotion. Fig. 5 shows the experimental protocol.

The collected signals were analysed manually to ensure
data quality. Noisy and low quality EEG signals from the
lightweight Emotiv sensors were ignored. The generated
noise in the EEG signals may have been the result of shifting
electrodes or a loose contact. After removing noisy data,
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FIGURE 5. The experimental protocol for emotion elicitations with
20 participants. Each participant watched nine video clips and was asked
to report their emotions after each clip (via self-assessment).

EEG signals from 17 out of the 20 participants, nine females
and eight males, were used in this study. The expected benefit
of these sensors is due to their lightweight, and wireless
nature, making them possibly the most suitable for free-living
studies in natural settings.

B. DATA PREPARATION FOR THE PROPOSED MODELS

There were nine trials for each participant as each participant
watched nine video clips. Each trial was labelled with a
different emotion class. Six channels of signals were recorded
for each trial: five EEG channels and one BVP channel.
To prepare the data for temporal multimodal learning, a slid-
ing window strategy was used on each channel per each trial.
We applied a sliding window and created a set of successive
fixed-size windows with a fixed degree of overlap. Let us
denote the 6-channel inputs as sequences of length 7', namely

EEG_chy = (ch}, ..., ch'™ et ..., chl),
EEG_chy = (ch3, ..., chy ' chly, ... chb),

EEG _chs = (ché, e ch’s_l, chs, ..., chg),
BVP = (BVP',...,BVP'""! BVP', ..., BVPT)

where ch,..., chi and BVP' denote the window of
EEG_chy, ..., EEGcy; and BVP at time slice ¢.

All of the generated windows are considered to be the new
training data examples with the same labels as their origi-
nal trials. We then segmented each channel into consecutive
windows with different window sizes (2 sec, 3 sec, 5 sec and
10 sec) and 50% overlap. Pre-processing techniques such as
band-pass filtering (6" order Butterworth filtering), Notch
filtering and ICA were applied to the EEG signals. To remove
noise and artefacts from the BVP signals, a 3 Hz low-pass
Butterworth filter was applied. In addition, we normalised our
data with a zero mean and unit variance.

C. TEMPORAL MULTIMODAL DEEP LEARNING BASED ON
EARLY FUSION

This section presents the proposed temporal multimodal deep
learning model with an early fusion approach. In the proposed
model, the temporal physiological signals were fused into
joint representation sequences at an early stage (after Con-
vNet). Fig. 6 depicts the architecture of the proposed model.
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FIGURE 6. The overall end-to-end pipeline of the temporal multimodal deep learning model based on early fusion
using ConvNet LSTM. The inputs to this system are the EEG (five EEG channels) and BVP (one channel) signals. The
inputs are segmented into successive fixed-size windows with some degree of overlap (50% overlap). The output
of this model is one of four dimensional emotions (HA-P, HA-N, LA-P and LA-N). The created window at time ¢
from each of the six channel is fed into a two-block ConvNet to extract feature maps. The output feature maps at
time ¢ from each channel are concatenated to build the joint representation. The created joint representation at
time slice t is then fed into the two layers of LSTM followed by a dense layer and a soft-max layer for emotion

classification.

This model consists of four layers: input layer, ConvNet,
feature map, early fusion and classifier.

Input. The temporal multimodal deep learning model
strongly depends on its inputs. To apply the temporal mul-
timodal learning, the sliding window strategy was applied to
each of the EEG and BVP channels. The window at time ¢
from each channel is considered as an input to be fed into the
ConvNet for training.

ConvNet. For each channel, the input, the window at time ¢
from each channel, was fed into the 2-block ConvNet fea-
ture extractor. The hierarchical features through convolution,
activation, normalisation and max-pooling layers were then
learned. Since in this study physiological signals are used,
we applied a 1D convolution layer.

There are more details about the ConvNet architecture in
Section 3.5. Based on this architecture, the window at time ¢
from each EEG and BVP signal was individually fed into the
ConvNet architecture. The output of the ConvNet from each
channel at time 7 was the corresponding feature map.

Feature map. If ConvNet',  denotes the ConvNet for
EEG_ch; and if FM éhl denotes the corresponding feature
maps at window ¢, then:

FM!,, = ConvNet',, (ch)

To achieve temporal ConvNet learning for each channel, both
the current input and its history are considered. To obtain the
feature maps representation, the recent per-modality history
(ConvNer'~!) at window  is appended to the current window.

The prepared feature maps at time ¢ from each EEG chan-
nel are concatenated to form an EEG joint representative
feature map at time ¢.
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Early fusion. In this layer, at each time step (¢) the EEG
joint representation feature map and BVP feature map are
concatenated to build a single feature map vector.

Classification. In this layer, two layers of LSTM network
followed by a dense and softmax layer were used to model
the overall temporal dynamics of the multimodal feature rep-
resentation at time ¢. It should be noted that an LSTM network
can help in learning the temporal emotion structures, because
the LSTM network consists of hidden states or memory which
helps in storing the previous information (hidden layers) and
learning the temporal emotion structures.

Therefore, the output of the LSTM at time ¢ depends on
the preceding hidden states (#-7) as well as the current state,
which can capture the temporal aspect of the previous joint
representations as well. It should be emphasised that the pro-
posed model is able to learn the temporal pattern from each
channel separately as well as the temporal patterns across
modalities using the joint representations.

D. TEMPORAL MULTIMODAL DEEP LEARNING BASED ON
LATE FUSION
In this section, a temporal multimodal deep learning model
based on late fusion is presented. In the proposed architecture,
the EEG channels and BVP signal are temporally fused based
on a late fusion approach. The architecture of this model
consists of input, ConvNet, feature map, LSTM networks,
late fusion and output layers (see Fig. 7). The input ConvNet
layers in this architecture are the same as for the temporal
multimodal learning model based on early fusion.

Input. First the windows from each 6 channels (5 EEG
channels and 1 BVP signal) at time ¢ are fed into the ConvNet.
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FIGURE 7. The overall end-to-end pipeline of the temporal deep learning model based on late fusion using ConvNet LSTM networks. The
inputs to this system are the EEG (5 EEG channels) and BVP (one channel) signals. These signals are divided into successive fixed-size
windows with a degree of overlap (50% overlap). The output of this model is one of four dimensional emotions (HA-P, HA-N, LA-P and
LA-N). The generated window at time ¢ from each 6-channel are passed into individual two-block ConvNet to extract feature maps. The
output of feature maps from EEG channels over the window ¢ are combined to build the joint representation. The created joint
respresetation at time slice ¢ from each modality (EEG and BVP) are fed into a two layers of LSTM and a dense layer. The output of dense
layer at time ¢ from two modalities are combined to create a joint representative and then is fed into a dense layer followed by a

Softmax layer for emotion classification.

ConvNet. For each channel, the input, the sliced window
from each channel at time #, is fed into the 2-block feature
extractor. The architecture of the ConvNet in this architecture
is the same as early fusion.

Feature map. The feature map of each channel is generated
by a ConvNet. The feature map of each EEG channel is
concatenated to form a joint representative feature map for
EEG modality. The feature maps from each modality are fed
into two layers of LSTM networks followed by a dense layer.

In the late fusion layer, the higher level feature maps gen-
erated from the two-layer LSTM and a dense layer from each
modality at time ¢ are combined to build a joint representative
layer.

Classification. To classify different emotions, the joint
representative layer at time ¢ is fed into a dense layer and a
softmax layer.

E. ConvNet ARCHITECTURE FOR THE RAW
PHYSIOLOGICAL SIGNALS

Using a ConvNet, the local non-linear features are firstly
learned, then the higher-level features are generated from the
lower-level features. The ConvNet consists of convolutional
layers, which can produce lower-level features using a set
of learnable filters, and multiple layers of processing, which
can represent the higher-level features. In addition, many
ConvNet networks use a pooling layer to control overfitting.
A pooling layer reduces the number of parameters in the
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TABLE 1. Two-blocks of ConvNets architecture.

ConvNet

Convolutional Layer: Filter=20,kernel size=(10,1), stride=2
Exponential Linear Units(ELU): Alpha=0.1

Batch Normalization+ Dropout (0.15)

Max-Pooling: Pool-size=(2,1), stride=2

Convolutional Layer: Filter=20,kernel size=(10,1), stride=2
Exponential Linear Units(ELU): Alpha=0.1

Batch Normalization+ Dropout (0.15)

Max-pooling: Pool-size=(2, 1), stride=2

network and the spatial size of representation which can help
to avoid overfitting.

In this study, we proposed a ConvNet network consist-
ing of a two-block convolutional max-pooling layer (see
Table 1.). A convolutional layer, an Exponential Linear Unit
(ELU), a batch normalisation layer and a max-pooling layer
forms each block of the ConvNet. In the convolution layer,
the current input/window at time ¢ or the outputs of the
previous layer with the set of filters (K) are convolved to be
learned. This layer is able to capture the temporal information
using trainable filters. The output of each filter is computed
according to

y = frame' * K + b

where b is the bias term, and * is the convolution opera-
tor. The activation function used in the proposed method is
Exponential Linear Units (ELU) that maps the output of the
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previous layer by the following function:
ELU (x) = alpha * (exp (x) — 1)x < 0, ELU (x) = xx > 0.

There is also a batch normalisation layer that normalises
the output of the previous feature maps. We used a max pool-
ing layer, to reduce the number of parameters. In fact, it down-
samples the input by taking maximum feature maps over the
defined window (local neighbourhood). Table 1 presents the
two-blocks of ConvNet architecture.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed models, we used
the dataset comprised of physiological signals (EEG and BVP
signals) collected using wearable sensors to analyse human
affective states. We evaluated the temporal multimodal deep
learning models (early and late fusion approaches) and com-
pared them with multimodal learning models based on a trial-
wise strategy and handcrafted feature extraction methods.
Our experimental results show that the proposed temporal
multimodal learning models are effective in building an auto-
matic human emotion recognition system using EEG and
BVP signals in an end-to-end manner.

To evaluate the performance of the two proposed mod-
els, first the efficacy of the sliding window strategy was
investigated. The performance of the proposed models based
on early and late fusion approaches with different win-
dow sizes (Section 4.1) was evaluated and compared with
each other. Moreover, these two models were also evaluated
based on a non-temporal strategy, where the input layer is
based on a trial-wise strategy instead of a sliding window
strategy.

In Section 4.2, the confusion matrices of the temporal mul-
timodal deep learning models most successful in classifying
human emotions into four quadrant dimensional emotions
are presented. Lastly, in Section 4.3, the best average perfor-
mance of both of the ConvNet LSTM models are compared
with models that use the conventional handcrafted feature
extraction method.

A. EXPERIMENTAL SETUP
An extensive experiment was conducted to determine if the
proposed temporal multimodal deep learning models based
on early and late fusion can be used as an effective fusion
method for automatic emotion classification using BVP and
EEG signals. We focused on four classes of dimensional
emotions (LA-P, HA-P, LA-N and HA-N), used a subject-
independent approach and applied the leave-one-subject-out
cross validation (LOSO) method 17 times. This means that
the video clips for one subject were used for testing and the
video clips for the remaining subjects were used for training.
The proposed models were learned using the training dataset
and then evaluated using the test dataset. This process was
repeated 17 times until all the participants data were used as
the test dataset.

To prepare the input data, the EEG and BVP signals
were divided into successive fixed size windows with a
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fixed 50% overlap. Different window sizes were selected
to evaluate the performance of the proposed temporal
models. Before the segmentation, some noise reduction
techniques such as Butterworth, Notch filtering and ICA
were applied. The proposed multimodal learning models
(early and late fusion) based on temporal and non-temporal
approaches use two-layer LSTM networks followed by a
dense layer with 100 and 20 hidden states, respectively.
To train our models, learning batches of 10 sequences were
used. Early stopping was also set for the validation pro-
cess. This is the configuration which resulted in minimum
loss and highest accuracy. The training was performed for
300 iterations.

B. COMPARISON OF TEMPORAL AND NON-TEMPORAL
MODELS BASED ON EARLY AND LATE FUSION

In this section, the effectiveness and performance of the two
temporal multimodal deep learning models (early and late
fusion) are evaluated based on different window sizes and
compared with the non-temporal multimodal learning mod-
els. The aim of this comparison is to present the efficacy of
the sliding window strategy on emotion classification.

To evaluate the efficacy of the sliding window strategy
on emotion classification using multimodal learning models,
we investigated the performance of the two temporal mul-
timodal deep learning models using different window sizes:
2 sec, 3 sec, 5 sec and 10 sec. The small window sizes were
selected to make it possible for real-time applications.

The architecture of the non-temporal multimodal learning
models is the same that of the temporal models, only the input
layer in the latter models is different. The input layer in the
non-temporal models is based on a trial-wise strategy. In the
trial-wise training, the input is the whole duration of the raw
physiological signals per video clip, called a trial, whereas,
the target, the corresponding trial label is used for training
the ConvNet. The EEG channels and BVP signal for different
video clips were used for training. In our data collection,
we were given 9 trials per 17 subjects. Therefore, the total
number of training and testing samples was 9 x 17=153.

As the lengths of the video clips varied, data from each
video clip was transformmed into the same length. This
approach helped in preparing the input data for ConvNet for
the trial-wise strategy. To transform video vlips data with
different length into the same length, zero-padding approach
and the maximum length are considered.

Fig. 8 presents the distribution accuracy of the two mul-
timodal learning models based on non-temporal (trial-wise)
and temporal data with different window sizes, 2 sec, 3 sec,
5 sec and 10 sec, with 300 iterations.

As shown in Fig. 8, as the window size increases, the
performance of emotion classification based on both tem-
poral multimodal deep learning models improves, with the
best performance achieved with a window size of 10 sec.
It also shows that both temporal models using ConvNet can
capture and better learn spontaneous patterns with a longer
window size.
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FIGURE 8. The figure shows the accuracy distribution of the temporal multimodal deep learning
model with different window sizes and the non-temporal multimodal deep learning model based on

early and late fusion.

TABLE 2. The average performance of the temporal multimodal deep learning models with different window sizes, and the non-temporal models.

Temporal model

Fusion Non-temporal
Models 10-sec 5-sec 3-sec 2-sec model

Accuracy Valid Accuracy Valid Accuracy Valid Accuracy Valid Accuracy Valid

Loss Loss Loss Loss Loss
Early fusion 71.61+  0.62% 65.5+ 0.74+ 61+ 0.81+ 56 + 0.93+ 55.07+ 0.96+
2.71 0.08 33 0.03 2.7 2.4 34 0.07 4.3 0.13
Late fusion 70.17£  0.63% 64.4+ 0.74+ 59.4+ 0.87+ 55.9+ 0.94+ 52.28+ 0.98+
3.7 0.10 3.7 0.09 1.9 2.4 34 0.05 4.6 0.15

From the figure it can be seen that the performance of all
the temporal models with different window sizes is higher
than that of the non-temporal models. It shows that the sliding
window strategy is essential for building an accurate emotion
classification model. Moreover, the overall accuracy of the
early fusion temporal multimodal deep models is slightly
better compared to the late fusion models. This means that the
accuracy of the classification of emotions into four quadrants
of dimensional emotions is increased using an early level
fusion approach, as this approach can capture the correlated
emotional information across modalities.

The average performance of the temporal and non-temporal
models, including average accuracy =+ standard devia-
tion, average loss value £ standard deviation is presented
in Table 2. As shown in Table 2, the overall accuracy of the
multimodal learning models based on early fusion is higher
than those based on late fusion for both the temporal and
non-temporal approaches. It also shows that the performance
of both temporal models based on early and late fusion with a
window size longer than 3 sec is significantly improved. This
not only confirms the efficacy of the sliding window strategy
in improving emotion classification using multimodal learn-
ing models, but also shows there is no generic window size
that can be used to achieve high performance for this emotion
classification problem.

Since the goal of this study is to apply the proposed model
to automatic emotion classification with the potential for
real-time applications, it is necessary to choose the smallest
window size which gives the highest accuracy.
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A window size of 10 sec or 5 sec could be the acceptable
for classifying emotions into four quadrants of dimensional
emotions. However, the performance of the model using a
10-sec window size is more accurate than using a 5-sec
window size.

C. EVALUATION OF TEMPORAL MULTIMODAL DEEP
LEARNING MODELS USING EARLY AND LATE FUSION ON
EMOTION CLASSIFICATION

In this section, the performance of emotion recognition using
the two proposed models with a 10-sec window size and 300
iterations is evaluated and compared. Fig. 9 and 10 show
the confusion matrices of the four quadrants of dimensional
emotions for the temporal multimodal deep learning models
based on early and late fusion, respectively.

HA-N-

FIGURE 9. Temporal deep learning model based on early fusion.

As shown in Fig. 9, recognising high-arousal negative
(HA-N) emotions is more difficult than recognising the other
three quadrant emotions. It also shows that HA-N emotions

225471



IEEE Access

B. Nakisa et al.: Automatic Emotion Recognition Using Temporal Multimodal DL

TABLE 3. The comparison of the best average performance of our proposed model with other state-of-the-art methods.

Models Model Class No. Accuracy

Lietal. [12] CRNN 2 Valence: 72.06%
Arousal: 74.12%

Xing et al. [13] LSTM 2 Valence: 81.10%
Arousal: 74.38%

Alhagry et al. [41] LSTM RNN 2 Valence: 72.06%
Arousal: 74.12%

Nakisa et al. [21] Handcrafted feature extraction 4 65.04F 3.19%

model
Our proposed model ConvNet LSTM 4 71.61+ 2.71%

(early fusion)

HA-P HA-N LA-P LA-N

FIGURE 10. Temporal deep learning model based on late fusion.

are often misclassified as HA-P emotions. The LA-P quadrant
emotions are often recognised as either HA-N or HA-P. It is
also shown that the model is able to recognise LA-N emotions
more accurately compared to the other four quadrants of
dimensional emotions.

Fig. 10 shows that the late fusion model is able to classify
HA-N and LA-P emotions better than HA-P emotions and the
HA-P quadrant is often misclassified as the HA-N quadrant.
It also shows that the performance of this architecture in
recognising LA-N is as good as the temporal multimodal deep
learning model based on early fusion.

Overall, the performance of the temporal model based on
early fusion in classifying emotions into four quadrant dimen-
sion emotions is better than the late fusion model, particularly
in classifying HA-N.

D. COMPARISON OF TEMPORAL MULTIMODAL DEEP
LEARNING MODELS WITH THE LATEST APPROACHES
Finally, the most highly tuned configuration of our system
was compared with some of the latest methods. The exper-
imental results for emotion classification are presented
in Table 3.

Based on the comparison with other methods, although
these other methods have achieved high accuracy using only
EEG signals with 32 channels, they used medical sensors
(medical cap) which have a higher resolution in terms of
data collection. Moreover, the results from the other models
are based on two-class labels (arousal and valence) of emo-
tions. Whereas, our model was evaluated using data captured
by lightweight mobile sensors with only 5 EEG channels.
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Moreover, our proposed model was able to achieve similar
accuracy on four-class emotion classification (HA-N, HA-P,
LA-P and LA-N).

Li et al. [12] developed a ConvNet and recurrent neural
network (RNN) model based on only EEG signals.

However, in this model the wavelet energy of the EEG
signals was used as input for the ConvNet RNN model.
Moreover, they evaluated the performance of the model on
two-class emotion classification (arousal and valence).

In contrast, our model is based on raw EEG and BVP
signals consumed in an end-to-end temporal manner. This
means we fed the raw signals into the ConvNet LSTM model
without any feature extraction. Moreover, the performance
of the proposed model was evaluated on the classification of
emotions into four dimensional emotions.

Xing et al. [13] extracted some features from the frequency
domain such as Power Spectrum density (PSD) to feed into
their Stack Autoencoder LSTM model. The model was eval-
uated on arousal and valence, with 81.10 and 74.38 per cent
accuracy achieved, respectively. Although, we achieved a
lower performance (71.61 per cent), the output of our model
was four-class classification of emotions.

In our previous study [21], we analysed the performance
of conventional handcrafted feature extraction models using
EEG and BVP signals. Table 3 shows that the temporal mul-
timodal deep learning models using both early and late fusion
improved the accuracy of emotion classification by about
4% compared to the handcrafted feature extraction methods.
This improvement confirms that temporal multimodal deep
learning methods are able to better capture the latent emotion
structure within and across EEG and BVP signals.

This study confirms that the fusion of signals captured via
lightweight mobile body sensors as input to a deep learning
model can accurately classify emotions into four quadrants
of dimensional emotions, thus confirming the feasibility of
using these sensors for non-critical applications.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed two new frameworks using tem-
poral multimodal learning models based on early and late
fusion in the context of emotion recognition. The proposed
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temporal multimodal deep learning models are based on
ConvNet LSTM networks using an end-to-end method. We
evaluated the performance of the proposed model on our
dataset collected using wireless wearable sensors (Emotiv
and Empatica wristband). Our dataset was comprised of the
physiological signals of 17 participants recorded while they
watched nine video clips. A sliding window strategy was
utilized to apply temporal multimodal learning models to
these physiological signals. Hence, the raw physiological
signals were divided into successive fixed-size windows with
a 50% overlap. The performance of the proposed models
with different window sizes was investigated and compared
with the non-temporal multimodal learning models using a
trial-wise strategy. In the trial-wise training, the entire dura-
tion of the raw physiological signal per video clip, called
a trial, was used as inputs to the model and the corresponding
trial label was used as the target for training. It was shown that
the performance of the temporal multimodal deep learning
models using early and late fusion was higher than that of
the multimodal learning models based on a non-temporal
strategy, with recorded accuracies of 71.614+2.71 and 70.17+
3.7 versus 55.07+ 4.3 and 52.28+ 4.6, respectively. More-
over, the average accuracies of temporal multimodal deep
learning models based on early fusion with different window
sizes were higher than those for the late fusion model. The
results showed that the temporal multimodal models based
on early fusion with longer window sizes perform better
than those with shorter window sizes. In this study, the best
results for the multimodal learning model based on EEG and
BVP signals were achieved with a 10-sec window, resulting
in an accuracy of 71.61 & 2.71. The proposed models out-
performed models based on the handcrafted feature extrac-
tion method, because these models can better capture the
latent emotion structure within and across EEG and BVP
signals.

Despite the promising results, there is still a need to investi-
gate other deep learning techniques and evaluate their perfor-
mance. Moreover, this study was based on a limited number
of participants and it would be worthwhile to expand the study
and investigate the performance and the methods with a larger
sample of participants.
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