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ABSTRACT Electrocardiogram (ECG) gives essential information about different cardiac conditions of
the human heart. Its analysis has been the main objective among the research community to detect and
prevent life threatening cardiac circumstances. Traditional signal processing methods, machine learning and
its subbranches, such as deep learning, are popular techniques for analyzing and classifying the ECG signal
and mainly to develop applications for early detection and treatment of cardiac conditions and arrhythmias.
A detailed literature survey regarding ECG signal analysis is presented in this article. We first introduce a
stages-based model for ECG signal analysis where a survey of ECG analysis related work is then presented
in the form of this stage-based process model. The model describes both traditional time/frequency-domain
and advanced machine learning techniques reported in the published literature at every stage of analysis,
starting fromECGdata acquisition to its classification for both simulations and real-timemonitoring systems.
We present a comprehensive literature review of real-time ECG signal acquisition, prerecorded clinical ECG
data, ECG signal processing and denoising, detection of ECG fiducial points based on feature engineering
and ECG signal classification along with comparative discussions among the reviewed studies. This study
also presents a detailed literature review of ECG signal analysis and feature engineering for ECG-based body
sensor networks in portable and wearable ECG devices for real-time cardiac status monitoring. Additionally,
challenges and limitations are discussed and tools for research in this field as well as suggestions for future
work are outlined.

INDEX TERMS ECG analysis, cardiac arrhythmias, QRS and ST detection, ECG classification, deep
learning.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Heart diseases, also called Cardiovascular Diseases (CVDs),
are the main causes of high mortality rates. They arise
with a lack of blood in the coronary artery that also sup-
plies blood to the heart itself. CVDs result in irregular
beats called arrhythmia and sudden death can occur depend-
ing on the severity of the arrhythmia condition. Electro-
cardiogram/Eletrokardiogram (ECG/EKG) demonstrates the
electrical activity of the human heart and the ECG signal
morphologies provide information about various types of
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arrhythmia based on different cardiac conditions. Fast and
accurate identification of arrhythmia from the ECG wave-
graph can potentially save many lives and much in terms
of health care costs worldwide [1]. This motivated us to
perform a detailed review of ECG analysis and present it in
the form of a stages-based process model to further clarify
and categorize the flow and significance of each phase of
ECG signal analysis. With the enormous impact that effec-
tive ECG signal analysis offers on public health and econ-
omy, giving a perspective of hardware and software tools
along with real-time monitoring using portable and wearable
devices to analyze an ECG signal in the form of stages-based
process is another motivation that led us to conduct this
study.
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FIGURE 1. Stages-based ECG signal analysis model.

Analyzing the ECG signal and detecting different types
of arrhythmia requires assistance from traditional signal pro-
cessing and/or machine learning techniques for early treat-
ment and prevention of CVDs. Advances inmachine learning,
in conjunction with computer-aided design (CAD) diagnostic
systems [2], have many health applications such as data pro-
cessing and retrieving relevant information from these data.
These systems have increased the accuracy of early detection
of CVDs and offer a significant reduction in cardiologist
workload. Traditional and kernel-based neural network (NN)
methods [3], [4] use handcrafted features to analyze the
ECG waveform for processing, detection, and classification.
Deep learning methods have overcome the problems of these
time and resource-consuming processes and have improved
feature engineering [5], [6], detection and classification by
learning important features automatically that were manually
determined in the past [7]. Whether it is real-time monitor-
ing, detection, recognition, or classification, the ECG signal
goes through different processes. We present these processes
as a stages-based ECG signal analysis model, as depicted
in Figure 1. The first stage describes different sources of ECG
data, such as clinically prerecorded and sources of real-time
ECG acquisition sensory data. In the second stage, we discuss
different techniques reported in the literature to remove noise
that has been introduced during the acquisition of the ECG
signal at the first stage. Detection of fiducial points of the
ECG signal is very crucial for classifying different heart
conditions accurately. Identifying these fiducial points is part
of the third stage of the ECG signal analysis process. Each
wave and segment of the ECG signal has its importance
in determining the type of arrhythmia in context. After the
right selection of the data source and identifying the ECG
fiducial points, different heart conditions can be detected and
classified at the fourth stage of the ECG signal analysis pro-
cess using traditional signal processing or machine learning
methods. Each stage is discussed in more detail in section IV.

B. CONTRIBUTIONS
This study aims to contribute to the growing area of research
for the detection of heart conditions and different arrhythmias

by analyzing the ECG signal in real-time to prevent these con-
ditions and exploring tele-health options and best practices.
Our contributions to this area of research can be summarized
as follows:

1) Present a detailed overview of the heart and its elec-
trical activity by discussing ECG, its waveform and
different arrhythmia types that can be retrieved from
ECG

2) Present the stages-based ECG signal analysis process
model from data acquisition source selection to the
classification process.We present a comprehensive sur-
vey of ECG analysis work in the form and context of
the introduced stages-based model.

3) Present a detailed literature review of ECG datasets
(stage 1) that are used to evaluate machine learning
classification algorithms in both research and portable
wearable devices for real-time detection

4) Discuss and summarize denoising methods to clean
the ECG signal to reduce false alarms and improve
classification (stage 2). We present a comparison of
different techniques and their usage in various research
areas along with their reported performance evaluation
metrics.

5) Present an overview of the latest research of traditional
and machine learning features engineering-based ECG
classification algorithms (stages 3 and 4) and summa-
rize their performance metrics evaluated on different
datasets

6) Discuss real-time monitoring systems using body sen-
sors in portable and wearable devices, its feature engi-
neering mechanisms, ECG sensor networks, and ECG
classification for portable and wearable devices (rele-
vant to all 4 stages, and mainly stage 3). We further
outline the latest hardware of portable systems and
wearable smart devices for real-time heart monitoring.

7) Discuss tools that are available to perform research in
this area of interest

8) Discuss the challenges and limitations of this area of
research and present a comparative summary table of
this survey and other related survey papers in the field
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C. PAPER ORGANIZATION
This article is organized as follows. In section II, the article
selection and survey process for this article is described.
In section III, we provide a detailed explanation of Electro-
cardiography. This section is further divided into four sub-
sections. ECG leads and ECG waveforms are described in
subsections III-A and III-B, respectively. ECG morphology
for ischemia and infarction is explained in subsection III-C,
and subsection III-D discusses the arrhythmia types.
In section IV, we glance at prior related work published
in the literature regarding both traditional time/frequency
domain and advanced machine learning methods used in
each stage of ECG signal analysis from data acquisition
source to the classification process. This section is further
subdivided into four subsections. Different data sources of
ECG signal data acquisition for evaluating the beat detection
and classification algorithms and their characteristics are
explained in section IV-A. In section IV-B, the different
techniques for signal smoothing and filtering noise from the
ECG signal are described. Followed by feature engineering,
section IV-C presents prior related work on traditional and
machine learning-based approaches of ECG fiducial points
and/or other features detection. In section IV-D, ECG clas-
sification models published in the literature are explained.
Section V details the solutions reported in the literature
regarding ECG signal acquisition, feature engineering, and
classification using body sensor networks. Section VI elab-
orates on the devices and tools available for research and
real-time monitoring systems/simulations. In section VII,
a discussion of challenges and a comparative summary are
presented, and in section VIII, the limitations are further
discussed. Section IX concludes this article and describes
future directions for the continuation of this research.

II. ARTICLE SELECTION AND SURVEY PROCESS
This article aims to review the work published in the literature
in the last two decades regarding ECG analysis, from signal
preprocessing, feature extraction to real-time classification.
Relevant articles from 2000 to 2020 were collected from
various resources and publishers including IEEE, MDPI,
SPRINGER, ELSEVIER, SENSORS, PLOS and IOP. Dif-
ferent keywords, such as ‘‘ECG classification with machine
learning’’ and ‘‘real-time monitoring systems for ECG’’ were
used to collect the relevant articles. The review covers dif-
ferent stages that ECG data goes through, starting from the
data acquisition source, denoising stage, feature engineering,
to finally, the classification stage. Fiducial points such as
R-peaks and QRS complex detected by different transforms
and machine learning methods are also presented. ECG clas-
sification in real-time using machine learning and its sub-
branches are additionally presented. The initial number of
retrieved articles was 180. The selection process was based
on specific criteria, such as:

1) Being relevant to ECG
2) Being relevant to types of arrhythmia

3) Being relevant to machine algorithms related to ECG
classification

4) Being relevant to ECG datasets
5) Being relevant to ECG feature engineering techniques
6) Being relevant to performance evaluation metrics of

ECG classification algorithms
Fifty articles were excluded by reviewing the titles and
abstracts of the retrieved articles based on the selection
criteria.

FIGURE 2. Electrocardiograph.

III. ELECTROCARDIOGRAPHY
Electrocardiography was invented by a Dutch physiologist
Willem Einthoven more than a century ago. The Electrocar-
diogram (ECG) is the recording of electrical activity taking
place in a cardiac cycle of the heart. It is captured on a graph
paper shown in Figure 2 (two ECG cycles are shown in this
figure). The electrical activity is in the form of small potential
generated by the heart tissues, picked up through electrodes
of the ECG leads. The miniature signals are amplified and
recorded as ECG. The electrical activity is normally gener-
ated spontaneously by the specialized cells of the Sinoatrial
Node (SA node) exhibiting automaticity. The generation of
impulse is due to the reversal of electrical polarity of the
cardiac cell wall, which is more positively charged on its
outer surface in the normal resting state. This reversal pro-
duces negativity on the outer surface of the cell wall, which
spreads as an impulse to the adjoining cardiac tissue. In addi-
tion to detecting ischemia and myocardial infarction (MI),
ECG is also used for detecting arrhythmias and conduction
disturbances. The worldwide use of modern medical ther-
apy of acute MI (i.e., heart attack) and the development of
interventional cardiology has substantiated the importance of
ECG regarding its Specificity and Sensitivity in myocardial
ischemia and MI [8], [9].

A. ECG LEADS
There are twelve ECG leads called conventional leads. Six
leads are named as limb leads, and the remaining six leads
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FIGURE 3. ECG leads.

are named as chest or precordial leads. The limb leads record
the potential across the frontal plane, while the precordial
leads record the potential across the horizontal plane, through
their respective electrodes. Three limb leads are bipolar leads
called standard limb leads, and the other three are called
unipolar augmented leads. Each standard limb lead separately
records the potential difference between two limbs as detailed
below and illustrated in Figure 3.
1) Standard Lead I: between the left arm and right arm
2) Standard Lead II: between left leg and right arm
3) Standard Lead III: between left leg and left arm
Leads I, II and III have their positive terminals attached to

the left arm, the left leg and the left leg, respectively. The three
unipolar leads measure the voltage ‘‘V’’ on a single point
in relation to an electrode attached to the right leg having
zero potential. The potential detected by the unipolar limb
lead terminals, are augmented and are denoted by small ‘‘a’’,
as depicted in Figure 3. These augmented leads are ‘‘aVR:
right arm’’, ‘‘aVL: left arm’’, ‘‘aVF: left leg’’ with their
positive terminal being attached to the respective limb. The
six unipolar precordial leads are attached to the chest wall
and named V1-V6. The twelve conventional ECG leads can
be considered to be reflecting a three-dimensional view of the
electrical activity in the heart [8], [9].

B. ECG WAVEFORMS
The different ECG waves are named in an alphabetic order,
called P, QRS, and T-U waves. Their shape, amplitude, and
time intervals give important information regarding health
and the state of the heart. The P wave reflects atrial depolar-
ization. The QRS complex reflects ventricular depolarization.
The repolarization of ventricles is reflected by the T-U wave.
The electrocardiograph records a positive wave for an ECG
lead whenever a depolarization current spreads toward the
positive pole of the respective lead. In contrast, a negative
wave appears in the case when the current spreads away from
the pole.

C. MORPHOLOGY OF ECG IN ISCHEMIA AND INFARCTION
Before describing various ECG abnormalities, it would
be appropriate to understand the ECG leads’ orientation

and arrangement, especially the limb leads, for localizing the
ischemia and infarction as given below:

1) Lead I and aVL, V5-V6 are oriented toward the antero-
lateral surface of the heart.

2) Lead II, III, and aVF are oriented toward the inferior
surface of the heart.

3) Lead aVR is facing towards the cavity of the heart and
normally shows the negative depolarization wave.

Regarding precordial (chest) leads, V1 and V2 are oriented
toward the right ventricle. Leads V3 and V4 face the interven-
tricular septum anteriorly. V5 and V6 face the left ventricle
anterolaterally, with their positive terminals attached to the
chest wall separately. MI mostly involves the ventricles, and
the resultant QRS abnormalities are also accompanied by the
ST-T abnormalities. In the early stage of MI, the ST-segment
elevation occurs, and it settles down within a few days with
the appearance of Q waves and/or the inversion of T-waves
in the respective leads. The serially increasing ST eleva-
tion is significant as far as the medical treatment is con-
cerned as compared to non-ST elevation MI (NSTEMI). The
importance of ECG is well recognized in the diagnosis of
myocardial ischemia and MI. The ECG findings are how-
ever, variable. Ischemia affects the electrical properties of
the myocardial cell membrane, shortens the action potential
and results in a difference of potential between the ischemic
and the normal portion. This current of injury is reflected as
changes in the ST-segment. These changes depend upon the
severity and the location of ischemia or MI. The current of
injury is directed toward the outer surface of the heart, in case
the ischemia or MI is transmural. It, therefore, produces ST
elevation in the leads with their positive terminals facing the
affected portion of the heart. When those leads show the ST
depression, the current of injury is flowing away from their
positive terminals.

D. TYPES OF ARRHYTHMIA
Abnormal electrical impulses cause irregular heartbeats
called cardiac arrhythmias. There are mainly two classes of
arrhythmia. The first class is bradyarrhythmias, accompanied
by low heart rates (less than 60 beats/minute). The sec-
ond class is tachyarrhythmias with a heart rate greater than
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TABLE 1. Stage 1: ECG dataset specifications.

100 beats/minute and is further divided into two types. The
first type is supraventricular tachycardia, such as AV nodal
tachycardia and AV junctional tachycardia. The second type
is called ventricular arrhythmia such as premature ventricular
beats, ventricular tachycardia and ventricular fibrillation.

Four types of arrhythmias can be grouped as normal,
non-life-threatening, abnormal and life-threatening arrhyth-
mia [10]. The Association for Advancement of Medical
Instrumentation (AAMI) has divided the non-life-threatening
arrhythmias into five classes: (N)- non ectopic, (S)-supra-
ventricular ectopic, (V)-vetricular ectopic, (F)-fusion and
(Q)-other unknown.

IV. RELATED WORK OF ECG SIGNAL ANALYSIS STAGES
In the past two decades, many researchers have conducted
different experiments in each stage of the ECG signal analysis
process. This article provides a thorough review of methods
and approaches for each stage of ECG signal analysis. It com-
pares their work in terms of selection criteria and evaluation
metrics to give researchers in this field more insights and
broader understandings of the contributions of related work.

A. STAGE1: DATA ACQUISITION SOURCE/DATASET
When it comes to ECG signal analysis for feature extrac-
tion and/or beat classification based on different arrhythmias,
the dataset selection drives the motive. The attributes that are
recorded with the ECG signal help in deciding which features
would be extracted or explored further. Annotation, type,
lead number, and the number of leads used in the recording,
number, age, and gender of patients and their health condition

are all attributes that give direction to the rest of the stages of
the ECG signal analysis process for its classification. This
stage covers various ECG data acquisition sources as the
input to the stages-based model, with a special emphasis on
the source of the data (rather than the electronics of the data
acquisition circuitry).

ECG analysis is mostly performed on PC-based tools and
evaluated on publicly available databases. These databases
contain different morphological patterns for recorded ECG
signals. Some databases used tele-health monitors to record
these ECG signals under certain recording conditions. ECG
recording specifications for these databases are summarized
in Table 1. Research has shown that ECG classification based
on the single-lead recording in some cases can be as effec-
tive as twelve-lead ECG records. This makes the ESC-ST-T
database popular for researchers as it has recordings from a
single lead, which is the limb lead and could be used to eval-
uate wearable ECG sensors and devices’ performances. The
CSE database is the second most cited database, according to
Scopus.

B. STAGE2: DENOISING
ECG analysis and classification requires prerecorded or
real-time ECG signals as the primary input. In both cases,
ECG data acquisition is achieved by attaching sensors and
leads to the body. During the ECG signal acquisition, noise
is also captured along with the original signal, which signifi-
cantly affects the quality and classification of ECG. Removal
of noise is called denoising, and it has been a top interest of
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TABLE 2. Stage 2: Summary and comparison of various ECG denoising techniques.

researchers to remove noise from the ECG signal for accu-
rately identifying different anomalies. Conventional methods
to denoise the ECG signal include applying band-pass filters
(0.05-45Hz) with sample entropy to verify the quality. Noise
can cause false alarms that are crucial to assessing the health
status. Noise can be in any form but can be categorized into
two primary forms: internal embedded noise and external
noise. External noise can be either power-line noise or any
other white noise. In ECG analysis, noise is usually removed
after acquiring data from data sources. There are many differ-
ent methods to clean the noisy signal. The quality of the ECG
signal can be checked with the Structural Similarity Matrix
(SSIM) [30] and assessed with measures such as the signal
to noise ratio (SNR). Other performance metrics reported by
researchers in the ECG denoising stage include Accuracy
(acc), Mean Square Error (mse), Root Mean Square Error
(rsme), or Convergence Rate.

FIGURE 4. Noisy electrocardiograph.

As summarized in Table 2, various filters such as the
Finite Impulse Response (FIR) filter, Adaptive Notch Filter
(ANF), and other filter-based approaches have been adopted
by researchers in the recent studies to remove noise from the
ECG signal. Whether it is traditional leads with cables or
a wireless body sensor, any equipment can introduce noise
into the ECG signal, as shown in Figure 4. Authors in [25]
have attempted to remove internal noise by smoothing the
ECG signal using the FIR filters and have achieved 99.3%
accuracy. On the other hand, external Power-Line Interfer-
ence (PLI) is the most disturbing noise that the ECG sig-
nal is susceptible to. PLI is a significant source of noise

in the frequency range of 50-60 Hz. State Space Recursive
Least Square Adaptive Filter (SSRLS), ANF, and Fast Fourier
Transform (FFT) Filter-based denoising of power-line inter-
ference is performed by [26]–[28], [31] and unknown exter-
nal disturbances are removed by adaptive control schemes
in [32]. Other external white noise can be removed by
Hardware Descriptive Language (HDL)-based Finite Impulse
Response (FIR) filters and NN-based Denoising Autoen-
coders (DAE) [22]–[24], [29].

C. STAGE3: FEATURE ENGINEERING
ECG classification requires proper detection of fiducial
points in its waveform. The QRS complex is an important
wave in the ECG signal that reflects the ventricular con-
traction activity of the heart. Its shape gives the basis for
automated detection of different characteristics, which is
the starting point for different classification methods. QRS
complex detection provides a foundation for almost all auto-
mated ECG analysis algorithms. However, there are diffi-
culties in accurate QRS detection due to its physiological
variability and presence of different sources of noise in the
ECG signal. The derivative-based approaches had higher per-
formance index for low-frequency noises, while algorithms
based on digital filtering performed well for high frequency
noise. In the last decade, many traditional signal process-
ing and machine learning approaches have been proposed
towards Feature Engineering (FE) to detect theQRS complex,
ST-Segment, R-peak, and other fiducial points. The follow-
ing two sections present these approaches published in the
reported literature.

1) TRADITIONAL SIGNAL PROCESSING APPROACHES
The QRS complex is a crucial part of the ECG signal, and its
detection is first in detecting other fiducial points and extrac-
tion of all kinds of other features. Any QRS detector should
detect different QRS morphologies that further helps to clas-
sify the ECG signal to detect different types of arrhythmias.
Once the ECG signal passes through the denoising stage,
a clean, good quality ECG signal is achieved. The ECG signal
would then go through a feature engineering stage where
fiducial points such as the R-R interval, ST-segment, J-point,
and T-wave are detected. Figure 2 shows the fiducial points
along with different ECGwaves and the R-peaks between the
R-R interval in a two-cycle ECG. Furthermore, to improve
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identifying ST-segment changes, the J-point and heart rate
features are additional characteristics that play an essential
role in ECG beat classification. ST-segment is an integral
part of the ECG cycle that gives information about ischemic
diseases. MI and angina are life-threatening conditions that
result in changes and abnormalities in the ST-segment.

In this section, we present different methods and tech-
niques reported in the literature that detect the QRS complex,
ST-segment, and other fiducial points. Wavelet Transform
(WT) is one of the popular methods that has been adopted
by many researchers to detect different points of the ECG
signal. Wavelet transform decomposes and transforms the
signal into space where both time and frequency information
about the signal can be observed at the same time. There
are other transforms such as Wigner distribution and Fourier
Transform that provide this information as well, but WT and
its time and frequency representation can be of interest if a
particular portion is essential to study. For example, the QRS
complex in ECG can provide event-related information, and
by knowing its time intervals, ECG fiducial points can be
identified, and features can be extracted. WT was introduced
to overcome some shortcomings and as an alternative to
the Short Time Fourier Transform (STFT). When it comes
to the analysis of a signal with computational efficiency,
the DiscreteWavelet Transform (DWT) provides information
for both analysis and synthesis of the signal with less compu-
tation time. DWT is easier to implement, and its foundations
date back to 1976 when Croiser, Galand, and Esteban came
up with the technique to decompose time domain signals
into discrete representations. DWT represents the signal in
both the time and frequency domain. This transform became
a popular tool to analyze biomedical signals such as ECG.
DWT transforms the ECG signal into different levels of reso-
lution by decomposing the signal. This scaled signal can then
be analyzed further using different filters to extract different
points. Details about WT, DWT and its other variations such
as Continuous Wavelet Transform (CWT), Cross Wavelet
Transform (XWT), and others are provided in [33]. Nonethe-
less, WT can be represented by Equation 1, where * denotes
the complex conjugate.

F(a,b) =
∫
∞

−∞

f (t)ψ∗(a,b)(t)dt (1)

Heuristic-based methods using different transforms have
been proposed as QRS detection techniques in [34]–[37].
The best Sensitivity of 99.95% is achieved by the DWT
based windowing method presented by [38]–[41]. A delin-
eation algorithm [42] in conjunction with the DWT based
windowing method has outperformed QRS, P, and T-wave
detection evaluated on multiple databases with a Sensitivity
of 99.84%. Different fiducial points detection by windowing
algorithms have been proposed by [43]–[45]. Their best accu-
racy of 99% is comparable to the DWT based windowing
methods. Methods based on Time Domain (TD) [46]–[48],
Mathematical Morphology (MM) [49]–[51] with Very-
Large-Scale-Integration (VLSI) [52], Gaussian filter based

Synthesized Mathematical Model (SMM) [53] and deriva-
tive based [54] methods have reported the best Sensitivity
of 99.81%, yet a bit lower than DWT based methods. The
Karhunen-Loeve Transform (KLT), along with the Legen-
dre Polynomials-based Transform (LPT) employed in [55],
[56] have been useful to detect the ST-segment, but their
Sensitivity is much lower than [34]. To improve the QRS
detection, more than one threshold in the wave is nor-
mally required. However, the Phasor Transform (PT) can
reliably be used to detect R-peaks regardless of the ampli-
tude. This is an advantage of detecting low-amplitude QRS
complexes in ECG signals [57]. A modified wavelet trans-
form called Dyadic Wavelet Transform (DyWT) takes the
convolution of the ECG and gives dyadically time-scaled
wavelets of the signal being analyzed. DyWT is simi-
lar to the Hamilton-Tomplins (HT) algorithm with a cou-
ple of advantages over it. Authors in [58] and [59] have
used DyWT and multiwavelet transforms to detect the QRS
complex but achieved average accuracy levels. The detec-
tion of the QRS complex with the derivative-based algo-
rithm [54] compares the feature with a threshold value
computed by heuristically found rules. The best method
with the highest Sensitivity to detect QRS complex has
been proposed by [39], [60] which was based on mul-
tilead Area Curve Length (ACL)-based DWT and FIR
filters using adaptive thresholds, whereas [34] achieved
the highest Sensitivity in detecting the ST-segment using
wavelet transforms evaluated on the same dataset of MITDB.
Table 3 illustrates a list of these traditional signal processing
approaches that extract ECG signal features with reported
performance metrics of Sensitivity (sen), Specificity (spe),
Positive Predictive Value (ppv), F1-score (F1), Mean
Error (me), Error (err), Root Mean Square Error (rmse) and
Accuracy (acc).

2) MACHINE LEARNING APPROACHES
Various irregular conditions of the heart are categorized as
different arrhythmias, and analyzing the ECG signal can
guide through the classification process for each type of
arrhythmia. A trained cardiologist can classify the ECG sig-
nal to its appropriate arrhythmia class by analyzing ECG
signal through visual inspection. However, this traditional
process takes much time from the moment patients experi-
ence symptoms at home or workplace to the time they visit the
Emergency Room (ER) and wait for the ECG to be recorded
and analyzed by the doctor. This delay in the process of
ischemic or MI detection is crucial to health and could be
prevented if faster methods are developed. The growing tech-
nology and automation have made this possible by detecting
ECG conditions with mathematical computing and artificial
neural networks (ANN). However, these smart technologies
heavily rely on proper detection of fiducial points of which,
QRS complex is an important morphology and a dominant
feature of the ECG signal. The detection of QRS in the
ECG signal has been the interest of researches for more than
40 years.
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TABLE 3. Stage 3: Feature engineering with traditional signal processing approaches.

The recent and advanced high computing developments,
such as GPU has evolved software-based QRS detection
techniques. ManyArtificial Intelligence (AI) algorithms have
been proposed to detect the QRS complex, ST-segment,
and other fiducial points. Within the past two decades,

software detection approaches of ECG fiducial points have
replaced the hardware detectors. The QRS complex has
been detected using variational mode decomposition (VMD),
K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support
Vector Machine (SVM) based approaches in [61], [62] where

VOLUME 8, 2020 177789



M. Wasimuddin et al.: Stages-Based ECG Signal Analysis: A Survey

TABLE 4. Stage 3: Feature engineering with machine learning approaches.

TABLE 5. Stage 4: ECG classification with traditional algorithms.

the best Sensitivity of 99.93% was achieved with 12-lead
ECG data and 99.79% with single-lead ECG. On the other
hand, ST-segment and its changes have been detected using
Decision Tree (DT) [63] and Google’s Inception based 2-D
Convolutional Neural Network (CNN) [64], but didn’t per-
form well in Sensitivity as compared to [41] which employed
the ensemble NN-based isoelectric level detector. These dif-
ferent methods are summarized in Table 4 with reported
performance metrics of Sensitivity (sen), Specificity (spe),
Positive Predictive Value (ppv), F1-score (F1), Error (err),
Root Mean Square Error (rmse) and Accuracy (acc).

D. STAGE4: CLASSIFICATION
Once the ECG signal is acquired and has been passed through
noise filtration and feature engineering stages, the last stage
of ECG signal analysis process classifies the ECG signal into
its different classes using the detected fiducial points and
based on the problem of interest. This section discusses both
traditional and machine learning approaches reported in the
literature to classify the ECG signal.

1) TRADITIONAL ECG CLASSIFICATION APPROACHES
ECG beat classification of Normal and Abnormal beats have
been attempted by threshold-based techniques [67], [68].
A modified Pan-Tompkins [70] based adaptive thresholding
approach was presented in [65]. DWT is also used to classify
ECG with the help of Principle Component Analysis (PCA)
and Independent Component Analysis (ICA), as described
in [3]. However, the Multimodel Decision Learning (MDL)
algorithm has achieved better Sensitivity of 100% in clas-
sifying ECG as Normal and Abnormal when evaluated on

theMIT-BIH arrhythmia dataset. These different methods are
summarized in Table 5.

2) MACHINE LEARNING CLASSIFICATION APPROACHES
AI and Machine Learning (ML) is a branch of computer
science that deals with the intelligent behavior of computers.
It comprises of different methods that allow computers to
learn an efficient representation of data with the help of
different algorithms. AI is used for prediction or classification
and could be performed using unsupervised or supervised
learning with different goals. While unsupervised learning
focuses on underlying structure discovery, supervised learn-
ing involves the classification of multiple categories such
as ‘‘Normal versus Abnormal rhythm’’. Supervised learning
heavily relies on datasets with labeled/structured data. Every
predictive modeling requires feature selection called predic-
tor variables. AI has been proven to be very useful in FE.

FIGURE 5. Neural network.

ANN are models of machine learning inspired by the
human brain. The NN shown in Figure 5 consists of
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multiple layers, including an input layer followed by one
or more hidden layers and an output layer. Each layer has
multiple nodes called neurons, which are weighted sums of
the output from the previous layer neurons. That is how each
layer is connected to the next layer. The weighted sum at
each neuron is further passed through an activation function
such as Sigmoid, Relu, TanH or Softmax. Depending on
the model and goal, the appropriate activation function is
selected. The output is calculated by the weighted sum from
the input to the last layer which is called forward pass or
forward propagation. The error is then calculated based on the
predicted output and the labeled output. Each weight is then
updated to reduce the error using different methods such as
Stochastic Gradient Descent (SGD), Adam, and so forth. This
process is called back pass or backpropagation. One complete
cycle of forward and backpropagation is called iteration or
epoch. The number of epochs depends on the convergence of
error and is determined with repetitive experiments or heuris-
tically. NN can be optimized if used in feedback systems,
as presented by [113].

In this study, we present the known AI-NN and tech-
niques that have been reported in the recent literature for
ECG analysis and classification of its different abnormali-
ties. With the help of ANNs, complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) [110]
and multi-module neural network system (MMNNS) [2],
attempts have been made to classify different types of
arrhythmias into Normal versus Abnormal from the ECG
signal analysis using Ensemble Decision Tree (DT) [108] and
particle swarm optimization (PSO) based Fast forward neural
networks (FFNN) [109].

Support Vector Machine (SVM) is, to some extent, similar
to ANN and creates a hyperplane from high-dimensional
space and then linearly separates classes. Therefore, SVM
is generally known as a linear classifier. Researchers have
detected arrhythmias using SVM [96], [98], [101] with
SequentialMinimal Optimization-SVM (SMO-SVM)) [102],
Multi-class Support VectorMachine (MSVM)/Complex Sup-
port Vector Machine (CSVM) [104] and in conjunction with
otherMLmethods such as Ensemble-SVM [97]. Even though
SVM is a linear classifier, it can still capture nonlinear rela-
tionships in the cardiovascular functionalities, often mak-
ing highly accurate predictions such as classifying ECG as
Normal versus Abnormal [99], [100] and detecting different
heartbeats [103]. However, it has computational limitations
in the sense that it can be difficult in high-dimensional space
and results in non-probabilistic classification such as divided
outcomes. Other methods, such as isotonic regression, have
overcome this problem.

Convolutional Neural Network (CNN) is a branch of
machine learning and an extension to ANN with multi-
ple layers of the network as depicted in Figure 6. Its
application to cardiology goes back more than twenty
years [114], [115]. In cardiology, and especially in ECG
analysis, CNN has many applications such as detection
of arrhythmias [85], [87], ST-changes detection [86] and

FIGURE 6. Convolutional neural network.

Normal versus Abnormal [116] classification. There are
many variations to CNN and few are stated in this article to
detect arrhythmias with Residual CNN [88], Recurrent Neu-
ral Network (RNN) and Long-Short Term Memory (LSTM)
network [89], [90], [92]–[95] as well as detecting MI [91]
events.

Deep neural networks also called deep learning [117] is
a subbranch of machine learning and also considered an
extension to ANN and special cases of CNN. It is a non-linear
classifier that learns complex features from the data automati-
cally and is becoming state-of-the-art for feature engineering.
Its nonlinear representation learning of features makes it very
compelling. Deep learning is emerging due to the availability
of Graphical Processing Unit (GPU)-based computing. It has
a wide variety of applications such as biometrics authenti-
cation, object detection, classification, compression, image
classification, and other computer vision related technology
fields. Deep learning has great potential of applications in car-
diology such as ECG arrhythmia detection with Deep-CNN
[71], [72], [74], [76], [77], [79], [80], Robust Deep Dic-
tionary Language (RDDL) [73], Deep Brief Network with
Restricted Boltzmann Machine (DBN+RBM) [75] and Deep
Neural Network (DNN) [78]. MI detection is performed with
Deep-CNN [81] and Deep Neural Network (DNN) [82] while
detecting heartbeats is performed by DNN in [83]. There
is a variety of neural networks; LeCun et al. [6] presented a
detailed introduction to deep learning. Other machine learn-
ing methods such as Decision Tree Detection, Genetic Algo-
rithm (GA), KNN and Probabilistic Neural Network (PNN)
are used to detect ischemic [105], [106] events, MI [107]
and arrhythmia using PCA and Linear Discriminant Analysis
(LDA) [4], respectively. These different methods are summa-
rized in Table 6 with reported performance metrics of Sensi-
tivity (sen), Specificity (spe), Positive Predictive Value (ppv),
F1-score (F1), Error (err), Root Mean Square Error (rmse)
and Accuracy (acc).

V. REAL-TIME MONITORING
The main cause of death in the United States due to
Cardiovascular Diseases (CVD) is accounted for 17.9%
of national expenditure. This number is projected to be
45.1% by 2035 totaling to $1.1 trillion [118]. Portable
and wearable battery-operated smart devices and wireless
sensors have the potential to be integrated with devices
such as mobile phones, smartwatches, ePatch, and wearable
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TABLE 6. Stage 4: ECG classification with machine learning algorithms.

177792 VOLUME 8, 2020



M. Wasimuddin et al.: Stages-Based ECG Signal Analysis: A Survey

handheld monitoring devices. The integration provides con-
tinuous ECG monitoring and can improve real-time monitor-
ing, detection, and early treatment of different cardiovascular
diseases. These portable and wearable sensors are capable
of recording and analyzing the ECG signal to detect the
QRS complex as well as other ECG characteristics. ECG
monitoring and analysis can be achieved in three different
ways. For the purpose of this article, we are labeling them
as three separate systems.

1) System 1: As shown in Figure 7, a recorder is used
that acquires the ECG signal to be diagnosed later in an
offline mode. Devices like Holter, GEMAC5500, GE’s
SEER Digital Holter, Philips’s Digitrack, BIOPAC
MP150, ePatch by DELTA and Midmark’s IQmark are
few of the popular devices that provide several hours
bedside or body attached acquisition. The data acquired
is analyzed offline by algorithms such as wavelet trans-
forms [119]–[124]. In many cases, a doctor would
analyze the data. Limitations to such a method include
non-real-time classification.

FIGURE 7. System 1.

FIGURE 8. System 2.

2) System 2: As shown in Figure 8, these systems use
real-time detection and diagnosis of the device itself.
Examples of such devices include smartwatches, smart-
phones, Nuvant Corventis PiiX, AliveCor, SmartCardia

INYU and MyThrob System on Chip (SoC) in which
the R-peaks are detected using Relative-Energy-based
WeArable R-Peak Detection (REWARD) [125], and
wavelet transform [126], [127], ST-segments using
SVM [128], and the QRS complex is detected using
WT [129]. Diagnosis is performed on the smart device
itself using appropriate classification methods. How-
ever, these types of systems put a burden on the device
in terms of computational complexity, memory, and
battery life.

3) System 3: As shown in Figure 9, these systems use
a three-layer structure discussed later in this section.
ECG is acquired with attached patches, portable or
wearable sensors and is sent to a coordinator such
as Personal Digital Assistant (PDA), smartphone or a
controller that processes the ECG data and sends it
to a central location with live connection for further
diagnosis and classification. Jurik and Weaver [130]
have explained this in a three-tier form. Limitations of
this method are the lack of real-time feedback for early
treatment.

Beyond the traditional analysis of ECG, the automated
analysis is receiving significant attention and has gone
through substantial advances. Deaths by cardiovascular dis-
eases have an economic fallout, and its burden is expected to
rise due to unhealthy lifestyles and the growing population of
the world. This requires continuous supervision and medical
care of cardiovascular diseases and comes with the cost of
medical equipment. Wireless body sensor network (WBSN)
technologies provide scalable and cost-effective solutions
to this problem. They are able to measure the ECG signal
continuously, provide real-time monitoring by sending data
to a centralized location, integrate the data with the person’s
medical history, and provoke early diagnosis and medical
support. Wearable devices and its automated ECG analysis
have gained both academic and industrial attention in sup-
porting a fairly new term Next Generation Mobile Cardiol-
ogy (NGMC). Such attention resulted in the development of
many wearable and portable devices both for commercial and
research purposes. Similar to the American Heart Associa-
tion [131] which offers practice standards for bedside ECG
monitoring at hospitals, any sensor that receives the ECG
signal must follow the Food and Drug Administration (FDA)
regulation under 21 CFR 870.2360, class II Code DRX and
501(k) formarketing clearance. Real-timemonitoring usually
follows the structure of System 3 for ECG signal analysis
and diagnosis in real-time for early detection and treatment,
which undergoes the process of three layers:

1) Layer 1: Body Sensors: As shown in Figure 10, this
layer consists of sensors attached to the patient’s body
to sense the ECG signal and send it to the next layer.
Portable and wearable monitoring devices for ECG,
also called ECG patch monitoring (EPM), cleared by
FDA are limited by recording capabilities such as
being only a single lead. AD8232 with three leads,
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FIGURE 9. System 3: Wireless body sensor network.

FIGURE 10. Body sensors.

Zio Patch [132], Sensium Life Pebble and two-channel
Shimmer3 [133] which is a Bluetooth based wireless
sensor are a few popular devices that are used as sen-
sors attached to the body surface for ECG acquisition,
detection of the QRS complex [134], [135] and sending
the ECG signal to the coordinator.

2) Layer 2: Coordinator: Devices such as Arduino,
ADuCM361 and TI MSP430 controllers receive the
data from previous layers using directly attached cables
or over radio protocols such as wireless IEEE802.11x,
Bluetooth IEEE802.15.1, and Zigbee IEEE802.15.4
[136] for graphical representation, which then sends
the data to the next layer over a data network such
as GSM. Sending data over these protocols consume
and require bandwidth. Compressing the ECG signal
without compromising data is essential to reduce the
overall energy consumption of the coordinator role of
portable devices. Techniques like Quad Level Vector
(QLV) [127], lossless compression by [137], or huff-
man coding can be used to compress the ECG signal
while keeping its features intact.

3) Layer 3: Diagnoses: This layer receives the data from
previous layers for analysis and diagnosis of ECG con-
ditions. This could be a remote server with GPU com-
puting or a cloud hosted solution such as Amazon Web
Services (AWS) Core IoT, Thingspeak and Ubidots for
graphical representation or analysis with AI algorithms
for diagnosis of different heart conditions.

Major improvements in monitoring systems of cardiac
activity have been taking place by the deployment of AI
algorithms, ischemia monitoring, noise reduction schemes
and detection with reduced number of leads. Tele-healthcare
is gaining wide attention with the growing technology of
body sensors and its integration with portable and wearable
devices. It may become standard procedure for the treatment
of certain health conditions as the technology matures and
gains further acceptance. The different features of ECG,
detected with different methods, sensors, hardware platforms
and their evaluations on different databases is summarized
in Table 7 along with reported performance metrics of Sensi-
tivity (sen), Specificity (spe), Positive Predictive Value (ppv),
F1-score (F1), Error (err), Root Mean Square Error (rmse)
and Accuracy (acc).

VI. RESEARCH TOOLS
When it comes to evaluating detection or classification algo-
rithms, researchers use PC-based software to train, test, and
evaluate their methods. There are computer-based software
such as Labview, Python, and Matlab that include a lot
of libraries which can be used to evaluate an algorithm.
These tools provide methods to import prerecorded ECG
signals from the publicly available databases discussed in
section IV-A. However, the ‘‘R’’ tool can be used to analyze
datasets itself. Even though datasets come with explanations
of the recording environment and other details, by using
‘‘R,’’ one can have different views to see the attributes,
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TABLE 7. Stage 3: Feature engineering methodologies for real-time monitoring.

annotations and analyze the datasets differently. On the other
hand, there are emulator boards sometimes called Open
Source HardWare (OSHW) such as Arduino Mega 2560,
Duino Olimexino-5510, TI MSP430-T5510 and many other
available tools for experimental and testing purposes. Emula-
tion software is required with each of these for programming
purposes so that the ECG acquisition and processing can
be performed. Arduino IDE and MSPSim are examples of
emulation software. ECG sensors such as AD8232 can be
used with these boards using patch, clip or cup electrode
ECG cables to acquire the ECG signal and process it using
these emulators. However, on-board (on-chip) analysis and
classification of ECG requires further processing capabilities.
There are boards called System on Module (SOM) such as
RK3188 and AM335X with ARM Cortex Quad-Core pro-
cessor on-board to provide embedded processing of algo-
rithms along with System on Chip (SOC) boards such as
NXPNexperia-8550. Android provides a developmental plat-
form that can be used to develop applications on ARM
Cortex based OSHW and SOM boards. There are also

portable simulators available such as AliveCor, Fluke ProSim
8 ECG Patient Simulator, TriSmed TSM3000B, and many
others [142] that can be used to acquire ECG and perform
some tests in real-time. Moreover, 12 lead ECG portable
simulators are available for testing purposes, such as Zoll
CS1201. A similar 12-lead portable simulator is designed and
proposed by [143].

VII. DISCUSSION
Emerging of AI with traditional and advanced algorithms has
allowed numerous improvements in many real-world tasks.
Consider a logistic regression example. For instance, the esti-
mation of statistical values and coefficients requires strong
assumptions such as collinearity among variables and inde-
pendent observations, in which case the statistical inference
may hinder the performance of a model. AI algorithms over-
come such assumptions with improved prediction and classi-
fication. Thus, cardiology can benefit from AI and machine
learning in conjunction with other real-time monitoring
systems.
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High computing capabilities and mobile connectivity of
electronic devices have provided a surge in mobile health
technologies that are geographically independent with smart
and wearable devices. Real-time data streaming has enhanced
clinical care in an automated fashion with decision support
tools. However, the lack of a framework for cost, regula-
tory standard, and security protocols is a big hurdle in the
adaption of these modern technologies in real life. Efforts
need to be established to overcome these barriers to take
full advantage of mobile health, tele-health, real-time mon-
itoring and care in the field of medicine and specifically,
cardiology [163].

Various techniques have been reviewed in this arti-
cle for ECG analysis to show the automated detection
of ECG fiducial points and classifying related conditions
such as MI. However, not all studies have performed their
experiment with the same lead(s) and/or databases. Some
have used single-lead ECG [81], [164], [165], and oth-
ers have used 12-leads [107], [166], [167] to introduce
their models and analysis of ECG. Another major chal-
lenge is that generally all 12 ECG leads are required to
accurately identify the ST-segment changes for MI. This is
while 12-lead ECG is mostly used in clinical settings and
inconvenient for real-timemonitoring with portable/wearable
ECG devices. Highly accurate, time dependent sequen-
tial data interpolation methods may be required to repre-
sent the ECG data from other leads using only a single
lead.

To better understand the contributions of this study,
we present a comparative summary table (Table 8) that lists
our contributions in comparison with other related survey
papers in the field. ECG is a well researched area and
to date, many ECG survey papers have been published.
Reputable ECG survey papers with high number of cita-
tions were selected for this comparative summary. The main
focus area of each survey paper is listed in the table of
comparison. The table clearly depicts that this study has
reviewed a larger number of papers, collectively, regard-
ing ECG databases, real-time monitoring and research tools
in each stage of the ECG signal analysis process model,
as shown in Figure 1. This survey also stands out among
others in terms of more focused areas and performance
metrics included in the comparative study with respect to
other reported survey and review papers. Comprehensively
reviewing ECG signal analysis techniques in the structure
of a stages-based model, the detailed study on research
tools for ECG analysis as well as the study of real-time
ECG monitoring systems along with elaborated discussions
of the challenges/limitations are among the main contribu-
tions of this survey paper. This survey sheds light on ECG
research avenues in a stages-based ECG signal analysis pro-
cess model where new and experienced researchers can refer
to initiate or further continue progressing in this competitive
area.

Performance metrics such as accuracy and f1-score are
among the well-known measures of assessing the efficiency

of ECG analysis systems. On the other hand, systems
engineering and system dynamics are other quantitative
and qualitative approaches to evaluate the effectiveness of
ECG analysis systems in a broader context [168]. In such
approaches, nonlinear feedback relationship models are
designed, where in addition to the ECG system’s device
and analysis algorithm factors, other societal (patient care
and well-being), environmental (green resources and energy)
and economic (cost) factors also play a significant role in
determining the overall effectiveness of the ECG analysis
system.

VIII. LIMITATIONS
After carefully reviewing a large body of existing papers
in the field of ECG signal analysis where numerous ideas
have been compared and contrasted, one can observe that
traditional signal processing approaches may not perform as
accurate as recent deep and machine learning approaches.
On the other hand, deep/machine learning approaches gen-
erally have higher computational complexities and therefore
would require higher cost processors to operate. The main
limitations of various ECG studies can be quantitatively
noted in terms of performance metrics (such and accuracy
and f1-score, etc.), and time and computational complexity
(generally reported in Big O notations). Remedies to these
limitations involve tradeoff in the design procedure and pos-
sibly employing an ensemble of techniques. Other limitations
include concerns regarding the lack of a globally unified
regulatory standardization for the number of ECG leads,
databases, ECG analysis platforms, unified performancemet-
rics and security protocols, among others.

This comprehensive literature study, though uncovers the
massive body of research regarding ECG signal analysis, also
reveals certain challenges and unsettleties in this competitive
research field. The lack of consistent ECG signal distributions
among devices/datasets as well as the lack of unified metrics
used to report the performance of different techniques are
among the top concerns. With the variety of ECG devices
used in medical and research settings, the distribution of ECG
data varies, making one ECG analysis technique practically
not suitable for ECG data captured differently. In general,
deep/machine learning techniques require that the develop-
ment set used for training be from the same distribution of
the test set to prevent high variance. Thus, there is a need
for a unified standard or a common-ground framework for
ECG signal analysis - starting from the data distribution to
quantification of results - where researchers and/or indus-
tries developing portable and wearable ECG devices must
follow to compare the ideas and results with one another and
build-up from there to achieve better performance of ECG
signal classification. Real-time ECG tele-health and early
treatment can be improvedwith the assurance of accreditation
or certification of such framework or standard. Moreover,
bio-data augmentation of the heart functionality from the
ECG signal, especially required in heart surgery settings as
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well as medical schools for education and research purposes,
can significantly benefit from such unified standard.

In the context of this survey paper, additional limitations
include the fact that with the enormous body of ECG studies
existing in the literature, only a portion has been has been
reviewed. We have made best efforts to provide a compre-
hensive review of the majority portion of the body of ECG
research and wide range of ECG analysis literature, but there
are more methods and techniques used to analyze the ECG
signal that can further be reviewed and verified. The selection
of related survey papers for the purpose of comparing the con-
tributions and advantages of this study (Table 8) with other
related survey papers consists of highly reputable journals.
However, we rely on integrity of these work for what they
have reported. Verifying the results reported in other related
work is beyond the scope of this survey paper.

IX. CONCLUSION AND FUTURE WORK
ECG is an important tool and can be used to diagnose
abnormalities of the heart function. Early diagnosis of MI
can save lives and is a challenging task, but with CAD and
machine learning techniques, automated diagnosis of MI can
be achieved with ECG analysis and classification. This article
presented a comprehensive review of different traditional
and machine learning methods used in every stage of ECG
signal analysis, specifically for the ECG classification task.
Both automated and somewhat automated machine learning
techniques to detect ECG fiducial points such as R-peaks
and QRS complexes have been presented. Deep learning
techniques show more efficient detection and classification
results in the recently published work.

We have introduced a stages-based model for ECG signal
analysis in this article where the bulk of any ECG literature
can be categorized into one or more stages of the presented
model. In this survey paper, researchers are directed to the
huge corpus of ECG research literature with insights on how
the ECG signal goes through different stages/processes and
what is included in each stage in terms of data acquisition,
and the methods/techniques and algorithms related to each
stage of ECG signal analysis. A variety of software and
hardware tools for research in this field have also been out-
lined. In addition, the major challenges and limitations have
been discussed and suggestions have been provided for future
research.

We summarized a variety of deep learning methods for
ECG analysis recently published in the literature in a tabular
form. From our survey, the majority of researchers have
used MITDB to evaluate their methods of ECG analysis and
classification based on one dimensional ECG data. However,
very little attention is paid towards the 2-D image-based clas-
sification of ECG in the literature surveyed. Building upon
our recently published preliminary work in this area [116],
we plan to further explore deep CNNs for 2-D image-based
ECG classification to distinguish multiple classes of ECG
beats.
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