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ABSTRACT The existing production scheduling mode ignores ladle dispatching resulting in the increase
of energy consumption in ladle heating and instability in production. Hence, we study the energy-efficient
integration optimization of production scheduling and ladle dispatching in this paper. Specifically, a mixed
integer linear programming model is formulated to coordinate the time-dependent correlations between
them and quantify the energy consumption of them. Moreover, an enhanced migrating birds optimization
algorithm (EMBO) is proposed to tackle this NP-hard integration optimization problem. In this proposed
algorithm, a three-level rule-based heuristic decoding is designed to achieve the optimal solutions at the
given production sequence; well-designed neighborhood structures are appended to intensify exploration; a
simulated annealing-based acceptance criterion is hired to escape from local optima. Additionally, a novel
competitive mechanism for birds regrouping is developed to increase the population diversity by information
exchange between the left and right lines of V-formation. Mass experimental results demonstrate that
the proposed EMBO observably outperforms all the compared algorithms, and the proposed integration
optimization decreases the energy-consumption by 1.21% in the context of constant production efficiency.

INDEX TERMS Hybrid flow-shop, integration optimization, ladle dispatching, migrating birds optimization
algorithm, production scheduling.

I. INTRODUCTION
The iron and steel sector accounts for no less than 18% of the
total industrial energy consumption on a global scale and is
regarded as one of the most energy-intensive manufacturing
processes [1], [2]. The steelmaking and continuous-casting
(SCC) process is a key phase in the whole steel manufacturing
process, and the production management of SCC plays a
determinant role in energy saving. In another word, small
improvements in energy efficiency in SCC plants may trans-
late into tremendous gains in overall energy savings and cost
reductions [3]–[5]. Hence, there has recently been growing
research interest in energy savings in SCC plants.

Production scheduling and ladle dispatching are two prin-
cipal sub-systems in SCC production management [6], [7].
As illustrated in Figure 1, the molten iron (red color) is
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FIGURE 1. Production scheduling and ladle dispatching in SCC.

transformed into molten steel with a given chemical com-
position via steelmaking and refining processes, and further
transformed into slabs with specific strength and dimensions
via continuous-casting process. Production scheduling deter-
mines not only the allocation of machines at each stage but
also the timing for performing corresponding tasks [8], [9].
And then, ladle dispatching receives the schedule of SCC
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production as an input and accordingly determines the assign-
ment of ladles (blue color), the exclusive transportation
devices of the molten steel. In the turnover period of each
ladle, an empty ladle (no molten steel in the ladle) awaits
in the waiting area till receiving the molten steel from the
converter. Next, the ladle filled with molten steel is trans-
ported to the refining furnace for refining and then to the
continuous caster for casting. After pouring molten steel into
a caster and emptying the remains at slag place, the empty
ladle returns to the waiting area. It is worth noting that in
the waiting area, all the ladles need to be heated to the
prescribed temperature before they are enabled again. Hence,
an unreasonable schedule of ladle dispatching may result in
a longer heating time and further bring about waste of energy
consumption.

It should be pointed out that ladle resources are treated as
negligible parameters in existing studies on the SCC schedul-
ing problem [2], [4], which is obviously impractical. The
inadequate quantity of ladles may delay the manufacturing
cycle time and even cause the production disorder while an
excessive number of ladles in process may cause unnecessary
energy loss. It is essential to make a decision on a reasonable
number of ladles to be utilized on the spot. However, since
the production schedule is now regarded as the input of ladle
dispatching, this sequential decision process causes serious
problems as the following.

(1) For the reason that it costs more than two hours to
heat a cooling ladle from the environmental temperature to
the needed, a large variety of disruptions leading to frequent
changes in the production schedule cannot be timely handled
by ladle dispatching.

(2) To avoid the production disorder due to the lack of
ladles, the current solution of reserving a relatively large num-
ber of ladles not only causes huge startup energy consump-
tion, but also consumes considerable energy consumption to
keep the ladles at the prescribed temperature [1], [3], [10].

Hence, the integration optimization of production schedul-
ing and ladle dispatching (IPS-LD) demonstrates brand-new
characteristics of high temperature and high energy con-
sumption, and hence should be investigated thoroughly and
systematically. Tan, et al. selected a limited number of ladles
from the available ones and scheduled them with the goal of
minimizing the total gas consumption [11]. Based on this,
Tan, et al. further proposed a high-temperature-ladle match-
ing rule to further reduce the total gas consumption [10].
Huang, et al. considered the ladle scheduling as the key
problems of temperature drop in the transportation of hot
metal and investigated the influencing factors of steel ladles
exchange during the steelmaking and continuous casting pro-
cess [12]. However, it can be seen from above that ladle
dispatching is conducted independently during the optimiza-
tion procedure. That is to say, the ladle dispatching problem
is not included in the production scheduling in most recent
studies on SCC production scheduling. It is usually imprac-
tical to timely obtain the ladle for charges in process under
complex practical environments such as taking account of

baking time for ladles. In sum, although important in practice
and more effective and efficient policies are highly desirable,
the research on IPS-LD is still in the infant stage. And this is
also the main motivation behind this paper.

On the other hand, the SCC scheduling problem has
received considered attention in the past decades. Vari-
ous algorithms have been developed to obtain optimal or
near-optimal solutions [13]–[15]. These algorithms include
heuristics [16], [17], meta-heuristics [18], [19] and exact
algorithms [20]. Generally, exact algorithms such as branch
and cut algorithm [21] and a branch and bound algo-
rithm [22] may solve the small-scale integration cases with
simple features to optimality. It is well known that the com-
putational complexity exponentially increases as the prob-
lem scale grows, and hence exact algorithms cannot solve
the large-sized instance within an acceptable time. Heuris-
tic algorithms focus on problem-specific features and may
solve large-scale problems in extremely short computation
time [23]–[25]. However, the quality of the derived solutions
might not be satisfactory since it is difficult to combine all
the features into a simple heuristic algorithm. By contrast,
meta-heuristic algorithms can obtain high-quality solutions
within short computational time via global and local searches
[26]–[28]. Among the metaheuristics, migrating birds opti-
mization algorithm (MBO), as a new meta-heuristic algo-
rithm inspired by the V-shaped flight formation of migrating
birds, has been proved to be effective on energy conserva-
tion. This algorithm is unique where the benefit mechanism
is utilized to replace the poor-quality solution and acceler-
ate the evolution process greatly [29]–[31]. Meanwhile, this
algorithm has shown superiority over other algorithms in
the related SCC [32], [33]. Hence this work selects MBO
to tackle the proposed IPS-LD. To tackle the integration
optimization of production scheduling and ladle dispatching
effectively and efficiently, it is recommended to combine
the known expertise of heuristic algorithms and optimization
abilities of meta-heuristics together. This is also the main
contribution behind this paper. Therefore, an enhanced
migrating birds optimization algorithm (EMBO) with a
problem-specific three-level heuristic decoding mechanism
and several improvements, is designed to tackle the large-
scaled integration optimization problem. Therefore, in this
paper, considering characters of IPS-LD, our focus is on
developing problem-oriented approach to tackle this pro-
posed integration problem. The contributions are presented
as follows.

(1) The internal correlations between production schedul-
ing and ladle dispatching are represented with time-
dependent functions; and amixed integer linear programming
problem is further formulated for the integration optimization
of them.

(2) The energy consumption of activating a new ladle
or continuously baking the incumbents is quantitatively
expressed and further minimized in order to achieve the over-
all energy savings of production and transportation in SCC
plants.
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(3) An enhanced migrating birds optimization algo-
rithm (EMBO) with a problem-specific three-level heuristic
decoding mechanism is designed to tackle the large-scaled
integration optimization problem.

(4) Experimental results indicate that via the integration
optimization of production scheduling and ladle dispatching,
the energy consumption has been reduced by 1.21%while the
productivity efficiency remains constant.

The rest of this paper is structured as follows. Section II
describes and formulates the energy-efficient scheduling
model for this integration optimization problem. Section III
provides a problem-specific three-level heuristic technique
for decoding. Section IV gives a brief illustration of the
migrating birds optimization algorithm. Section V presents
an enhancedmigrating birds optimization algorithmwith sev-
eral improvements to tackle this problem. Section VI reports
the results of numerical experiments and finally Section VII
provides conclusions and future research venues.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
FORMULATION
In this section, we first describe the integration optimiza-
tion problem of production scheduling and ladle dispatching
within a SCC plant, then model this problem as a mathemat-
ical optimization problem with two objectives of minimizing
the total weighted completion time and energy consump-
tion. Note that, these two objectives are the most significant
measures for the improvement of production efficiency and
energy savings within SCC plants.

FIGURE 2. The integration of production scheduling and ladle dispatching.

A. PROBLEM DESCRIPTION
The SCC process is mainly comprised of three stages as
exhibited in Figure 2: steelmaking, refining and continuous-
casting. In the steelmaking stage, molten iron and scrap
steel are poured into melting converter furnace (LD) and
then transformed intomolten steel. After steelmaking, molten
steel is poured into a ladle and hence referred to as a charge,
the smallest production unit, corresponding to job in the flow
shop scheduling. Subsequently, the molten steel in a ladle

is moved to refining equipment Ladle-Furnace (LF) to raise
its temperature and adjust its chemical compositions, or even
undergo the secondary refining process of Ruhrstahl-Hausen
(RH) furnace for hydrogen removal. Finally, refined molten
steel is transported to the continuous casters (CC) where
several charges with the same ingredients and specifications
are processed consecutively as a batch (or cast).

In respect to the ladle utilization, only the ladle satisfying
the given molten steel’s requirements on the composition and
temperature (also called a matched ladle) can be utilized as a
transportation device. This ladle is first loaded with molten
steel at the completion time of steelmaking. Subsequently,
the loaded ladle is transported to the refining process, and
then to the turntable till the molten steel inside is overturned
to the continuous caster. Afterwards, almost-empty ladle is
turned over completely and quickly for dumping the steel
slag, and finally is returned to the baking area near the con-
verter. If this empty ladle will be reused soon after, it must
keep heating immediately in the baking area and prepare for
the next use. Otherwise, it may stay there, cool to environ-
mental temperature and be reheated from the environmental
temperature just before the next use. And the reheating pro-
cess from the environmental temperature to the prescribed
normally costs two hours or more with additional waste of
energy consumption by natural gas.

Concerning the correlation of production operations and
ladle transportation, it is obvious from Figure 2 that the
completion time of steelmaking operation equals to the
start time of a utilized ladle, and the start time of cast-
ing is approximately equivalent to the completion time of
the ladle. In addition, a ladle can be reused only after it
comes back to the baking area from the completion of the
previous use.

B. MATHEMATICAL FORMULATION
For the proposed integration problem, assumptions are pre-
sented as follows:

1) All parameters are deterministic.
2) The sequence of the charges belonging to the same cast

is predefined.
3) Setup time is technologically required before the start of

the next cast on a continuous caster. The length of setup time
is independent upon cast sequences and material properties.

4) Machine malfunction will not occur.
5) The residual life of ladles is given, which limits the

maximal number of charges to be transported.
The following notations describe indices, sets, elements,

parameters and variables.

INDICES
i The stage indexes.
j The charge (job) indexes.
l The cast index (also called batch index).
m The machine indexes.
p The ladle indexes.
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SETS
Ij The stage set of charge j, Ij =

{
i|i = 1, 2 · · · Ij

}
,

where Ij is the number of stages and indicates the
continuous casting stage.

J The set of all charges and J = {j|j = 1, 2 . . . j}.
L The set of all casts and L = {l|l = 1, 2 . . . L}.
P The set of all ladles, P = {p|p = 1, 2...P} ,where

P is the total number of alternative ladles;
Pj The set of available ladles for charge j, Pj ⊆

P, for all j.
LJ (l,j) Set of charges in the lth cast, l = {1, 2 · · · L},

where L is the total number of casts; LJ (l1,j) ∩
LJ (l2,j) = ∅ for l1 6= l2, and

⋃
l
LJ (l,j) = J .

Mi The set of machines in stage i.
J sl The set of the start charge in the lth cast.
J el The set of the last charge in the lth cast.

PARAMETERS
U A sufficient large positive number.
ri,m The release time of the mth machine.
rj The release time of charge j.
pt j,m The processing time for the charge j on machine

m.
sp Move time of ladle p from casters to the baking

area.
su The setup time of casters between adjacent casts to

prepare for the next cast.
tp The residual life of ladle p.
r0 The weight coefficient for the objective of the total

completion time.
eim Per unit processing energy consumption when

machine m is in process.
erp Per unit energy consumption to bake ladle p.
eqp Per unit energy consumption to enable ladle p for

the next use.

VARIABLES
Xi,j,m Binary variable. Takes value 1 if charge j is being

processed at stage i on machine m and 0 other-
wise.

Yi,j,j′ Binary variable. If charge j is processed before
charge j′ at stage i, yi,j,j′ = 1; otherwise, yi,j,j′ =
0.

Qj,P Binary variable. Takes value 1 if charge j is trans-
ported by ladle p and 0 otherwise.

Zp,j,j′ Binary variable. If charge j is transported just
before charge j′ by ladle p and 0 otherwise.

KP Binary variable. Takes value 1 if ladle pisutilized
and 0 otherwise.

Wtj,j′,p Continuous variable, waiting time between two
adjacent charges j and j′ on ladle p.

Tsi,j Continuous variable, start time of charge j at
stage i.

Tf i,j Continuous variable, completion time of charge j
at stage i.

Tbj,p Continuous variable, the start time of charge j on
ladle p.

Tej,p Continuous variable, the end time of charge j on
ladle p.

TEC Free variable, the total weighted energy con-
sumption.

Cmax Positive variable, the maximum completion time,
also be known as makespan.

E1 Positive variable, the processing energy of
machines to fulfill the given processing tasks.

E2 Positive variable, the idle energy consumption for
transporting ladles between two adjacent stages.

E3 Positive variable, the baking energy consumption
for baking ladles continuously at the needed tem-
perature between two adjacent uses.

E4 Positive variable, the startup energy for reheating
a ladle to the prescribed temperature from the
environment temperature.

With notations above, the integration optimization of pro-
duction scheduling and ladle dispatching (IPS-LD) is formu-
lated as follows. Note that, all charges must be allocated to
and sequenced on suitable machines and delivery ladles, and
be scheduled under the constraints of technological require-
ments. In addition, the objective of this paper is to find a
schedule that minimizes the weighted completion time and
the total energy consumption simultaneously.

1) ALLOCATION AND SEQUENCING CONSTRAINTS
Each charge must be allocated to exactly one machine at
any stage within its process route for processing. Particularly,
in the casting stage all the charges in a cast must be processed
sequentially on the same caster.∑

m∈Mi
Xi,j,m = 1, ∀i ∈ Ij, j (1)

Xi,j,m = Xi,j′,m, ∀i = s, (j, j′) ∈ LJ (l,j), m ∈ Mi (2)

Exactly one ladle satisfying technological requirements
must be selected and allocated to a charge for transportation,
and the remaining usage times of this ladle must be less than
its residual life. ∑

p∈Pj
Qj,P = 1, ∀j (3)∑

j
Qj,P ≤ tp, ∀p (4)

For two different charges at a given stage, one charge may
start before the other and vice versa. Even if two charges start
at the same time on differentmachines belonging to this stage,
one of them is supposed to be in advance of the other.

Yi,j,j′ + Yi,j′,j = 1, ∀i, j, j′ 6= j (5)

All charges allocated to a ladle for transportation should be
sequenced in an order.

Zp,j,j′ + Zp,j′,j ≤ 1, ∀p, j, j′ 6= j (6)

Zp,j,j′ + Zp,j′,j′′ + Zp,j′′ ,j ≤ 2, ∀p, j, j 6= j′ 6= j′′ (7)
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2) TIMING CONSTRAINTS
For two consecutive operations of a charge, the following one
can start only when its preceding has terminated.

Tsi+1,j ≥ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m,

∀j,m ∈ Mi,m′ ∈ Mi+1, (i, i+ 1) ∈ Ij and i < s. (8)

At the casting stage, all charges in a cast must be processed
consecutively till the completion of the last charge in this
cast as shown in equations (9-10). In these equations, U
means a sufficient large positive number and it is utilized in
the constraints to ensure that the constraint takes effect only
when Yi,j,j′ = 1 are satisfied, otherwise, these equations are
relaxed. And between any two adjacent casts allocated to the
same casters, a setup time should be reserved for changing
equipment.

Tsi,j′ ≤ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m + U ·

(
1− Yi,j,j′

)
,

∀m ∈ Mi, i = s,
(
j, j′
)
∈ LJ (l,j), and j ≺ j′ (9)

Tsi,j′ ≥ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m − U ·

(
1− Yi,j,j′

)
,

∀m ∈ Mi, i = s, (j, j′) ∈ LJ (l,j), and j ≺ j′ (10)

Tsi,j′ ≥ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m + su − U

·
(
3− Xi,j,m − Yi,j′,m − Zi,j,j′

)
,

∀j ∈ J el , j
′
∈ J sl , i = s, and j ≺ j′ (11)

With respect to processing machine capacity, a machine
can process at most one charge at a time.

Tsi,j′ − Tsi,j −
∑

m′∈Mi
Xi,j,m′ · pt j,m′

+U ·
(
3− Xi,j,m − Xi,j′,m − Yi,j,j′

)
≥ 0,

∀i ∈ Ij, j, j′,m ∈ Mi (12)

Tsi,j′ − Tsi,j + U

·
(
3− Xi,j,m − Xi,j′,m′ − Yi,j,j′

)
≥ 0,

∀i ∈ Ij, j, j′,
(
m,m′

)
∈ Mi,m 6= m′ (13)

In regard to ladle utilization, if two charges are allocated to
a ladle for transportation, the transportation operation of the
following charge can start only after the preceding one has
been completed.

Tbj′,p − Tbj,p −
∑

i>1,i<Ij−1

∑
m∈Mi

Xi,j,m · pt j,m

+U ·
(
3− Qj,P − Qj′,P − Zp,j,j′

)
≥ sp, ∀j, j′, p (14)

3) CORRELATION CONSTRAINTS
Provided that the pth ladle is assigned to charge j, the start
time for transporting charge j equals to the completion time
of this charge at the steelmaking stage. Otherwise, these two
constraints are relaxed.

Tbj,p ≤ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m + U ·

(
1− Qj,P

)
,

∀i = 1, j, p ∈ Pj (15)

Tbj,p ≥ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m − U ·

(
1− Qj,P

)
,

∀i = 1, j, p ∈ Pj (16)

Similarly, as long as the pth ladle is assigned to charge j,
the end time for transporting charge j equals to the start time
of this charge at the continuous casting stage.

Tej,p ≤ Tsi,j + U ·
(
1− Qj,P

)
, ∀i = s, j, p ∈ Pj (17)

Tej,p ≥ Tsi,j − U ·
(
1− Qj,P

)
, ∀i = s, j, p ∈ Pj (18)

4) OBJECTIVE FUNCTIONS
For most steelmaking companies, makespan is a common and
essential index which accurately reflects the productivity.

Cmax ≥ Tsi,j +
∑

m∈Mi
Xi,j,m · pt j,m, ∀i = s, j (19)

The total energy consumption comprises four aspects:
processing energy consumption, idle energy consumption,
baking energy consumption, startup energy consumption.
Among them, the processing energy consumption is the elec-
tricity energy consumed by processing machines.

E1 = eim ×
∑n

j=1

∑
i∈Ij

∑
m∈Mi

Xi,j,m · pt j,m (20)

The idle energy consumption of a charge is lost by trans-
portation and waiting time between any two stages.

E2 = erp ×
{∑n

j=1

[∑
p

(
Tej,p − Tbj,p

)
−

∑i<s

i>1|i∈Ij

∑
m∈Mi

Xi,j,m · pt j,m

]}
, (21)

If two successive charges are allocated to a ladle for trans-
portation, after completing the preceding charge, the ladle
will stay at the baking area and wait for the next use. During
the waiting period, the ladle to be utilized will keep heated
by gas and hence result in the baking energy consumption of
ladles.

E3 = erp ×
∑

t|t<Tp

∑
p
Wtp,j,j′ , (22)

where,

Wtp,j,j′ ≥ Tbj′,p − Tej,p − U ·
(
3− Qj,P − Qj′,P − Zp,j,j′

)
,

∀j, j′, p ∈ Pj (23)

Wtp,j,j′ ≤ Tbj′,p − Tej,p + U ·
(
3− Qj,P − Qj′,P − Zp,j,j′

)
,

∀j, j′, p ∈ Pj (24)

The startup energy consumption is involved when a ladle
is first enabled after a long-term stay at the environment
temperature. Note that, the startup energy consumption of
ladles is huge and inevitable.

E4 = eqp × KP, ∀p (25)

where,

U · KP ≥
∑

j
Qj,P, ∀p (26)

Therefore, the objective function is minimizing the
weighted summation of the maximum completion time and
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the total energy consumption so as to improve the production
efficiency and energy saving simultaneously.

min : TEC = r0 · Cmax + (1− r0)

·
{
eim × E1 + erp × (E2 + E3)+ eqp × E4

}
(27)

Therefore, using Equations (1-27), the proposed
IPS-LD is formulated as a mixed integer linear programming
model. This model can be used to exactly solve small-
sized instances of the problem to optimality by the software
such as GAMS/Cplex. However, it is known that production
scheduling of SCC is NP-hard [34]. Hence, the proposed
IPS-LD must be strong NP-hardness, and an effective and
well-designed meta-heuristic is proposed to tackle this pro-
posed integration problem.

III. THREE-LEVEL HEURISTIC BASED
SOLUTION GENERATION
Compared with pure production scheduling of SCC, this inte-
gration problem involves more decisions and mutual corre-
lation between production scheduling and ladle dispatching.
To present the solution procedure clearly, we first design
the way of generating the optimal solution under a given
production sequence at the first stage. This specially designed
approach based on the acquired expertise is denoted as the
three-level heuristic-based solution generation method. In the
method, the upper two levels, the forward and backward
heuristic mechanisms, produce a feasible production sched-
ule; the third level provides a feasible ladle dispatching plan
under the limitation of the given production schedule.

A. FIFO-BASED FORWARD HEURISTIC
As mentioned in Equation ‘‘27’’, the first scheduling goal is
to obtain the objective of makespan as small as possible. The
FIFO-based forward heuristic is thus proposed to ensure that
each charge may be processed as early as possible. As long
as a production sequence at the first stage is given, this
heuristic helps to allocate charges to processingmachines and
sequence all charges allocated to a machine in an order.

This heuristic is implemented from the first stage to the
last according to breadth first principle. In each stage, all
the charges are first allocated to processing machines and
then those of them allocated to a machine are sequenced in
an order. Particularly, in the first stage, each charge will be
assigned to the first available machine according to a given
production sequence, and then a charge that has an earlier
completion time of the first stage is endowed with a higher
priority according to the FIFO rule (First in, First out), and
hence is ranked first in the sequence.

Compared with the first two stages, the allocation and
sequencing in the casting stage follows the FIFO rules too
and shows some unique characteristics. The difference is the
fixed machine assignment: as long as the first charge in a cast
has been allocated to a caster, all other charges in this cast
must be allocated to the caster too.

With all things above, the FIFO-based forward heuristic is
designed and provided in Algorithm 1.

Algorithm 1 FIFO-Based Forward Heuristic
Input: Casts and charges, release times of machines and
charges (ri,m, rj), a production sequence at the first stage.
Output: Machine assignment, charge sequence, comple-
tion time, makespan.
//Forward heuristic for steelmaking and refining stages//

1: For i = 1 to s− 1 do
2: While j ≤ |J| do
3: Select charge j sequentially according to FIFO,
where j∗ = min

j
rj;

4: Assign charge j∗ to the earliest available machine m∗,
where ri,m∗ = min

m∈M i
ri,m;

5: Schedule charge j∗ on the assigned machine, set
ST i,j∗ = max{ri,m∗ , rj∗};
6: Update ri,m∗ = ST i,j∗ + PT i,j∗ ;
7: End while
8: End for.
// Forward heuristic for casting stage//
9:While l ≤ L do
10: Select the earlier available caster for cast l,
m∗ = argm∈Ms

min{rs,m};
11: Compute the casting starting time of cast
l,Tsis,LJ (l,Jsl )

= max {Tf s−1,LJ (l,Jsl )
, rs,m∗ + su};

12: Set t = J sl + 1;
13: While t ≤ Jel do
14: Compute the casting starting time of other charges,
Tsis,LJ (l,t) = max {Tsis,LJ(l,t−1)+PT LJ (l,t−1),m∗ ,Tf s−1,LJ (l,j)};
15: Set t = t + 1;
16: End while
17: Set l = l + 1;
18:End while

Using the aforementioned forward heuristic, the machine
assignment, charge sequence on eachmachine, andmakespan
are obtained. It should be noted that the continuous casting
constraints are neglected unfortunately here, and hence the
timing of all charges needs to be reconsidered to ensure the
continuity of casting in a cast and reduce the unnecessary
energy consumption.

B. DEPTH-FIRST BACKWARD HEURISTIC
To satisfy the constraints of continuous casting and reduce the
useless energy consumption, the depth-first backward heuris-
tic adjusts the timing of all charges one by one. This adjusting
process is performed according to the descending order of
the completion times in the last stage of all charges. For each
charge, the timing is recalculated from the continuous casting
stage to the refining and then to the steelmaking according to
depth-first principle.

It is worth noting that at the continuous casting stage, all
the charges except the last one in a cast must move right so
as to satisfy the continuous casting constraint. Due to this,
the difference between the start time of the current stage
and the completion time of the previous stage is enlarged;
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and accordingly, the idle energy consumption has increased
unfortunately. To reduce idle energy consumption, the timing
of this charge at the refining and steelmaking stages must
move right, too. In this process, the charge sequence from the
FIFO heuristic will be kept unchanged. This adaption can be
described by Algorithm 2.

Algorithm 2 Depth-First Backward Heuristic
Input:Machine assignment, charge sequence, completion
time, makespan.
Output: Production schedule.

//Continuous casting stage//
1: Sort all casts in the descending order of the completion
time of the last charge in these casts, generate a cast list π
of the cast stage, let πl denote that cast l is in theπl position
in the list;
2:While πl ≤ L do
3: Confirm start time of the last charge in cast l, Tss,J el =
max {Tss,J el −1 + ptJ el −1,m∗ ,Tf s−1,J el };
4: Set t = J el − 1;
5: While t ≥ J sl do
6: Adjust the start time of charge t , Tss,t = Tss,t+1−

pt t,m∗ , to ensure this charge can be cast
continuously;

7: Set t = t− 1;
8: End while
9: Set πl = πl + 1;
10:End while
//Refining and steelmaking stages//
11:Sort all charges in the descending order of their

completion times, generate a cast list π of all charges,
let πj denotes that charge j is in the πj position in the
list;

12:Set πj = 1;
13:While πj ≤ J do
14: For i = s− 1to1 do
15: Adjust start time of charge j on the given machine
m,Tsi,j = min {ri,m,Tsi,j} − pt j,m;
16: Update ri,m = Tsii,j;
17: End for
18: Set πj = πj + 1;
19: End while

C. RULES-BASED LADLE DISPATCHING HEURISTIC
For the purpose of reducing energy consumption, the primary
task of ladle dispatching (Qj,P) is to ensure that the total
number of ladles in use is as small as possible and all the
ladles in use have a high utilization rate. Meanwhile, many
factors should be considered. First, only the matched ladle
can be utilized for the transportation of a charge, i.e., p ∈ Pj.
And, if more than one ladle can be utilized for transporting
a charge, special measures are needed to choose a suitable
ladle for the purpose of reducing energy consumption. Hence,
we separate all the ladles into two types: heating ladles and

TABLE 1. The Characteristics of the given charges.

cooling ladles. The former is reheated immediately as long
as it returns to the baking area while the latter cools to
the environmental temperature without restriction. For each
type of ladles, we propose a rule to choose a suitable ladle
respectively.
Rule 1: Among all heating ladles, give higher priority to

the ladle that has been baked for a shorter period i.e. the ladle
with a shorter waiting time since the last utilize.

p∗ = argpmin
{
U ∗

(
1− Kp

)
+Wtp,j,j′

}
. (28)

Proof: If Kp equals 1, the ladle p must be in heating
status. In this case, the reuse of this ladle may reduce the huge
startup energy consumption. Additionally, among the ladles
heated in the baking area, the shorter the baking time is, the
larger the recirculation times is, and the less the consumed
energy will be. For a long time period, the ladle with larger
baking time will be gradually out of use and hence the number
of ladles in use will be reduced, too.
Rule 2: Among all cooling ladles, endow the ladle p∗

having the bigger residual life tp with the higher priority.

p∗ = argpmax
{
tp
}
. (29)

Proof: It is known that in the ladle transportation the
temperature of the molten steel may drop owning to two
types of heat loss: the heat loss due to evaporation from the
surface of the molten steel and that for heat conduction by
the shell and lining of the ladle. Among them, the heat loss
by ladle lining is about 40% ∼ 50% of the total; and, the
larger the residual life tp is, the less energy consumption that
the refractory material of ladle lining needs to achieve the
prescribed temperature [35]. To reduce the heat loss by ladle
lining, the ladle with the bigger residual life should be reused
first.

Based on the above two rules, the detailed steps for ladle
dispatching are given as follows.

D. AN ILLUSTRATIVE EXAMPLE
This illustrative example comes from a real SCC production
plant [36]. At the steelmaking and casting stages, there are
two parallel machines (LDs and CCs) respectively. And at
the refining stage, there are two process routes, (LF) and
(LF-RH). Among them, the LF process has two parallel
machines while the RH process has only one machine. For
clarity, a small industrial case is taken as an example. In this
case, only three casts including eight charges are considered,
and the detailed characteristics of these charges and ladles are
represented in Table 1.
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Algorithm 3 Rules-Based Ladle Dispatching Heuristic
Input: Production schedule, release time of ladles rp.
Output: Ladle schedule.

1: Sort all charges in the increasing order of completion
times at the steelmaking stage, and generate a charge list
π of all the charges, let πj denote that charge j is at the πj
position of the list;
2:While πj ≤ J , do
3: Find all heating ladles satisfying technological
requirements, set 8j=Pj ∩ {p|rp < Tf 1,j};
4: If 8j 6= φ

5: Select the ladle p∗ with Rule 1;
6: Else
7: Select the ladle p∗ with Rule 2;
8: End if
9: Update the start/end time of ladle p∗ for transport-
ing charge j,Tbj,p∗ = Tf 1,j,Tej,p∗ = Tss,j;
10: Update the release time of ladle p∗: rp∗ = Tej,p∗ ;
11: End while

Provided that a given production sequence at the first
stage is {2, 5, 3, 6, 4, 7, 1, 8}, using the FIFO-based for-
ward heuristic, every charge in each stage is allocated to
the first available machine as long as its previous process
has been completed as shown in Figure 3(a). It can be
seen that the continuous-casting constraint between adjacent
charges in a cast is interrupted and the current solution is
infeasible.

Then, the depth-first backward heuristic is utilized to move
some charges right from the continuous casting stage to
the refining stage and then to the steelmaking as illustrated
in Figure 3(b). As a result, all the charges in a cast can be cast
continuously and the idle energy consumption between any
two successive stages can be reduced to minimum. Finally,
all the charges are sorted according to the ascending order
of completion times at the first stage, and then one by one,
exactly one of all the matched ladles is allotted to a charge
according to the rules-based ladle dispatching heuristic as
represented by Figure 3(c). Finally, a feasible and optimal
solution is generated for the given production sequence.

IV. THE BASIC MBO
Migrating birds optimization (MBO) is a recent high-
performing meta-heuristic algorithm inspired by the migrat-
ing bird’s flight in a V-shaped formation, which has obtained
competing performances in kinds of combinatorial optimiza-
tion problems [37]–[39]. The main feature of MBO is sharing
their neighbors with others, promoting the evolution of the
whole swarm. This algorithm starts with birds (population)
initialization, where these birds are put on a hypothetical
formation. In this formation, a head bird leads other birds
following on the right and left lines. Specifically, first, α
solutions are generated in the feasible solution space in a
random manner. Then, the solutions are arbitrarily placed on
a hypothetical ‘V’ formation containing one leader solution,

FIGURE 3. Overview of three-level heuristic-based solution generation.

(α-1)/2 solutions in the left line and (α-1)/2 solutions in the
right line. It should be noted that when the leader is tired,
it will move to the tail of the following birds and another bird
will take its place to lead the population. The details for the
basic MBO are shown as follows.

//Initialization
1: Initialize α birds;

% α is the number of swarm size
2: Put birds on a hypothetical V formation;
//Evolution of leader and following birds
3: While Termination criterion is not satisfied do
4: For d = 0 to γ do

% γ is the parameter
5: Improve the leader;
6: Improve the following birds;
7: End For
//Leader changing
8: Update the best bird;
9: Select leader bird;
10: End While
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It should be noted that inspired by this special formation,
the MBO algorithm does not employ the concepts of the
constant angle and depth, but has a hypothetical V-shaped
population formed by a leader solution and other solutions
in left and right lines following the leader and introduces
a benefit mechanism corresponding to the WTS. The MBO
starts with a number of solutions placed on the ‘V’ population
arbitrarily. Then, an evolving loop involving a number of
tours or iterations, and each tour evolves beginning with the
leader and progressing along the left and right lines in parallel
by exploring their neighborhood. Particularly, the benefit
mechanism that the solutions may share their best unused
neighbors with the following solutions through a special
neighbor shared set is applied in the evolutionary process.
The unused neighbors are referred to the neighbors that are
not used to update its current solution. Finally, when a loop
is finished, the leader is to be changed, and another loop
starts. The above procedure is conducted repeatedly until the
termination condition is met.

V. THE PROPOSED EMBO FOR IPS-LD
In this section, we present an enhanced MBO (EMBO)
with stronger optimization capabilities to solve the proposed
IPS-LD. We first determine the solution representation and
employ the decoding rule based on ‘‘three-level heuristic-
based solution generation’’. Then, we design several modi-
fications to enhance the performance of the MBO, including
the neighborhood search strategies, dynamic solution accep-
tance criteria, and novel competitive mechanism. With these
modifications, the proposed algorithm is expected to capture
the balance between the exploration and exploitation abilities,
and it performs well in solving IPS-LD. The details are given
below. Note that, This algorithm has four parameters: the
number of individuals in the swarm (α), the number of neigh-
bors around the leader and following bird (β), the number
of neighbors to be shared with the following birds (χ), and
the number of iterations before replacing the leader, which is
also called the number of tours (γ ). The time complexity is
O(α × γ × β × α−1

2 log2
α−1
2 ).

A. SOLUTION REPRESENTATION AND POPULATION
INITIALIZATION
The encoding scheme plays an important part in designing
effective algorithms. In the EMBO, an individual (migrat-
ing bird) in the flock is a solution to the integration prob-
lem. As mentioned in Section II, as long as the production
sequence of charges at the first stage is given, the variables
including the machine assignment, charge sequence, comple-
tion time andmakespan can be deduced sequentially using the
three-level heuristic-based solution generation. Meanwhile,
since the ladle schedule is generated based on a feasible
production schedule, the ladle dispatching needs not to be
considered in the coding process. Therefore, a permutation-
based representation, which expresses the ascending order
of release times of charges at the first stage, is enough for

//Flowchart of the EMBO algorithm
Input: Data of the integration problem; parameters of
EMBO.
Output: Leader bird with best solution

1: Generate α birds with heuristic-based or random initial-
ization;
2: Put birds on a hypothetical V formation;
3: If termination criterion is not satisfied do
4: For d=0 to γ do
// Leader improvement
5: Generate β neighbors for leader bird with neighbor-
hood operators;
6: Improve the leader bird and form the left/right sharing
neighbor set respectively with χ neighbors;
// Follower improvement
7: For each following bird X do
8: Generate β-χ neighbors with the neighborhood oper-
ator;
9: Form neighborhood 3(X ) with β-χ neighbors and χ
shared neighbors;
10: If the best neighbor X ’ in3(X ) is better than X then
11: X = X ’;
12: Else If random(0,1)≤ e−(1/temp) then
13: X = X ’;
14: End If
15: End For
16: End If
// Birds regrouping
17: Update the best bird;
18: Select the leader bird;
19: Line up the followers;
20: End For

encoding the integration problem. That is, each solution is
represented by a string of integers in which each integer
denotes a charge number and the length of this string equals
to the number of charges. Based on the encoding scheme,
a solution can be generated by the three-level heuristic, which
is described in Section III.

It is worth noting that at the casting stage, all the ladles
belonging to a cast must be processed continuously and be in
accordance with the predetermined order of charges in a cast.
Moreover, an ineffective coding may result in the interruption
of this predetermined order of charges in a cast and further
influence the continuity of the casting process. Hence, Rule
3 is proposed to guarantee that all the ladles in a cast can be
cast continuously.
Rule 3: The number of casts in process is less than that of

casters.
Proof: As mentioned in Section III. (A), all the charges

are allocated and sequenced one by one according to breadth
first principle in the casting stage. Supposing that the number
of casts in process is larger than that of casters at the very
moment, the charges belonging to the incumbent cast can
be cast on time. However, the others must wait until the
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completion of the incumbent cast. Obviously, the idle energy
consumption will be largely increased due to wait time of
other charges.

Based on Rule 3, a heuristic-based initialization is
employed to guarantee the feasibility of solutions and expe-
dite the optimization process as shown in the following.

Algorithm Initialization Heuristic
Input: A random sequence of casts
Output: A charge processing sequence

Step 1: Generate randomly a sequence of casts.
Step 2: Create a set A[j] with all assignable charges accord-

ing to the predetermined order of charges in the casts.
Step 3: Randomly select a charge from set A[j] satisfying

Rule 3; assign the charge to the sequence; and elim-
inate the charge from set A[j].

Step 4: Check there are new assignable charges or not. If yes,
append them into the set A[j]; otherwise, keep the set
unchanged.

Step 5: If the set A[j] is empty, output the resulted sequence;
otherwise, return to step 2.

Step 6: Next, we obtain the solution representation that is the
same as the charge processing sequence selected by
the order in sequence π [j]

For clearly, Table 2 presents the detailed procedure of
generating a feasible sequence for the small industrial case
in Section 4.4. The resulted feasible sequence is represented
as {2, 5, 3, 6, 4, 7, 1, 8}.

TABLE 2. The Procedure of a feasible sequence.

Since MBO is a swarm-based algorithm and a swarm of
individuals evolves in parallel, we need to generate a popula-
tion of initial solutions first and put these birds on a distinctive
‘V’ formation. In this paper, to improve the efficiency of the
EMBO, we use the solution generated by the heuristics as the
leader. The rest of the solutions are randomly generated. And
the rest of solutions in the population are divided into two
parts as the followers in the left line Pl and right line Pr .

B. COMBINATIVE NEIGHBORHOOD STRUCTURES
In the basic MBO, the leader bird is updated as long as
the current best neighbor shows better performance, and the
remaining neighbor solutions are utilized for the evolution of
the following birds. In this case, most neighbors of the follow-
ing birds are inherited from the leader. Obviously, the quality

of neighbors of the leader bird has a great influence on the
algorithm, and its neighborhood structure should be more
exquisite. Hence, we adopt the generally utilized insert and
swap operators to generate the neighbor solutions of the fol-
lowing birds, and more importantly, we propose greedy insert
and swap operators based on greedy selection to improve the
neighborhood of the leader bird.

Insert: remove a charge randomly and reinsert it at any
other position except the original one.

Swap: exchange two randomly selected charges.
Greedy insert: select a charge randomly, reinsert it back

into the sequence at each position except the original one and
obtain multiple sequences, and choose the sequence with the
minimum objective value of makespan.

Greedy swap: select a charge randomly, swap it with each
other charges in the sequence and obtain multiple sequences,
and choose the sequence with the minimum objective value
of makespan.

Note that, since the two new neighborhood operators
are both for the neighborhood improvement of the leader,
we define a random number in (0,1) to choose one operator
for fairness. If this number is less than 0.5, choose one
operator and otherwise another.

C. NEWLY ACCEPTANCE CRITERION
The basic MBO conducts a greedy selection by which the
current solution is substituted if and only if its best neighbor
has an improvement. This acceptance criterion might lead to
the situation that the incumbent bird remains unchanged. For
this reason, escaping from the local optima is in urgent need
[40]. And, simulated annealing (SA) is an effective heuristic
for achieving good solutions to difficult problems. It mimics
the process of cooling solids. Different from common descent
algorithms allowing better solution to survive, it also accepts
a neighborhood with lower performance at a predefined prob-
ability. Hence, we introduce the SA strategy into EMBOwith
an attempt to escape from the local optimum.

If the best neighbor Nbest outperforms the incumbent bird
X , replace the latter directly; otherwise, the leader bird keeps
unchanged but the following birds are replaced by the best
neighbor with the probability of e−(1T /temp), where the con-
stant temperature temp is calculated using Equation (30).

temp = T ×
∑

i

∑
j
PT i,j/(|L| ∗ n ∗ ρ) (30)

Clearly, this new acceptance criterion accepts the worse
solution with a certain probability, and hence enhances the
diversity of population and avoids being trapped in the local
optima.

D. COMPETITIVE MECHANISM
In the basic MBO, the birds are put on hypothetical V-shaped
formation arbitrarily, and some promising birds may emerge
in the tail and have few opportunities to share their neighbors.
However, the basic MBO puts birds on V-shaped formation
arbitrarily without the differentiation of their performance,
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and conducts the improvement process of following birds
from the bird next to the leader to that at the tail. Pitifully,
those promising birds which emerge in the tail may have few
opportunities to share their neighbors.

Hence, this study is based on the competitive mechanism
proposed by Zhang et al. [39] to remedy this possible draw-
back. In themodified competitivemechanism, first, the leader
is moved to the tail of the left or the right line alternatively
and the best one in the selected line becomes the new leader.
Then, two individuals from the same position of the left and
right lines are selected randomly and respectively, and are
exchanged to promote the information exchange of the birds
on two lines. Subsequently, all the birds in each line are
queued again according to the descending order of objective
values. The bird with the best fitness is removed to the first
position, the bird with the second-best fitness is removed to
the second position, and finally the bird with the worst fitness
is removed to the last position.

Clearly, this competitive mechanism guarantees that
promising birds locate in the front of the line and have more
opportunities to share their neighbors. In this study, this
mechanism is executed after the selection of leader bird to
adjust the position of each following bird in the flock lines.

VI. COMPUTATIONAL EXPERIMENTS
To test the performance of the proposed EMBO, EMBO is
compared with four other published algorithms. Although
there exist a number of optimization algorithms, they might
not be able to solve the considered problem directly and hence
this research mainly re-implements the methods applied
to the SCC and other production scheduling problems.
The methods considered for comparative study are: sim-
ulated annealing algorithm (SA) [41], genetic algorithm
(GA) [42], teaching–learning-based optimization algorithm
(TLBO) [43], artificial bee colony algorithm (ABC) [27]. The
main operators of GA, SA, TLBO, and ABC are selected
based on the reported ones in [44]. The termination criterion
for each case is set as an elapsed CPU time which is set to
|L| × n× ρ milliseconds, where ρ is a parameter. In order to
observe the performance of the algorithms from short to large
computational time, ρ is set to 10 and 20, respectively.
The following experimental study is conducted based on

a real SCC factory in China, which involves 2 EAFs, 2 LFs,
1 RH and 2CCs. Limited by the production capacity, themax-
imum number of casts in a scheduling horizon is about 34 and
each cast contains at most 5 ladles. With this, the number of
casts, the number of charges belonging to each cast, the num-
ber of stages for a ladle, the residual life of each ladle and
the processing time are generated using uniform distribution
between [1, 34], [1, 5], [3, 4], [5, 80] and [40, 75] respectively.
Due to the space limitation, the details of the date are given
as on-line materials. It must be pointed out that each ladle in
a cast has the exact same processing route.

The proposed mathematical model is programmed with
GAMS/CPLEX 23.0 and all the algorithms are codes using
C++ programming language, and all the experiments are

implemented on a PC with a 2.3 GHZ Intel Core i5 processor
in a WIN7 Operation System (64-bit).

A. PARAMETER CALIBRATION
Since parameter settings significantly influence computa-
tional results, we utilize the Taguchi method to study the
influence of parameters. For EMBO, there are five param-
eters or controlled factors: the number of initial solutions
(α), the number of neighbor solutions to be considered (β),
the number of neighbor solutions to be shared (χ), the number
of tours (γ ) and the initial temperature (T ). Based on the
parameter calibration method reported in [44], the Taguchi
method of design of experiment (DOE) is applied to select the
parameter values. Specifically, the largest case with 34 casts
and 115 charges is selected and is solved ten times by any
combination of the parameter levels, with the termination
criterion of |L| × n× 10 milliseconds.
For all the experiments are conducted, the relative percent-

age deviation or RPD is selected as the response variable
using,

RPD =(TECSome − TECBest)/TECBest × 100. (31)

Here, TECSome is the function value achieved by a given
parameter combination and TECBest is the best function value
obtained by all combinations for the same instance.We utilize
orthogonal array to arrange the experiments which then are
run to obtain the corresponding response value. As shown
in Table 3, there are L16(45) experiment combinations and
each experiment is run 10 times. Then, the average RPD is
regarded as the final response value. Clearly, the algorithm
with a lower RPD has a better performance.

TABLE 3. Orthogonal array of EMBO.

After obtaining the response values, the Taguchi method
of design of experiment (DOE), a powerful parametric sta-
tistical inference tool, is carried out to check the normality,
homoscedasticity and independence of the residuals. Detailed
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TABLE 4. The mean response values of signal-noise ratio (SNR).

results indicating the significance rank of each parameter are
illustrated in Table 4. It is observed that the parameter β,
the number of neighbor solutions to be shared, has the largest
delta (3.21), indicating that β has the greatest influence on the
proposed EMBO. If ranking the parameters in the decreasing
order of the delta values, the sequence is β, χ , α, T , and γ ,
where the former parameter has greater influence.

FIGURE 4. SNR main effects plot.

Meanwhile, according to the response value in Table 3,
the signal-noise ratio (SNR) main effects plot of the five
parameters is illustrated in Figure 4. It demonstrates that the
proposed EMBO performs the best when the combination is:
(α = 11, β = 12, χ = 6, γ = 100, T = 0.4).

B. SIGNIFICANCE OF INTEGRATION OPTIMIZAITON
1) MICRO-ANALYSIS OF ENERGY-SAVING NATURE
To present clearly the energy-saving nature of the integration
method, a typical instance is hired as an illustrative example.
It contains five casts with (5, 3, 4, 5, 1) charges in the respec-
tive cast sequentially. Note that for clarity, only three to five
ladles can be utilized for transportation. The corresponding
Gantt charts are presented in Figure 5.

Figure 5(a) shows the optimal makespan is 1000 min-
utes when three ladles are involved; while it remains at
800 minutes even if more ladles are appended as shown
in Figure 5(b-c). In a word, reasonable ladle dispatching plays
a significant impact to optimize the production scheduling to
a large extent. In nature, the lack of ladles may result in a
long delay of the transportation of the molten steel, and of
course, the makespan will be extended largely. In order to
guarantee productivity, the number of ladles to be utilized

is usually preset as a large enough number. As long as the
number of ladles is large enough, the optimal makespan
remains unchanged. However, as shown by the results of
four and five ladles respectively in Figure 5(b-c), the average
circulating number of ladles for the former is 4.5 while that
for the latter is 3.6; and, the total baking time is 1005 minutes
for the former, while that is 1620 minutes for the latter.
These results demonstrate that the utilization of an additional
ladle not only decreases the average circulating number, and
more importantly, it increases the total baking time since a
ladle to be utilized cannot wait without baking. Consequently,
the incurred energy consumption is increased dramatically as
the number of additional ladles grows.

Therefore, to reduce energy consumption, it is recom-
mended to optimize the number of ladles to be utilized and
the circulating of ladles according to the production require-
ments. In another word, incorporating the ladle dispatching
into the production scheduling may be an energy-efficient
measures to obtain productivity and energy saving simulta-
neously.

2) MACRO-ANALYSIS OF INTEGRATION OPTIMISATION
Further to confirm the energy-efficient performance of the
integration optimization of production scheduling and ladle
dispatching, the proposed integration model (IPS-LD) is
compared with several separation methods. With respect to
the separation methods so far performed on the spot, the opti-
mal production schedule is determined at first similar to
[36]; and based on this, the ladles are preheated according to
different patterns. In the first pattern denoted as PS-AB, all
the ladles are preheated regardless of the initial release times
of ladles. In the second pattern denoted as PS-HB, half of the
provided ladles are selected for baking while the others stay
at the environmental temperature. In the third pattern denoted
as PS-JB, all ladles are heated just before the time to be into
service.

Hence, in order to verify the optimality performance of
the proposed IPS-LD, Table 5 reports the comparison results
among these integration and separationmethods. In this table,
columns (1-2) present the instance number and the number
of casts and charges. Note that, each of the tested instances
is solved 10 times by the integration or separation methods
respectively at the CPU time limit set as |L| × n × ρ mil-
lisecond (ρ = 10). This results in a total of 20 × 10 × 1 ×
4 = 800 experiments. Columns (3-13) report the obtained
TEC, Avg and RD calculated by the integration or separation
methods. Here, TEC is computed according to ‘‘27’’, Avg
signifies the mean absolute percentage error of 10 times,
and RD reports the relative difference (%) of the incumbent
method compared with the proposed IPS-LD, or called the
improvement rate of the proposed IPS-LD from the view-
point of the IPS-LD. This relative difference is calculated
with,

RD = (1−TECsome/TECIPS−LD)× 100, (32)

VOLUME 8, 2020 176181



D. Han et al.: Energy-Efficient IPS-LD in Steelmaking Plants

FIGURE 5. The Gantt chart for instance 10 with different available ladles.

in which TECsome is the obtained TEC by any one of the
separation methods. And, the average relative difference of
all the related cases is reported in the last row.

It can be seen that the value of TEC by IPS-LD is
significantly less than those by PS-HB, PS-JB, and PS-AB,
indicating that on energy saving, the integration method
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TABLE 5. The results for energy consumption comparison with the separation methods.

TABLE 6. Algorithm performance for small-scaled problems.

outperforms considerably all the separation methods. Mean-
while, among the separation methods, the PS-JB allows all
ladles to be heated just before the service shows worse perfor-
mance on energy saving than PS-AB and PS-HB in which all
or half ladles are preheated. This demonstrates that since the
energy consumption is relatively high for warming up a ladle,
heating a ladle just before the service causes large energy
consumption. And, the average relative difference of the PS-
HB is slightly smaller than that of the PS-AB. This confirms
that if the number of ladles is relatively large, preheating all
ladles no matter if they are needed or not is definitely a waste
of energy, and conversely, the recommended method is to
preheat the ladles to be utilized just in time and keep most
of them in frequent recirculation.

Table 5 also shows that among the four methods for
the results, the integration method (IPS-LD) is the top 1,
the half-preheated (PS-HB) is the second, the all-preheated

(PS-HB) is the third and the way of heating just before the
service (PS-JB) is the last. Particularly, compared with PS-
JB, the improvement rate of the integration method achieves
1.21%, implying a significant decrease in energy consump-
tion within SCC plants. This finding proves statistically
the superiority of the integration optimization of production
scheduling and ladle dispatching over the separation meth-
ods on the energy savings. Therefore, the ladle utilization is
recommended to be integrated in the production scheduling.

In conclusion, the traditional notion of preheating more
ladles than the needed is indeed helpful for keeping high
productivity but is quite expensive in energy consumption.
To decrease energy consumption in SCC production, it is
necessary and sufficient to determine when and which ladles
to be utilized when making schedules for production. The
integration optimization of production scheduling and ladle
dispatching is an effective measure for productivity improve-
ment and energy saving.

C. ALGORITHM PERFORMANCE OF EMBO
1) COMPARING WITH CPLEX
To test the validation of the proposed EMBO, the mixed
integer programming model (MIP) in Section II is solved in
small-scaled instances utilizing the GAMS/CPLEX solver,
and the derived results are compared with those by the pro-
posed EMBO. For each instance, the solution procedure by
GAMS/CPLEX terminates if an optimal solution is obtained
or computation time reaches 1200s. Table 6 presents the
results solved by two methods in 10 small-scaled instances.
In this table, columns 1-2 present the instance number and the
number of casts and charges. Columns 3-7 report the obtained
best solutions and the consumed CPU times by each method
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TABLE 7. Algorithm performance for medium- and large-scaled problems results when ρ = 10.

respectively. Note that, the data with the signal ∗ signifies the
optimal solution.

It can be seen that all the algorithms have found the optimal
solutions for instances 1-7, which provides a complete valida-
tion of the proposed EMBO. Moreover, taking instance 8 as
an example, the GAMS/CPLEX cannot find the optimal solu-
tion within 1200s while the proposed EMBO finds a much
better solution within 2s. This proves the prominent superi-
ority of the proposed EMBO as the problem scale increases.
And, the average running time of GAMS/CPLEX is 638.79s
while that of EMBO is 1.02s. In summary, the EMBO is
capable of obtaining the optimal solutions for small-scaled
problems and achieving solutions with higher quality in much
less time for the large-scaled problems.

2) COMPARING WITH OTHER ALGORITHMS
To investigate the effectiveness of the proposed EMBO on
medium- and large-scaled problems, the obtained results are
first compared with those solved by the five existing algo-
rithms: GA, SA, TLBO, ABC and MBO. Further, they are
contrasted with the results calculated by three variants of
the proposed EMBO: EMBOSC that removes the appended
neighborhood, EMBONC that removes SA-based acceptance
criterion and EMBONS that removes competitive mechanism.
Each algorithm solves each of the instances for 10 times

at two termination criteria respectively (elapsed CPU time
of |L| × n × ρ milliseconds and ρ = 10 or 20) for each
experiment. Hence, a total of 5400 experiments are collected
and analyzed. Tables 7-8 present the detailed results by these
algorithms. In these tables, TECBest is the best value obtained
by all algorithms for an instance, and Min/Avg signifies the
minimum/average relative percentage deviation to the best
solution respectively.

It is clear through Tables 7-8 that all the algorithms
improve their results when there is more computational effort
involved. In terms of the minimum RPD values, the pro-
posed EMBO performs steadily and well, and outperforms
all the algorithms for all the instances under two termination
criteria. Concerning the average RPD, the proposed EMBO
achieves the smallest average RPD in 23 and 27 scenarios
of the respective 30 instances when ρ = 10 and 20. This
demonstrates that in contrast with the comparison algorithms,
the proposed EMBO may achieve solutions with better per-
formance and higher robustness. In addition, we also utilize
the ANOVA to analyze difference among other algorithms
and modifications based on MBO. The least significant dif-
ferences intervals of the results are depicted in Figures 6-
7. These figures clearly illustrate that the proposed EMBO
outperforms all the comparing algorithms from a statistical
viewpoint.
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TABLE 8. Algorithm performance for medium- and large-scaled problems results when ρ = 20.

FIGURE 6. 95% Confidence interval for the minimum RPD of EMBO and
comparing algorithms at ρ = 10.

To find out why EMBO behaves better, further comparison
experiments are conducted between EMBO and its three vari-
ants. The results also show clearly that the proposed EMBO
outperforms all its variants. Specifically, the EMBONS has the
worst performance for most of the problems in Tables 7-8,
indicating that the SA-based acceptance criterion and com-
petitive mechanism have better ability in escaping from
local optima and enhancing the population diversity. Under
this circumstance, the two appended neighborhood struc-
tures further balance the exploitation and exploration.

FIGURE 7. 95% Confidence interval for the average RPD of EMBO and
comparing algorithms at ρ = 10.

This observation reveals that the designed modifications,
including two appended neighborhood structures, SA-based
acceptance criterion and competitive mechanism, are effec-
tive to enhance the optimization capability of the EMBO.
Hence, it is concluded that the proposed EMBO is very
effective in solving the energy-efficient scheduling problem
considered in this work.

In summary, the integration of production scheduling and
ladle dispatching is an imperative and efficient measure
to promote productivity improvement and energy saving
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simultaneously in SCC plants. And, the proposed EMBO
with some reasonable modifications solves the integration
problem effectively and efficiently.

VII. CONCLUSION AND FUTURE RESEARCH
This paper addresses the integration problem of production
scheduling and ladle dispatching (IPS-LD) with the objective
of the total completed time and the energy compulsion related
to the ladle baking. To solve this problem, a mixed integer
linear programming model is formulated to coordinate the
relationship of production scheduling and ladle dispatching,
which includes time-dependent functions at the joint-point
of them and the energy consumption quantification of pro-
cessing and transportation. Furthermore, an enhancedmigrat-
ing birds optimization method (EMBO) with the acquired
expertise and stronger optimization capability is developed
to solve this NP-hardness problem. And the experimental
study involving 6200 comparison experiments draws three
conclusions:

(1) Due to characteristics of high temperature and
high energy consumption in production and transportation
within SCC plants, a reasonable integration of production
scheduling and ladle dispatching is an effective measure for
productivity improvement and energy saving. The proposed
integration optimization decreases energy consumption by
1.21% in the context of constant productivity efficiency.

(2) The acquired expertise and three proposed modifica-
tions, including the three-level heuristic-based solution gen-
eration, two novel neighborhood structures, a new simulated
annealing-based acceptance criterion and a novel competitive
mechanism, improves the performance of EMBO in reducing
the energy consumption of the integration problem.

(3) The proposed EMBO outperforms the state-of-the-art
algorithms in the small-, middle- and large-scaled integration
problem.

Future research might extend the integration model into
more generalized hybrid flow-shop problem. In addition,
as the proposed algorithm produces competing performance,
it could be employed to reduce energy consumption in other
scheduling problems such as assembly line balancing and
job-shop scheduling. Moreover, the proposed MBO might be
criticized by having many parameters needed to calibrated
and future study might develop the self-adapted MBO to tune
the parameters automatically.
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