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ABSTRACT This paper aims at the trajectory tracking of a quadrotor. A novel fixed-time backstepping
control design scheme is proposed for the quadrotor based on adaptive neural control approach. The
suggested adaptive controller ensures that the quadrotor well tracks the desired trajectory in finite time in
spite of appearance of model uncertainties. Finally, simulation results are given to verify the effectiveness
of the proposed control strategy.

INDEX TERMS Fixed-time adaptive neural control, backstepping, quadcopter, trajectory tracking.

I. INTRODUCTION
Due to its exquisite structure, the quadrotor can flexibly
vertically takeoff and landing. So, the quadrotor is applied
to various engineering fields such as fire rescue, logistics
and transportation, and electric power patrol, and so on.
These tasks inevitably involve the issue of track tracking of
the quadrotor. In addition, the modeling uncertainty and the
strong coupling of nonlinearities pose great challenges for
controlling the four-rotor aircrafts.

In [1] and [2], the authors propose an adaptive fuzzy
trajectory tracking control scheme for a quadrotor. With
respective to nonlinearity, strong coupling and sensitivity to
interference, a double closed-loop auto-disturbance rejection
control scheme is proposed to achieve the target trajectory
tracking. In [3], adaptive neural sliding mode technique is
applied to quadrotor. The proposed control law guarantees
achievement of position tracking and attitude tracking of
the quadrotors. Similar sliding mode-based trajectory track-
ing control schemes are proposed for quad-rotor systems
in [4] and [5], respectively. The work in [6] discusses the
trajectory tracking control of the quadrotor by Type-2 fuzzy
model approach. In [7], the authors propose a direct adaptive
backstepping control strategy. In these works, the dynam-
ics of quadrotor is formulated by the linear approximation
relationship between Euler angle and angular velocity of
the body. When quadrotor flies at a large angle, the linear
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relationship does notmeet the requirements of the quadrotor’s
flying. Because of ignoring inherent nonlinearities of quadro-
tor, the designed controllers in light of linear approximation
relationship may not work well. Therefore, some researchers
set up the quadrotor model by considering the nonlinear
relationship between Euler angle and angular velocity. In [8],
the quadrotor system is considered as two interrelated sub-
systems, and a proportional integral-derivativeH∞ controller
is presented. In addition, other control methods, includ-
ing hierarchical control strategy [9], robust output feedback
[10], [11] and integral sliding mode method [12], [13], are
utilized to design the trajectory tracking controller for a
quadrotor.

The aforementioned control strategies just achieve the
asymptotically tracking control. That means the good track-
ing performance is achieved during a process of time vari-
able t tending to infinity. In practice, such an asymptotic
process may not satisfy the requirement of achieving fast
tracking. Therefore, some finite-time trajectory tracking con-
trol strategies are developed. The trajectory tracking prob-
lem of a quadrotor with finite-time convergence is stud-
ied in [14]. The work in [15] proposes a cascaded sliding
mode control(CSMC) method to realize finite-time trajectory
tracking control. The finite-time control strategy proposed
in [16] further considers the effect of state delays in system
models. By using cascade sliding mode control technique,
a finite-time trajectory tracking controller is developed for
quadrotor aircrafts in [17]. The robust finite-time attitude
tracking control is discussed in [18] by using a non-singular
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terminal sliding mode approach. A non-overestimation adap-
tive multi-variable controller is given in [19], which is helpful
to reduce chattering caused by slidingmode. The work in [20]
further considers the case of velocity measurement being
unavailable. A finite-time tracking controller is developed
based on velocity observer. Recently, an adaptive neural
finite-time robust control strategy is presented for quadrotor
with input saturation via backstepping in [21].

Usually, the convergence time estimation of conventional
finite-time control algorithms depends on the initial condi-
tions. But that of fixed-time control algorithms is independent
of the initial conditions and can be predefined by the users.
A fixed-time tracking control scheme is proposed in [22].
The suggested fixed-time sliding mode controller achieves
the trajectory tracking in fixed time. However, in the existing
finite-time or fixed-time control strategies for quadrotors,
the usage of symbol function leads to the corresponding
control laws being non-smooth. In addition, when backstep-
ping is used to construct a finite-time tracking control law,
the designed virtual control signals always contain an error
feedback term with a power exponent less than 1. As a result,
in the next design step the derivative of that item will cause
singularity at the origin.

Based on the above discussion, this paper still focuses
on fixed-time trajectory tracking control of quadrotors.
In control design procedure, the system model uncertainty is
considered. Neural networks are used to model the unknown
nonlinear system functions. Furthermore, a systemic adaptive
neural backstepping fixed-time trajectory tracking control
design process is proposed. By using polynomial interpo-
lation, a novel smooth fixed-time adaptive neural tracking
control law is constructed, which ensures to achieve tra-
jectory tracking control of a quadrotor. Since the proposed
control law is smooth, the problems of controller tremble
and singularity of the derivatives of virtual control signals
are successfully avoided. Based on Lyapunov stability theory,
it is shown that the proposed controller ensures the tracking
errors converge to a small neighborhood around origin in
fixed time, and all the closed-loop signals remain bounded.
At last, a numerical simulation is given to test the availability
of our results.

II. PROBLEM FORMULATION
A. QUADCOPTER MODEL
To describe the motion of a quadrotor in space, 4E denotes
the earth’s fixed coordinate system, 4B refers to the fixed
coordinate system of the body of quadrotor and e3 is the unit
vector of the z axis of 4B. The rotation matrix R is given by

R =

 cθcψ cθcψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθsψ + sφsψ cφsθsψ−sφcψ cφcθ

 (1)

where cφ = cosφ, cθ = cosθ , cψ = cosψ , sφ = sinφ,
sθ = sinθ , sψ = sinψ , φ, θ and ψ are roll angle, pitch angle
and yaw angle, respectively. Furthermore, the Euler angle is
defined as 2 = [φ, θ, ψ]T .

The position of the center of mass is defined as P =
[x, y, z]T in the 4E , and V = [u, v,w]T is the velocity vector
of the center of mass relative to 4E . Let U1 denote the total
lift, g be the acceleration of gravity, fuc = [fucx , fucy, fucz]T

be the uncertain resistance of quadrotor during flight and
τuc = [τucx , τucy, τucz]T refer to uncertainty during the rota-
tion of the quadrotor, which is the rotor gyro torque. Let
� = [p, q, r]T stand for the angular velocity vector and
J = diag(Jx , Jy, Jz) be the diagonal inertia matrix. Three
virtual controllers, i.e., Ux , Uy, Uz, of the position system are
defined as follows.

UxUy
Uz

 =

1
m
U1(cosφcosψsinθ + sinψsinφ)

1
m
U1(cosφsinψsinθ − cosψsinφ)

1
m
(U1(cosφcosθ )− mg)

 (2)

Remark 1:With the virtual controllers defined in (2), if the
desired yaw angle ψd is given, then the desired lift U1, roll
angle φd and pitch angle θd can be given by

U1 = m
√
U2
x + U2

y + (Uz + g)2

φd = arcsin(
m(Uxsinψd − Uycosψd )

U1
)

θd = arctan(
Uxcosψd + Uysinψd

Uz + g
) (3)

Thus, let X1 = [φ, θ, ψ]T , Y1 = [p, q, r]T and U =
[U2,U3,U4]T , where U2, U3, and U4 are the roll moment,
pitch moment and yaw moment, respectively. Then, the atti-
tude control system is described as

Ẋ1 = F1(X1,Y1)+31Y1
Ẏ1 = S1F2(X2)+ Bτ + S̃1U (4)

where F1(X1,Y1) = [f11, f12, f13]T , 31 = diag(1, cosφ,
cosφ/cosθ ), f11 = tanθ (qsinφ + rcosφ), f12 = −rsinφ,
f13 = (sinφ/cosθ )q, f21 = qr , f22 = pr , f23 = pq,
F2(X2) = [f21, f22, f23]T , τ = [τucx , τucy, τucz]T , S̃1 = diag
(1/Jx , 1/Jy, 1/Jz), U = (U2 ,U3,U4)T , S1 = diag((Jy− Jz)/
Jx , (Jz−Jx)/Jy, (Jx−Jy)/Jz) and B = diag(1/Jx , 1/Jy, 1/Jz).

And let X2 = [x, y, z]T , Y2 = [u, v,w]T , Fuc =
[fucx , fucy, fucz − g]T , Ũ = [Ux ,Uy,Uz]T and 32 =

diag(− 1
m ,−

1
m ,−

1
m ). Then, the position control system can

be described by

Ẋ2 = Y2
Ẏ2 = 32Fuc + Ũ (5)

Figure 1 is the control flow chart of this article, where x
stands for system status.

In order to facilitate subsequent research, the following
necessary assumptions and lemmas are introduced.
Assumption 1. Quadcopter is a rigid body.
Assumption 2:Mass and moment of inertia are constant.
Assumption 3: Quadcopter geometric center is consistent

with the center of gravity.
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FIGURE 1. Control flow chart.

Lemma 1 [23]: Let 0 < s = s1
s2
≤ 1 with s1, s2 being two

odd integers, ã = a− b. Then, the following inequality holds

ã(a− ã)s ≤ γ1a1+s − γ2ã1+s (6)

where γ1 = 1
1+s (1 − 22s−1 + 1

1+s s +
1

1+s2
s (1 − s2)) and

γ2 =
2s−1
1+s (1− 2s(s−1)).

Lemma 2 [24]: For a continuous nonlinear function f (Z )
over a compact set �z ⊂ Rq, there exists a RBF NN S(Z )W ∗

such that for a desired level of accuracy δ̄ > 0

f (Z ) = S(Z )W ∗ + δ(Z ), | δ(Z ) |≤ δ̄ (7)

where W ∗ is the ideal constant weight vector and defined as

W ∗ := arg min
W∈R

l
sup
Z∈�z
{| f (Z )− S(Z )W ∗ |} (8)

and δ(Z ) denotes the approximation error and S(Z ) means
the basis function vector of the RBF NNs. For the definite l
(the number of RBF NN nodes and l > 1), W ∗ and S(Z )
have the following form W ∗ = [ω1, ω2, . . . , ωl]T ∈ Rl ,
S(Z ) = [s1(Z ), s2(Z ), . . . , sl(Z )] with si(Z ) being the
Gaussian function below.

si(Z ) = exp
[
−
(Z − µi)T (Z − µi)

η2

]
(9)

whereµi = [µi1, µi2, . . . , µiq]T , i = 1, . . . , l, are the centers
of the receptive field and η is the width of the Gaussian
function.
Lemma 3 [25]: For ∀ω ≥ x ≥ 0, and q > 1, the following

inequality is satisfied:

x(ω − x)q ≤
q

q+ 1
(ωq+1 − xq+1) (10)

Lemma 4 [25]: Consider system ẋ = f (x) with the origin
being the equilibrium point. If there exists a continuous radi-
ally unbounded and positive definite function V (x), such that
V̇ (x) ≤ −αV p(x) − βV q(x) + d for some α > 0, β > 0,
p > 1, 0 < q < 1, 0 < η < 1 and d representing the
constant, then, the point of the system is fixed-time stable and
the settling time function T is given by

T ≤ Tmax :=
1

ηα(p− 1)
+

1
ηβ(1− q)

(11)

Lemma 5 [26]: Let ai be positive constants, for 1 ≤ i ≤
n, n ∈ N+ and 0 < k ≤ 1. Then

(
n∑
i=1

ai)k ≤
n∑
i=1

aki ≤ n
1−k (

n∑
i=1

ai)k . (12)

Lemma 6 [27]: For ai ≥ 0, k > 1,and n ∈ N+, one has

n1−k (
n∑
i=1

ai)k ≤
n∑
i=1

aki (13)

Lemma 7 [28]: For a, b ∈ R,∀ε > 0, we have

ab ≤
εp

p
| a |p +

1
qεq
| b |q (14)

where p > 1, q > 1 and (p− 1)(q− 1) = 1.

III. CONTROL DESIGN AND STABILITY ANALYSIS
A. CONTROL DESIGN OF ATTITUDE SYSTEM
For attitude control system, define the error variable as Z1 =
X1−2d = [zφ1, zθ1, zψ1]T , Z2 = Y1−α1 = [zφ2, zθ2, zψ2]T

and Z̃1 = diag(zφ1, zθ1, zψ1), Z̃2 = diag(zφ2, zθ2, zψ2),
where 2d is the desired value of 2 and α1 ∈ R3×1 is virtual
controller. Then, the time derivative of Z1 is given by

Ż1 = F1(X1,Y1)+31Y1 − 2̇d (15)

Step 1. Take the Lyapunov function candidate V1 as

V1 =
1
2
ZT1 3

−1
1 Z1 (16)

Differentiating V1 yields

V̇1=ZT1 3
−1
1 F1(X1,Y1)+ZT1 Z2+Z

T
1 α1−Z

T
1 3
−1
1 2̇d (17)

A virtual control signal is chosen as

α1 = −Z̃
2µ−1
1 ρ1 + A1 −3

−1
1 F1(X1,Y1)+3

−1
1 2̇d (18)

where

A1 =

{
Z̃1β̄1 + Z̃3

1 β̄2 ‖ Z1 ‖< ε1

−Z̃ (2ν−1)
1 ρ2 ‖ Z1 ‖≥ ε1

(19)

and µ = s1
s2
, ν = s2

s1
and s1 > s2 > 0 are two odd

numbers, β̄1 = −(2−ν)ε
2ν−2
1 ρ2 and β̄2 = −(ν−1)ε2ν−41 ρ2.

ρ1 = [ρφ11, ρθ11, ρψ11]T and ρ2 = [ρφ12, ρθ12, ρψ12]T are
positive design parameter vectors with their element being
positive constants, and ε1 is the given error accuracy.
When ‖ Z1 ‖≥ ε1, putting (18) into (17) shows

V̇1 = −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z2 (20)

When ‖ Z1 ‖< ε1, we can get

V̇1 = −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃1ε

2ν−2
1 ρ2(2− ν)+ ZT1 Z2

−ZT1 Z̃
3
1 ε

2ν−4
1 ρ2(ν − 1)

≤ −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃1ε

2ν−2
1 ρ2(2− ν)+ ZT1 Z2

−ZT1 Z̃1 ‖ Z̃1 ‖
2 ε2ν−41 ρ2(ν − 1)

= −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z2

−ZT1 Z̃1ε
2ν−2
1 ρ2(2− ν)

−ZT1 Z̃1 ‖ Z1 ‖
2 ε2ν−41 ρ2(ν − 1)

≤ −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z2

−ZT1 Z̃1ε
2ν−2
1 ρ2(2− ν)− ZT1 Z̃1ε

2ν−2
1 ρ2(ν − 1)
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≤ −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃

2ν−1
1 ρ2 + e1ε2ν1 ρ2

+ZT1 Z2 (21)

with e1 = [1, 1, 1]. In summary, one has

V̇1 ≤ −ZT1 Z̃
2µ−1
1 ρ1 − ZT1 Z̃

2ν−1
1 ρ2 + ZT1 Z2 + e1ε

2ν
1 ρ2 (22)

Remark 2: In the existing results, to get the finite-time
stability of the closed-loop system, the design virtual control,
i.e., α1, includes the item Z̃2ν−1

1 with 0 < ν < 1. In backstep-
ping design process, the next step will require the derivative

of α1. Note that
Z̃2ν−1
1
dt = (2ν − 1)Z̃2ν−2

1
˙̃Z1 and 2ν − 2 < 0.

That means the derivative of α1 may tend to infinity when Z̃1
approaches to zero. This is called singularity problem of the
derivative of virtual control. To avoid such a problem, here we
construct α1 as a piecewise function. By using interpolation
method, the designed virtual control signal α1 is continuous
and differentiable at ||Z1|| = ε1.
Step 2. Choose the Lyapunov function candidate V2 as

V2 = V1 +
1
2
ZT2 Z2 +

1
2
θ̃T2 β2θ̃2 (23)

where θ̃2 = θ2 − θ̂2 = [θ̃φ2, θ̃θ2, θ̃ψ2]T , θ̂2 = [θ̂φ2,
θ̂θ2, θ̂ψ2]T > 0 is the estimate of θ2 = [‖ W ∗φ2 ‖

2,

‖ W ∗θ2 ‖
2, ‖ W ∗ψ2 ‖

2]T = [θφ2, θθ2, θψ2]T . Define θw2 =
diag(‖ W ∗φ2 ‖, ‖ W ∗θ2 ‖, ‖ W ∗ψ2 ‖) and β2 =

diag(β−1φ2 , β
−1
θ2 , β

−1
ψ2 ) with its elements are positive design

parameter.
After a simple calculation, the time derivative ofV2 is given

by

V̇2 = V̇1 + ZT2 Ż2 −
˙̂
θT2 β2θ̃2 (24)

Further,

V̇2= V̇1+ZT2 S1F2(X2)+Z
T
2 Bτ+Z

T
2 S̃1U − Z

T
2 α̇1−

˙̂
θT2 β2θ̃2

(25)

Define U (X ) = S1F2(X2) + Bτ − α̇1. By Lemma 2 we use
neural networks to approximate U (X ) such that

U (X ) = S2(X )W ∗2 + δ2(X ) (26)

where W ∗2 = [W ∗φ2,W
∗

θ2,W
∗

ψ2]
T is the weight vector,

δ2(X ) = [δφ2(Xφ2), δθ2(Xθ2), δψ2(Xψ2)]T is the approximate
error vector, S2(X ) = diag(Sφ2(Xφ2), Sθ2(Xθ2), Sψ2(Xψ2)) is
the Gaussian radial basis function vector and ‖ δ2(X ) ‖≤ δ̄2
with δ̄2 > 0 being the accuracy level. Thus,

V̇2= V̇1+ZT2 S2(X )W
∗

2 +Z
T
2 δ2(X )+Z

T
2 S̃1U−

˙̂
θT2 β2θ̃2 (27)

Using Young inequality, the following inequalities can be
obtained.

ZT2 S2(X )W
∗

2 = ZT2 S2(X )θw2θ
−1
w2W

∗

2

≤
1
2a
ZT2 S2(X )θw2θ

T
w2S

T
2 (X )Z2 +

3
2
a

≤
1
2a
ZT2 S2(X )S

T
2 (X )Z̃2θ2 +

3
2
a (28)

ZT2 δ2(X ) ≤
1
2a
ZT2 Z2 +

1
2
aδ̄22 (29)

where a is a positive positive parameter.
Substituting (28) and (29) into (27) yields

V̇2 ≤ V̇1 +
1
2a
ZT2 S2(X )S

T
2 (X )Z̃2θ2 +

1
2a
ZT2 Z2 + Z

T
2 S̃1U

−
˙̂
θT2 β2θ̃2 +

3
2
a+

1
2
aδ̄22 (30)

Hence, the controller U is designed as

U = −S̃−11 Z̃2µ−1
2 ρ̄1 − S̃

−1
1 Z̃2ν−1

2 ρ̄2 − S̃
−1
1 Z1

−
1
2a
S̃−11 S2(X )ST2 (X )Z̃2θ̂2 −

1
2a
S̃−11 Z2 (31)

where ρ̄1 = [ρφ21, ρθ21, ρψ21]T and ρ̄2 = [ρφ22, ρθ22,
ρψ22]T , their elements are positive design parameters.
Then, replacing (31) into (30) shows

V̇2 ≤ V̇1 − ZT2 Z̃
2µ−1
2 ρ̄2 − ZT2 Z̃

2ν−1
2 ρ̄2 − ZT2 Z1

+
1
2a
ZT2 S2(X )S

T
2 (X )Z̃2θ̃2 −

˙̂
θT2 β2θ̃2 +

3
2
a

+
1
2
aδ̄22 (32)

The adaptive law θ̂2 is designed as

˙̂
θ2 = −β

−1
2 θ̂µ1 − β

−1
2 θ̂ν1 +

1
2a

(ZT2 S2(X )S
T
2 (X )Z̃2β

−1
2 )T

(33)

where θ̂µ1 = [θ̂2µ−1φ2 , θ̂
2µ−1
θ2 , θ̂

2µ−1
ψ2 ]T and θ̂ν1 =

[θ̂2ν−1φ2 , θ̂2ν−1θ2 , θ̂2ν−1ψ2 ]T . Bringing (33) into (32) yields

V̇2 ≤ V̇1 − ZT2 Z̃
2µ−1
2 ρ̄2 − ZT2 Z̃

2ν−1
2 ρ̄2 + θ̂

T
µ1θ̃2

+θ̂Tν1θ̃2 − Z
T
2 Z1 +

3
2
a+

1
2
aδ̄22 (34)

For θ̂Tµ1θ̃2, by using Lemma 3, one has

θ̂Tµ1θ̃2 = θ̃
T
2 θ̂µ1 = θ̃

T
2 ϒ1 ≤ µ̃θµ2 − µ̃θ̃µ2 (35)

where µ̃ = [ 2µ−12µ ,
2µ−1
2µ ,

2µ−1
2µ ], θµ2 = [θ2µφ2 , θ

2µ
θ2 , θ

2µ
ψ2]

T ,

θ̃µ2 = [θ̃2µφ2 , θ̃
2µ
θ2 , θ̃

2µ
ψ2]

T and ϒ1 = [(θφ2 − θ̃φ2)2µ−1, (θθ2 −
θ̃θ2)2µ−1, (θψ2 − θ̃ψ2)2µ−1]T . By Lemma 1, one gets

θ̂Tν1θ̃2 = θ̃
T
2 θ̂ν1 = θ̃

T
2 ϒ2 ≤ D0θν2 − C0θ̃ν2 (36)

where c0 = 2ν−1
1+ν (1−2ν(ν−1)),ϒ2 = [(θφ2− θ̃φ2)2ν−1, (θθ2−

θ̃θ2)2ν−1, (θψ2− θ̃ψ2)2ν−1 ]T , d0 = 1
1+ν (1−22ν−1+ 1

1+ν ν+
1

1+ν 2
ν(1 − ν2)), D0 = [d0, d0, d0], C0 = [c0, c0, c0], θν2 =

[θ2νφ2, θ
2ν
θ2 , θ

2ν
ψ2]

T and θ̃ν2 = [θ̃2νφ2, θ̃
2ν
θ2 , θ̃

2ν
ψ2]

T .
Thus, the following inequality holds.

V̇2 ≤ V̇1 − ZT2 Z̃
2µ−1
2 ρ̄2 − ZT2 Z̃

2ν−1
2 ρ̄2 − µ̃θ̃µ2 − C0θ̃ν2

−ZT2 Z1 + C (37)

where C = µ̃θµ2 + D0θν2 +
3
2a+

1
2aδ̄

2
2 .
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B. STABILITY ANALYSIS OF ATTITUDE SYSTEM
At present stage, we summarize the above discussion to give
the following theorem.
Theorem 1: Consider attitude control system (4) under the

Assumptions 1-3. Then controller (31) associated with the
virtual control signal (18) and adaptive law (33) will ensure
the following conclusions hold.

1). The tracking error converges to a small neighborhood
of the origin point in fixed time;

2). All the closed-loop signals remain bounded.
Proof: To prove Theorem 1, consider the Lyapunov

function as below.

V2 =
1
2
ZT1 Z1 +

1
2
ZT2 Z2 +

1
2
θ̃T2 β2θ̃2 (38)

Let ρm = min{β−µφ2 , β
−µ
θ2 , β

−µ
ψ2 }. Then,

−µ̃θ̃µ2 ≤ −(
2µ− 1
2µ

)2µρm[(2µβ
µ
φ2)
−1θ̃

2µ
φ2

+(2µβµθ2)
−1θ̃

2µ
θ2 + (2µβµψ2)

−1θ̃
2µ
ψ2] (39)

By using Lemma 6, one has

−µ̃θ̃µ2 ≤ −aµ(
1
2
θ̃2β2θ̃

T
2 )
µ

where aµ = ( 2µ−12µ )2µρm31−µ.
Similarly,

−C0θ̃ν2 ≤ −aν(
1
2
θ̃T2 β2θ̃2)

ν (40)

where ρ̃m = min{β−νφ2 , β
−ν
θ2 , β

−ν
ψ2 }, aν = c02ν ρ̃m. And

let ρh = min(2µρφ11, 2µρθ11, 2µρψ11, 2µρφ12, 2µρθ12,
2µρψ12, aµ) and ρl = min(2νρφ11, 2νρθ11, 2νρψ11, 2νρφ12,
2νρθ12, 2νρψ12, aν).

Then, it follows immediately from using Lemma 5 and
Lemma 6 to (37) that

V̇2 ≤ −ρh[31−µ(
1
2
ZT1 Z1)

µ
+ 31−µ(

1
2
ZT2 Z2)

µ

+(
1
2
θ̃2β2θ̃

T
2 )
µ]− ρl[(

1
2
ZT1 Z1)

ν
+ (

1
2
ZT2 Z2)

ν

+(
1
2
θ̃2β2θ̃

T
2 )
ν]+ C

≤ −ρ̃h(
1
2
ZT1 Z1 +

1
2
ZT2 Z2 +

1
2
θ̃2β2θ̃

T
2 )
µ

−ρl(
1
2
ZT1 Z1 +

1
2
ZT2 Z2 +

1
2
θ̃2β2θ̃

T
2 )
ν
+ C

= −ρ̃hV
µ
2 − ρlV

ν
2 + C (41)

where ρ̃h = min{31−µρh, ρh}.
Thus, the fixed-time stability of the attitude system is

derived from Lemma 4.

C. CONTROL DESIGN OF POSITION SYSTEM
For position control system, define error ξ1 = X2 −
Xd = [ξx1, ξy1, ξz1]T , ξ2 = Y2 − α2 = [ξx2, ξy2, ξz2]T ,
ξ̃1 = diag(ξx1, ξy1, ξz1), ξ̃2 = diag(ξx2, ξy2, ξz2).

By following the same line used in the design procedure of
the attitude control system, the virtual controller α2 ∈ R3×1,
controller Ũ and adaptive law ϑ̂2 ∈ R3×1 of the position
system can be constructed as follows.

α2 = −ξ̃
2µ−1
1 λ1 + Ã1 + Ẋd (42)

where

Ã1 =

{
ξ̃1β̃1 + ξ̃

3
1 β̃2 ‖ ξ1 ‖< ε2

−ξ̃
(2ν−1)
1 λ2 ‖ ξ1 ‖≥ ε2

(43)

and µ = s1
s2
, ν = s2

s1
, s1 > s2 > 0 are two odd num-

bers, β̃1 = −(2 − ν)ε2ν−22 λ2, β̃2 = −(ν − 1)ε2ν−42 λ2,
λ1 = [ρx11, ρy11, ρz11]T , λ2 = [ρx12, ρy12, ρz12]T with their
elements being positive design parameters and ε2 being the
given error accuracy.

Ũ = −ξ̃2µ−12 λ̃1 − ξ̃
2ν−1
2 λ̃2 −

1
2ã
ξ2 − ξ1

−
1
2ã
ξT2 S̃2(X )S̃

T
2 (X )ξ̃2ϑ̂2 (44)

where λ̃1 = [ρx21, ρy21, ρz21]T , λ̃2 = [ρx22, ρy22, ρz22]T , its
elements are positive constants, ã is a positive parameter and
S̃2(X ) = diag(Sx2(Xx2), Sy2(Xy2), Sz2(Xz2)) is the Gaussian
radial basis function matrix.

Define ϑ̃2 = ϑ2 − ϑ̂2 = [ϑ̃x2, ϑ̃y2, ϑ̃z2]T , where ϑ̂2 =
[ϑ̂φ2, ϑ̂θ2, ϑ̂ψ2]T > 0 is the estimate of ϑ2 = [‖ W ∗x2 ‖

2,

‖ W ∗y2 ‖
2, ‖ W ∗z2 ‖

2]T = [ϑx2, ϑy2, ϑz2]T , and χ2 =
diag(β−1x2 , β

−1
y2 , β

−1
z2 ) is a matrix, which elements are positive

design parameters.

˙̂
ϑ2 = −χ

−1
2 ϑ̂µ1 − χ

−1
2 ϑ̂ν1 +

1
2ã

(ξT2 S̃2(X )S̃
T
2 (X )ξ̃2χ

−1
2 )T

(45)

where ϑ̂µ1 = [ϑ̂2µ−1
x1 , ϑ̂

2µ−1
y1 , ϑ̂

2µ−1
z1 ]T and ϑ̂ν1 =

[ϑ̂2ν−1
x1 , ϑ̂2ν−1

y1 , ϑ̂2ν−1
z1 ]T .

D. STABILITY ANALYSIS OF POSITION SYSTEM
Theorem 2: Consider position control system (5) under the
Assumptions 1-3. Then controller (44) associated with the
virtual control signal (42) and adaptive law (45) will ensure
the following conclusions hold.

1). The tracking error converges to a small neighborhood
of the origin point in fixed time;

2). All the closed-loop signals remain bounded.
Proof: The process of control design and stability anal-

ysis of the position control system is as the same as the one
of the attitude system. So, it is omitted here.

IV. SIMULATION
In this section, we will perform simulation study to verify the
effectiveness of the proposed control scheme. The parameters
of quadrotor are give by Table 1.

The desired trajectory (the corresponding length unit is
meter) is shown by the mathematical equations: [xd = 0,
yd = 0, zd = t , (0 − 20s)]; [xd = (t − 20)cosθ̄ ,
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yd = (t − 20)sinθ̄ , zd = 20, (20 − 30s)]; [xd = 10 + rcost ,
yd = 11 + rsint , zd = 20 − (t − 30), (30 − 45s)]; [xd =
10 + rcos(45), yd = 11 + rsin(45), zd = −t , (45 − 50s)],
where θ̄ = π

4 , r = 1. The desired yaw angle is ψd = 0. That
means the quadrotor will first rise vertically for 20 seconds
to reach a height, then maintain this height and flies at a
certain angle between x and y axes for 10 seconds, and then
makes a descent spiral, finally, drop vertically to the ground.
In simulation, the initial values are: x(0) = (0, . . . , 0)T and
θ̂2(0) = 0. The controller parameters are µ = 1.01, ν = 0.99
n = 60, ψd = 0, ϑ̂2(0) = 0 and ωi (i = 1, .., λ) is

√
2

and a = ã = 1. The centers of neural network are chosen
as −2;−1; 0; 1; 2, to construct the basis vector functions of
RBF NNs. Simulation results are shown by Fig.s (2) − (5),
the quadcopter perfectly tracks the desired trajectory of the
x, y and z axes, and from Fig.s (6) − (8) we can see that he
various attitude angles of the quadcopter are also well tracked
to the desired attitude angles, and the sudden change caused
by the trajectory change point can also be tracked faster.

FIGURE 2. Tracking situation.

FIGURE 3. Tracking curve along Z axis.

FIGURE 4. Tracking curve along Y axis.

FIGURE 5. Tracking curve along X axis.

FIGURE 6. Yaw angle curve.

FIGURE 7. Pitch angle curve.

FIGURE 8. Roll angle curve.

Remark 3: In the control design, the gyro torque pro-
duced by gyroscopic effect is considered as the uncertain
factors, which is usually determined by the motor speed $ .
In simulation its form is taken as τuc = 64

i=1$iJrz� × e3,
where Jrz is an element of the inertial diagonal array Jr =
diag(Jrx , Jry, Jrz) of each rotor. Therefore, in order to calcu-
late the specific form of gyro torque in simulation, as done
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in [29] the rotor speed is given by.


$ 2

1
$ 2

2
$ 2

3
$ 2

4

 =


1
4
CT 0 −

1
2
lCT

1
4
CQ

1
4
CT 1

2 lCT 0 −
1
4
CQ

1
4
CT 0

1
2
lCT

1
4
CQ

1
4
CT −

1
2
lCT 0 −

1
4
CQ



×


U1
U2
U3
U4

 (46)

where $i (i = 1, 2, 3, 4) are desired rotor speed, CT is the
lift coefficient of the rotor, CQ is the anti-torque coefficient,
l is the distance from the motor to the center of mass. And the
form of fuc is fuc = −Cda | V | V , where Cda = 0.5ρairCd ,
ρair is air density and Cd is the drag coefficient. Besides,
in order to avoid the trouble of deriving the desired roll angle,

TABLE 1. Parameters.

pitch angle and Yaw angle, we introduce a filter to track their
derivatives.

3 =

{
ζ̇1 = ς2

ς̇2 = −2sς2 − 2s2(ζ1 − u(t))

where ζ1 and ς2 are state variables, s is a positive constant
and u(t) is the input signal.

V. CONCLUSION
In this research, we address the problem of trajectory tracking
control of a quadrotor. Based on adaptive neural control
approach a fixed-time backstepping control design proces is
proposed for the quadrotor. The proposed adaptive neural
controller ensures that the quadrotor achieves the trajectory
tracking issue in finite time. Particularly, the design vir-
tual control signals avoid the derivative singularity problem.
At last, a numerical simulation is used to verify the effective-
ness of the proposed control scheme.

APPENDIX. PARAMETERS
See Table 1.
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