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ABSTRACT The complexity of achieving optimal power flow in the presence of renewable resources
decreases the accuracy and optimality levels of the power system due to the associated intermittency and
uncertainty. The increased challenge of large-scale deployment of wind energy necessitates the proper
modeling of wind impact on power system security and reliability levels. This article discusses a new reliable
power flow optimization tool that accounts for wind power availability and uncertainty. An accurate wind
forecast model is created to maintain power system security considering wind power variability. The error
of the forecasting phase is included in the proposed model to accurately predict the available wind power.
In this work, the scattered wind data is converted into informative frequency distribution considering the
effect of averaging around integers, halves, and quarters. The proposed method maximizes the utilization
level of wind energy without deteriorating the system security. The accuracy of the new proposed work is
presented by comparing its results with other models discussed in the literature. A complete and integrated
formulation of the objective function has been accomplished. The cost function includes transmission
losses, generation operating costs, generation gas emissions, and valve-point effects. Reliable and efficient
optimization algorithms are adopted to minimize the established cost function of the system—namely,
teaching-learning-based optimization and symbiotic organisms search algorithms. The effectiveness of the
proposed approach is validated using the IEEE 39-bus system.

INDEX TERMS Generation gas emission, generation operating cost, optimal power flow, symbiotic
organisms search algorithm, valve-point effects, wind speed forecast.

I. INTRODUCTION
In light of the global warming alarms and the increased
environmental concerns over using fossil fuels in power gen-
eration, wind power plants have become more attractive,
on both economic and ecological levels, compared to fos-
sil fuel power plants [1]−[5]. Unfortunately, the uncertain
and unpredictable nature of wind power has constrained the
penetration of wind power plants in the generation systems.
Moreover, increasing wind power penetration in power grids
above certain limits creates serious grid security problems.
Wind power variability requires an additional operational
primary reserve, which increases the operating cost of the
system and adds a potential threat to system reliability [6].
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As wind power penetration increases, an accurate forecast for
wind speed—and thus wind power during the next dispatch
or commitment period—becomes essential.

Probability distribution functions such as Weibull distribu-
tion are usually employed to characterize wind speed for wind
plant sites over long periods such as seasons and years. In [7],
wind speed was presented in the optimal power flow (OPF)
model using Weibull probability distribution function. The
model considers the risk associatedwith overestimation of the
offered wind energy in the dispatch period as a penalty cost
on the owner of the wind plant. The risk of underestimating
wind power is treated as an additional generation reserve
cost, which is integrated into the model. The results of the
economic dispatch are strongly dependent on many coeffi-
cients such as the scale factor, the shape factor of Weibull
distribution function, the reserve cost, and the penalty cost.
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The authors in [8] proposed a three-stage deterministic
wind power forecasting method. A search-based, multiple-
support, vector regression method, with enhanced harmony,
was used to predict the wind power capacity. The accuracy
of the developed method relies on a training phase for the
models generated. The prediction stages of the method show
a sophisticated and elongated iterative style, which makes it
more applicable for long-term wind forecasting. However,
the results show similar convergence using simpler methods.
A more complex wind speed forecasting model, presented in
[9] through a genetic algorithm-based, auto-regressive neural
network model, was used for wind and load forecasting.
Combined weather and load forecasting was performed to
increase the reliability of the forecasting model. The method
focused on long-term forecast modeling, making it suit-
able for planning stages rather than operation stages. This
modeling relies on iterative and training phases that require
extended execution periods.

The work presented in [10] employed the kernel recursive
least-squares model as a solution to address the necessities of
online error correction. An iterative error adjustment method
has been designed to produce the possible benefits of sta-
tistical models in achieving accurate modeling for optimal
power flow. In [11], the authors proposed a method that
extracted the ultra-short-term wind power prediction errors
based on deep believe network algorithm. Historical input
data are employed as inputs to train the network model
through the training phase and reverse fine-tuning processes.
The model is then combined with the probability distribution
fitting model to capture better wind power forecast errors to
optimize the net power flow in the system. The authors in [12]
used the maximum entropy principle to find the most likely
realized probability distributions to provide better probabilis-
tic circumstances. The results were used to solve the genera-
tion dispatch model of power systems with significant wind
power deployment.

Several studies reported in the literature used other models
for optimal power flow including wind. In [13], a multi-
variate model was constructed to consider the influence of
wind uncertainty and stochastic dependence characteristics
of forecasting errors on wind power. A piece-wise expo-
nential error distribution model was created to define the
probability distribution functions where the nonlinear, least-
squares-based method was employed to estimate the model
parameters.

In this work, a new modeling and optimal power flow
solution for grid-connected wind power is presented. The
optimization efficiently considers themodeling ofwind speed
uncertainty and correlates it to power system security. To han-
dle wind power variability and to enhance the system security
level, wind power is accurately forecasted and integrated into
the OPF model. A new wind forecast model is developed
to predict wind power, and then the error of the forecast is
incorporated into the OPF model to guarantee a high level
of system security at the maximum possible wind power
level.

FIGURE 1. General framework of the proposed power flow optimization.

The framework of the proposed optimization scheme is
shown in Fig. 1. The accuracy of the proposed work is
presented by comparing the results and conclusions from this
work with the models reported in the literature. Moreover,
the model of the gas emission of thermal generation units is
incorporated in the optimization. To solve the problem more
realistically, precise transmission line losses and valve-point
effects are also considered. The wrong estimation (underes-
timation or overestimation) of the offered wind power has
a direct impact on the solution of the OPF problem. The
scheduled wind power decreases as the reserve cost coeffi-
cient increases. Thus, it is more costly to overestimate the
existing wind energy. Similarly, the scheduled wind power
increases if the penalty cost coefficient increases, as it is
costly to underestimate the existing wind speed. Therefore,
the operator must increase the planned power. The factor is
also addressed in the proposed work to reinforce the OPF
level. The proposed algorithm shows the effectiveness of
utilizing the distribution of forecast errors and compares it
with Weibull probability distribution method used in [7].

The main contributions of this manuscript can be
summarized as follows:
• A new wind energy modeling and optimal power flow
solution of grid-connected wind energy system are
developed. The optimization procedure efficiently con-
siders the modeling of wind speed uncertainty and
correlates it to power system security.

• Two efficient and robust stochastic optimization algo-
rithms are employed to increase the optimality of the
solution and to ensure a high rate of convergence.

• Gas emission modeling of thermal generation units
is considered in the proposed optimization procedure.
Precise transmission line losses and valve-point effects
are incorporated to have a realistic and accurate system
modeling.

• Wind power is accurately forecasted and integrated
into the newly developed OPF model to account for
wind power variability to minimize the tradeoff between
system security and operation optimality.
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• A solid statistical analysis is undertaken to present
a new speed forecast model for wind speed in the
short-term period. The accuracy of the proposed forecast
model is high and measurable. Unlike Weibull distri-
bution model, the proposed model shows the impact
of underestimating each speed and the associated
percentage of the error.

• The statistical forecast model is valid even for
nonuniform wind speed profiles and it is not necessary
to have certain known distribution functions. Moreover,
the proposed model considers different periods and the
accuracy is reflected in the wind speed forecast.

• The work demonstrates how overestimation/ underesti-
mation of wind speed by 1 m/s or less can affect the
reliability of the whole power system.

This article is organized as follows: Section 2 presents
a summary of the used optimization algorithms. Section 3
presents a short discussion about wind speed forecast mod-
els. Section 4 discusses wind speed and the distribution of
forecast errors. The mathematical formulation of the OPF
problem is detailed in Sections 5 and 6. A test system, results,
comparisons, and discussion are presented in Sections 7
and 8. Section 9 concludes the paper with final remarks.

II. THE EMPLOYMENT OF THE CANDIDATE
OPTIMIZATION ALGORITHMS IN THE PROPOSED
FRAMEWORK
Two efficient and robust optimization algorithms are adopted
to solve the proposed OPF models: teaching-learning-based
optimization (TLBO) and symbiotic organisms search (SOS).
These algorithms have been recently introduced as pow-
erful stochastic optimization algorithms [14]−[20]. Most
nature-inspired metaheuristic algorithms rely on random
variables and have some parameters to be fitted to han-
dle the problem under study [16]–[18]. In contrast, TLBO
and SOS have no tuned parameters. Therefore, the imple-
mentation is more straightforward in comparison with other
population-based algorithms.

TLBO is divided into two phases. In the first phase,
learning is an interactive process. The teacher phase is
associated with the best available solution at each iteration,
which refers to the ‘‘teacher’’ term. The second phase is
known as the learner phase and represents the interactive
learning between learners. The inputs from the learner phase
will update the best available solution in the population,
if possible, and so on; consequently, the convergence rate can
be increased.

SOS is stimulated by the biological communications
between two organisms in any ecosystem through three
phases. In the mutualism phase, two different organisms can
receive some benefit when interacting with each other. This
relation is represented by random variables that simulate the
degree of interest. This step ends with updating the organisms
when the new fitness is better compared with the previous
one. In the commensalism phase, the interaction between the
organisms is close to that of the last phase, but the benefit

is associated with one organism, while the other may suffer
from this relation. In the parasitism phase, one organism tries
to kill the other organism. Mathematically, if the solution is
not the best at this point, it will be rejected until a new best
solution is generated by the process.

Both TLBO and SOS have superiority over many differ-
ent population-based algorithms in terms of rate of conver-
gence, global solution, and computational time [19], [20].
The optimal results obtained by the optimization framework
are taken after comparing the output of TLBO and SOS for
each loading and weather condition. The flowchart shown
in Fig. 2 has been developed to demonstrate the methodology
of the proposed optimization. The analysis and implementa-
tion of the algorithms have been explained in detail in [21],
[22], and repeating these details is beyond the scope of this
article.

III. REVIEW OF WIND SPEED FORECAST MODELS
Wind speed forecast models aim to estimate wind speed
for a future time. They can be categorized into two types:
time-scale horizon and model source types [23], [24].

The time scale of the forecast models is classified into
four classes: (a) ultra-short-term forecasting varies from a
few seconds to one hour, (b) short-term forecasting ranges
from one hour to several hours, (c) medium-term models
range from several hours to one week, and (d) long-term
forecasting extends from a week to a year [25]. Both the
time-scale forecast and model source forecast are shown
in Fig. 3. The bidirectional arrows indicate the interrelation-
ship between these models. The figure shows the designa-
tions of the model source-based forecast. The models can be
classified as follows:

A. PERSISTENCE MODEL
The persistence model adopted in this work is the simplest
model ever used. The model assumes that the wind speed at
the next period will be the same as it is now—‘‘what you
see now is what you will get next’’ [13]. Mathematically,
the persistence model can be expressed as

v (t + d) = v(t) (1)

where d is the forecast period and (t + d) is the forecast
time. As the period, d, decreases, the accuracy of the forecast
increases. The persistence model is built on the assumption of
a high correlation between the current and future wind speeds
[26] and the model focused on in this work. The advantage
of the persistence model is that it is hard to be beaten in the
short-term forecasting scale.

B. PHYSICAL MODEL
The physical model approach (also called numerical weather
prediction) is based on (a) the atmospheric physical data used
for weather prediction, such as temperature, pressure, and
humidity and (b) the physical data of the land such as height,
sea level, surface roughness, mountains, and obstacles. These
physical data are used as input for supercomputers that use
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FIGURE 2. The flowchart of TLBO and SOS optimization algorithms with their implementation in the proposed work.

FIGURE 3. General categories of wind speed forecasting models.

complex mathematical models of wind speed forecast to
predict the atmospheric status and the wind speed for the next
time horizons. Speed prediction results are highly dependent
on the accuracy of the input data and the accuracy of the
model. This limits the physical approaches to about 6 to
24 hours [24].

C. STATISTICAL MODEL
This model is implemented based on training with old avail-
able data and using the difference between the immediate
past and actual wind speed to tune the model parameters.
The most popular statistical models are the following: autore-
gressive, autoregressive moving average, autoregressive inte-
grated moving average, and neural network. These statistical
models are easy to implement and inexpensive, and they do
not need more than historical wind data. Because it mainly
depends on learning from historical data, the accuracy of the

FIGURE 4. Wind speed for a typical day.

forecast decreases significantly as the forecast time horizon
is extended [13], [24].

D. HYBRID MODELS
Hybrid models [27] are a combination of physical and statis-
tical models or a combination of two models with different
time horizons from the same type or different types. The
forecast error increases as the time horizon of the forecast
increases.

IV. WIND SPEED AND DISTRIBUTION OF FORECAST
ERRORS
Fig. 4 depicts a sample of real wind speed taken from the
National Renewable Energy Laboratory (NREL) in Golden,
Colorado, for a typical day in the month of August [28]. It is
clear from the figure that wind speed has high variability
and fluctuations during the day. For some time, the wind
speed increases by more than 10 m/s and then decreases
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FIGURE 5. Wind speed frequency distribution over one year with the
closest Weibull distribution.

FIGURE 6. Forecast error probability for multi forecast periods.

within less than one hour. This example demonstrates how
difficult it is to accurately forecast the wind speed even for
short periods and therefore the wind power. For example,
the highlighted periods show severe wind speed fluctuation
(i.e., more than 10m/s speed difference) and thus large output
power variations. This, in turn, necessitates an accurate (ultra)
short-term forecast scheme to take into account wind speed
fluctuations and minimize forecast errors.

The persistence model is adopted in this work and the
associated forecast errors are investigated to develop a fore-
cast model-based OPF formulation. Statistical analysis of
real wind speed historical data taken every 10 minutes
(d = 10 min) over one year is performed to show the effec-
tiveness of the persistence model. The 52,560 data points
are displayed and derived from instruments mounted on an
82-meter meteorological tower [28]. Fig. 5 shows the wind
speed frequency distribution for the tower over a year by
rounding the wind speed to the nearest integer. The average
wind speed is 4.3 m/s, where the speed of 3 m/s has the
highest occurrence frequency. Fig. 5 depicts the wind speed
distribution over this year, which approximately follows
the Weibull distribution, with Weibull-related coefficients
k = 2 and c = 4.5 (for more details, see [7]).

The forecast error is calculated by subtracting each wind
speed value from its preceding value. The errors over the year
for different periods (d) in minutes are statistically shown
in Fig. 6. Starting with d = 10 min, the first column of
Table 1 is the forecast error in m/s, which extends from
−8 m/s to 12 m/s. The second column shows the frequency
of the corresponding error over the whole year. For exam-
ple, the most considerable negative error (wind-speed drop)

TABLE 1. Forecast errors over one year with 10-minute forecast periods.

was −8 m/s, which happened three times during the year, and
the maximum positive error (wind-speed rise) was 12 m/s,
which happened once over the whole year. The third column
shows the percentage of the error occurrence, EFP i, which
is a division of the error’s frequency over the total number
of points/errors (52,560). The fourth column shows the accu-
mulated error percentage,AP i, for all errors below or equal to
the corresponding error. The last column shows the reversed
accumulated percentage (the accumulated percentage starting
from the highest positive error to the lowest negative error),
RAP. As shown in Fig. 5, the speed is rounded to the closest
integer. Moreover, a similar complete study is performed by
rounding all points to the nearest half and quarter without any
significant impact on the results.

The accumulated percentage of the error is a representation
of the percentage of the occurrence of all errors less
than or equal to this error, which can be mathematically
expressed as

AP (ei) =
∑i

k=1
EFP(ek ) (2)

where ei is the forecast error number i, AP (ei) is the accumu-
lated percentage of error i, and EFP(ei) is the error frequency
percentage. The reversed accumulated percentage of an error
is a representation of the percentage of the occurrence of
all errors greater than or equal to the error, which can be
expressed as

RAP (ei) = 100− AP (ei−1) (3)

where RAP (ei) is the reversed accumulated percentage of
error.

The accumulated percentage of the error gives the
percentage frequency of errors less than or equal to the error.
The reversed accumulated percentage gives the percentage
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frequency of errors greater than or equal to the error. The RAP
column shows that about 75.244% of the errors are greater
than or equal to zero, and 99.49% of the errors are greater
than or equal to (−3 m/s). This means that 99.49% of wind
speed drops not less than (3 m/s). The distribution of forecast
error probabilities for d = 10, 20, and30 is shown in Fig. 6.
The power of the persistence model is apparent where the
highest probability is linked with zero error, which leads
to (1).

The distribution of the persistence model forecast errors
is skewed and follows the normal (Gaussian) distribution.
Considering it is not easy to sample the wind speed frequency
as continuous wind speed, Gaussian regression is used as
expressed in (4).

G (x) = Ae−((
x−b
c )

2
) (4)

where G (x) is the Gaussian distribution function and A,
b, and c are constants. For the data presented in Fig. 4,
the obtained Gaussian curve-fitting constants are A = 51.65,
b = −0.02512, and c = 0.9982.
Wind power plants can decrease the output power to a value

lower than the available power when the wind speed is higher
than the set point. In case the wind speed drops below the
required set point, a plant cannot maintain its output power at
the scheduled value, and this may cause stability problems.
As a result, the RAP column has the highest weight and is the
most important parameter in this work.

Equation (1) is modified to increase the confidence and
accuracy of the persistence model, and it is rewritten as

v (t + d) = v (t)− Vλ (5)

whereVλ is the intended underestimated speed difference (the
needed V to ensure λ accuracy). The power of the persistence
model in a single period ismathematically proven here, where
Vλ is zero when λ ' 75%.

For high level of system security, a safe region is defined
as the region where a high percentage of errors is located
starting from the biggest positive error to the error with
reversed accumulated percentage equaling the safe percent-
age; a 99.0% safe region is considered. Depending on the site
of the power plant, its capacity, and the ramping capabilities
of the system, the ramp-down limit is restricted to avoid the
remainder unsafe region of forecast errors. This problem is
usually handled either by leaving some available wind power
as a reserve for the plant as considered in [2] or by integrating
energy storage systems into the plant.

For an increased forecast period (d = 20 minutes), Table 2
shows the persistence model error results. As the forecast
period d increases, the percentage of zero error decreases, the
standard deviation increases, and the safety region becomes
wider with a lower peak, as shown in Fig. 6. The safe region
worst-negative forecast error is very critical and used in the
OPF model, as will be demonstrated in the next section.
The safe region worst-negative forecast errors for 99% safety
percentage of the forecast periods are−3,−4,−5, and−6 for

TABLE 2. Forecast errors for one year with 20-minute forecast periods.

d = 10, 20, 30, and 40, respectively. After wind speed is
forecast using the proposed persistence model, the output
power from the wind generator can be known and scheduled.

V. OPTIMAL AND SECURE POWER FLOW
OPF is used to find the optimal settings for the considered
power system using multi-objective function while satisfying
the imposed constraints associated with power flow equa-
tions, security limits, and equipment operating limits. There
are many objective functions in a power system that are
considered in OPF, such as total generation cost, total system
loss, and total gas emission. In this work, the total generation
cost function is used as the objective function.

The proposed OPF model goal is to maximize the system
security under conditions of high wind power penetra-
tion. Besides, as the capacity of a thermal plant increases,
the valve-point effects become valuable and consequently
impose a notable impact on power dispatch decisions from
the cost point of view. Therefore, for accurate modeling,
the valve-point effects are incorporated in formulating the
cost function of the thermal units.

Different types of dangerous gas oxides (e.g., carbon, sul-
fur, and nitrogen oxides) are released to the atmosphere from
gas, coal, and other thermal power plants. These environ-
mentally harmful gas emissions from conventional power
plants should be kept in mind when dispatching power plants,
especially considering the existence of renewable energy
plants because renewable plants are classified as clean energy
resources. In this work, gas emission penalties are added to
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the cost function of thermal generating units in the OPF to
show the benefits of wind power as a clean energy source over
conventional generation sources. It is expected that adding
gas emission penalties to the thermal generation cost function
will improve the chances of deploying more wind power. The
generation cost function of the thermal units used here is
a combination of a nonlinear cost function, the valve-point
effects, and the gas emission penalties.

A. GENERATION COST FUNCTION
The generation cost function is defined as the relationship
between the output power and the operational cost of the
system based on the output power. The general form of these
cost functions is a quadratic function. The thermal genera-
tion units have lower and upper limits for the output power
that cannot be exceeded due to technical and unit capacity
reasons. The cost function FGi (P i) of the thermal units can
be expressed in quadratic form as

FGi (Pi)1 = aiP2i + biPi + ci; Pimin ≤ Pi ≤ Pimax (6)

wherePi is the output real power of unit i; ai, bi, ci are the cost
coefficients; and Pimin,Pimax are the minimum andmaximum
limits of real power production.

B. VALVE-POINT EFFECT
For large thermal units, the cost function is highly nonlinear
because of the steam turbine valve position. These turbines
have several valves that open sequentially to increase the out-
put power of the unit [29]. With the increase of unit dispatch,
the input power increases while the incremental heat rate will
decrease based on the opening situation of the valves. Another
reason to increase the incremental heat rate is linked with the
input-output characteristics due to the increase in throttling
losses. If ei and ki are constants for the unit i, the valve-point
effects are usually modeled in the cost function (FVi ) by a
rectified sinusoid function added to the cost function in $, as

FVi (Pi)2 = |eisin (ki (Pimin − Pi))| (7)

C. GAS EMISSION PENALTIES EFFECT
The quantity of gas emission, E (P i), released from a thermal
power plant i, can be expressed as a sum of quadratic and
exponential functions of generation power output, in ton/h,
as

E (Pi) = αiP2i + βiPi + γi + εiexp (λiPi) (8)

where αi, βi, γi, εi, andλi are the emission constants of gen-
eration unit i.

The optimization problem with the existence of gas emis-
sion can be converted to a single objective minimization
problem by multiplying the gas emission level by a penalty
cost (emission control cost factor h in $/ton) to get a cost func-
tion of emission. The cost function (penalty) of gas emission
EC (P i) = FEi (Pi) in $/h unit can be expressed by

FEi (Pi) = h(αiP2i + βiPi + γi + εiexp (λiPi)) (9)

where h is the emission control cost factor in $/ton.

Finally, the penalty cost of emission is added to the cost
function of the thermal generation power plant, including
the valve-point effect. Therefore, the overall generation cost
function including valve-point effect and gas emission effect
is formulated.

D. THE COST FUNCTION OF WIND POWER
A direct cost function of wind power, FWi (Pwi), is used for
the wind power plant as

FWi (Pwi) = bwi × Pwi (10)

where bwi is the direct power cost in $/MW and Pwi is the
output of wind unit i in MW.

E. FORMULATION OF OPTIMAL POWER FLOW OBJECTIVE
FUNCTION
The general formulation of the OPF objective function
considered in this work is

Min{
∑

Fi (Pi)n}, n = 1, 2, 3 (11)

subject to
Ng∑
i=1

Pi = PLoad + Ploss,

Pimin ≤ Pi ≤ Pimax; i = 1, 2, . . . ,Ng

where Ploss is the total real power transmission losses, and Ng
is the number of thermal generating units. Using the so-called
B-coefficients, Ploss in (11) is approximated using

Ploss =
∑Ng

i=1

∑Ng

j=1
PiBijPj +

∑Ng

i=1
B0iPi + B00 (12)

Inaccurate loss calculation leads to nonoptimal power flow
solutions. Therefore, a more accurate iterative method is used
to achieve better OPF solutions. The iterative method consid-
ers the step of economic dispatch, power flow, and transmis-
sion losses. Themethod initially solves for economic dispatch
and then calculates the full power flow using the real power
output of generators from the dispatch result. The total loss,
Ploss, is then calculated directly based on power flow results.
Finally, a check for the equality constraint is performed. If this
constraint is satisfied within an acceptable error (ε), then the
solution is obtained; otherwise, the economic dispatch step
is repeated using the newly calculated losses, and the loop
iterates until the equality constraint is satisfied.

VI. OPTIMAL POWER FLOW MODEL INCLUDING
FORECAST ERRORS
The forecast errors for multi-forecast periods and the ramp
capabilities of the thermal generating units are considered in
the OPF model. As the OPF solution relies on future fore-
cast values, the OPF model has multi-periods. Each period
has different results and forecast wind power values. Con-
straints of system variables link the subsequent periods for
complete-time horizon modeling.

The first period of the OPF is t = 0, and the period width
is T . For each OPF, it is assumed that the current time is in
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the middle of the first period and the OPF is needed to be
calculated for the next periods with wind power forecast in
the middle of each period. If the OPF has to be calculated for
period t = 1, then the wind power should be forecast for one
period or (d = T ) and so on until t = N , and then the forecast
period can be expressed as

d = N × T (13)

The aggregated objective function of the generation units
for multi-periods is subjected to accumulated technical and
economic constraints where the solution is required to con-
verge, and the globalminimum cost is obtained. The proposed
multi-periods OPF model is derived from the unit commit-
ment model used in [30]. The proposed OPF model can be
expressed as

Min{
∑Ng

i=1

∑N

t=1

∑3

1
Fi(Pi(t))n

+

∑Nw

i=1

∑N

t=1
Fi(Pwi(t)) (14)

subject to∑Ng

i=1
Pi (t)+

∑Nw

i=1
Pwi (t)} = PLoad (t)+ Ploss (t)

Pimin ≤ Pi (t) ≤ Pimax
0 ≤ Pwi (t) ≤ 8iWiav (t)

Pi (t)− Pi (t − 1) ≤ PER · URi
Pi (t − 1)− Pi (t) ≤ PER · DRi

where Ng is the number of thermal generation units, NW
is the number of wind power plants, N is the number of
periods under study, URi/DRi is the power ramp-up/down
limit for generation unit i, PER is the allowed percentage of
the ramping capability that can be used, and8i is the allowed
percentage that can be taken from the ith wind power unit.

The percentage constant 8i is suggested here to limit the
maximumwind power that can be assigned from the available
power in the wind power units. It depends on many factors
such as the available reserve, ramp capabilities of the system,
forecast errors, and size of the wind plants. 8i can also be
used to assign reserve power of the wind plant by not taking
all the available wind power, as in [29]. The available wind
power at any period (Wiav) is the power of the forecast wind
speed after subtracting the worst forecast error in the safe
region of that period.

Two approaches are proposed to consider wind speed fore-
cast in the OPF problem. In the first one, the available wind
power is forecast using the worst forecast error in the safe
region previously defined. The wind power of the plant is not
allowed to exceed this power limit. The main advantage of
this method is to guarantee high system security. It takes the
worst forecast error case and assigns the wind power depend-
ing on its ignoring the ramping capability of the system.
However, in this method, the wind power dispatch will be
lower, which will increase the generation cost and emissions
of the system. In the second approach, wind power plants are
dispatched using the worst forecast error plus a percentage of

FIGURE 7. Summary of the proposed methods to include the wind speed
forecast in OPF: (a) First method, (b) Second method.

the remaining ramp-up capability of the total system. This
occurs by sharing the remaining capability between wind
plants based on their capacities. Fig. 7 shows the graphi-
cal explanation of the two methods. Fig. 7a visualizes the
first method of wind speed forecasting without including the
ramping capability. Fig. 7b shows how the ramping capability
affects the wind speed forecast.

The second approach can be expressed as

min{
∑Ng

i=1

∑N

t=1

∑3

1
Fi(Pi(t))n

+

∑Nw

i=1

∑N

t=1
Fi(Pwi(t)) (15)

subject to
Ng∑
i=1

Pi (t)+
Nw∑
i=1

Pwi (t)} = PLoad (t)+ Ploss (t)

Pimin ≤ Pi (t) ≤ Pimax
0 ≤ Pwi (t) ≤ 8 · (Wiav (t)

+
Pwimax
PwTotal

((1− PER) · URs))

Pi (t)− Pi (t − 1) ≤ PER · URi
Pi (t − 1)− Pi (t) ≤ PER · DRi

176980 VOLUME 8, 2020



S. Albatran et al.: Realistic Optimal Power Flow of a Wind-Connected Power System With Enhanced Wind Speed Model

TABLE 3. Valve parameters and gas emission coefficients.

where PwTotal is the total wind capacity of the system, and
URs is the total ramp-up capability of the system.

The second approach depends on the fact that obtaining
the worst error is not valid in all cases. The advantage of
this strategy is that the generation cost and gas emission are
low compared with the cost of the first approach, because
of the integration of more wind power. The disadvantage of
this method is that it may take the system to the maximum
ramping limits and may not be able to handle any additional
generation output. Both approaches have been used, and their
results are discussed in the next section.

VII. CASE STUDY: IEEE 39-BUS SYSTEM
The OPF models are investigated and discussed using the
standard IEEE 39-bus system [31] to check the effectiveness
of the proposed models in incorporating wind power, system
transmission losses, gas emission of thermal generation, and
valve-point effects. The power flow optimization (economic
dispatch) was first achieved in the system without wind inte-
gration. After that, the wind power plants were added to the
system. The optimization was then implemented using the
two proposed methods.

A full AC power flow was executed, and all bus voltages
were within 5.0% of the rated voltage. The maximum volt-
age angle deviation was found to be −10.615◦ at bus #8
where one of the wind plants was connected later. All valve
parameters and gas emission coefficients of the 10 gener-
ation units are listed in Table 3. The transmission losses
using B-coefficients of equation (12) are calculated to be
46.7694 MW, and if the numerical iterative method is used,
the losses become 43.7117 MW.

The OPF is implemented including only the quadratic cost
function Fi (Pi)1 (without gas emission or valve-point effect).
Fig. 8 presents the best optimization results from the two
optimization algorithms. The system losses are 39.5483MW,
which has a reflection on the generation cost, which increases
from $76,821.9 without losses to $77,562.9 including losses
(i.e. an increase of $741.0). Now both valve-point effects and
gas emission are added to the cost function. After updating the
previous formulation and considering equation (11), adding
both valve-points effects and gas emission penalties increases
the generation cost from $77,562.9 to $110,341.92.

The obtained results demonstrate the importance of
increasing the complexity level of the optimization problem
formulation by adding more realistic constraints that have

FIGURE 8. Valve-point effect and gas emission on 39-bus system.

FIGURE 9. Modified IEEE 39-bus system including wind power plants.

a significant impact on the global cost of system operation.
Moreover, the significance of these constraints shows the
need for integrating renewable energy from an economic
point of view.

To test the OPF models after incorporating wind power,
four wind power plants with a total capacity of 1500.0 MW
are added to the 39-system with 400, 300, 350, and 450 MW
real power capacities connected at buses 4, 8, 13, and 27,
respectively, as highlighted in Fig. 9. It is assumed that all the
wind plants face the same wind speed at the same period, but
each one will have its output generated power depending on
its capacity. The wind speed forecast error is used to achieve
the available wind power for each plant for the three periods,
as shown in Fig. 10.

To increase the weight of system security, the maxi-
mum allowed wind power to be dispatched is 90% of the
available power (8 = 90%), which assigns 10% extra
reserve and will not allow all the available wind power to be
dispatched.

The proposed methods are applied to consider the wind
speed forecast error in the OPF of the modified 39-bus system
as follows.
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FIGURE 10. Available wind power for the four wind power plants.

A. METHOD 1
The optimization of the 39-bus system including wind power
and using Method 1 can be expressed as

Min{
∑10

i=1

∑3

t=1

∑3

1
Fi(Pi(t))n

+

∑4

i=1

∑3

t=1
Fi(Pwi(t)) (16)

subject to

Fi(Pi(t)) = aiP2i + biPi + ci + |ei sin (ki (Pimin − Pi))|

+ h
(
αiP2i + βiPi + γi + εiexp (λiPi)

)
Fi(Pwi(t)) = bwi × Pwi(t)
10∑
i=1

Pi (t)+
4∑
i=1

Pwi (t) = PLoad (t)+ PLoss (t)

Pimin ≤ Pi(t) ≤ Pimax
0 ≤ Pwi(t) ≤ 8Wiav(t)

Pi (t)− Pi (t −1) ≤ 0.5× URi ×T (i= 1, 2, . . . , 10)

Pi (t − 1)− Pi (t) ≤ 0.5× DRi × T

The upper ramp capability URi of the generation units is
assumed to be 8 MW/min, and the down ramp capability
DRi is supposed to be 10 MW/min; so the maximum allowed
change in each generation for each period is 80 MW rise
and 100 MW drop. The best optimization results are shown
in Fig. 11. As expected, the best solution dispatches all the
allowedwind power;Method 2will try to increase the permit-
ted wind power by taking advantage of the system ramp-up
capability.

B. METHOD 2
In this method, the optimization of the 39-bus system includ-
ing wind power can be expressed as

Min{
∑10

i=1

∑3

t=1

∑3

1
Fi(Pi(t))n

+

∑4

i=1

∑3

t=1
Fi(Pwi(t))} (17)

subject to∑10

i=1
Pi (t)+

∑4

i=1
Pwi(t) = PLoad (t)+ PLoss (t)

Pimin ≤ Pi(t) ≤ Pimax

FIGURE 11. OPF of the modified IEEE 39-bus: Method 1 and Method 2.

0 ≤ Pw2 (t) ≤ 8× (W2av (t)

+ 300/1500(0.5× URs)× T )

0 ≤ Pw3 (t) ≤ 8× (W3av (t)

+ 350/1500(0.5× URs)× T )

0 ≤ Pw4 (t) ≤ 8× (W4av (t)

+ 450/1500(0.5× URs)× T )

Pi (t)− Pi (t−1) ≤ 0.5× URi × T (i = 1, 2, . . . , 10)

Pi (t − 1)− Pi (t) ≤ 0.5× DRi × T

where URs is the summation of the individual generation
ramp-up capabilities in the system, and it is assumed to be
80 MW/min.

Using this method and the ramping capabilities of the sys-
tem, the wind power that can be assigned for each wind power
plant has increased. This increaseswind power harvesting and
environmental and economic benefits. The best optimization
results are shown in Fig. 11 (Method 2). Considering the
ramping capabilities of the system, Method 2 was able to
assign more wind power in the second and third periods,
which in turn, resulted in lower generation cost. Fig. 12 shows
the flowchart that summarizes the overall procedure devel-
oped in the proposed optimization framework.

To show the cost function and run time for each case,
comparative results are listed in Table 4. The results of the
genetic algorithm (GA) are also introduced as benchmark
results to show the effectiveness of the used algorithms in
the proposed study. The optimal results are highlighted. The
results justify the use of two metaheuristic algorithms where
the results are close to each other. On the other hand, the run
time using GA is much higher and the cost is always the
highest.

VIII. A COMPARISON WITH WEIBULL STATISTICAL
MODEL
The main difference between the proposed wind speed
forecast model and the state-of-the-art research is related
to the linkage between the amount of underestimation in
wind speed and the resulting accuracy. If higher accuracy is
needed, the value of ‘‘Vλ’’ must be increased. As a result,
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TABLE 4. Comparison among the results of the two metaheuristic algorithms used (TLBO and SOS) and the genetic algorithm.

FIGURE 12. The flowchart of the proposed optimization framework.

FIGURE 13. Wind speed frequency over one year for a windy site [28].

the comparison from an accuracy point of view can always
be biased towards the proposed method. The same logic is
applicable when the comparison is related to the estimated
wind power generation. The lower value of ‘‘Vλ’’ will end by
virtual predicted wind power. In other words, the proposed
model can be made adaptive to match the other short-term
wind speed models and it can always be better than them.

The comparison with Weibull probability distribution can
indicate the importance of having an accurate model.

In several research studies, OPF was studied by selecting
one value of wind speed. This can contradict the accuracy of
the analysis and can lead to unwanted results. As a bench-
mark, ‘‘Weibull probability distribution-based modeling’’ of
wind speed is considered here as a statistical distribution
method.

A comparison between the proposed method and the
Weibull method is made using non-windy and windy sites.

To clarify the importance and effectiveness of the proposed
wind speed forecasting model, three cases are tested for
each site. Usually, Weibull distribution method is used for
its simplicity, which makes it difficult to be used as a fore-
casting model or to incorporate system security as a factor in
the modeling. The numbers in the following three cases are
only logical indicators that classify the wind speed ranges to
facilitate presenting the modeling.
• Case 1: Non-windy day: The wind speed is between
0 and 8 m/s.

• Case 2: Semi-windy day: The wind speed is from 8 to
15 m/s.

• Case 3: Windy day: The wind speed is above 15 m/s.

For 5 m/s cut-in wind speed and Weibull probability distri-
bution (the data are given in Fig. 5), the estimated wind power
will be zero. The probabilities of the wind output power of the
turbine during the year considering 15 m/s rated speed and
25 m/s cut-off wind speed are 71.24%, 27.14%, and 1.611%,
respectively, where the normalized power (Pw > Prated ) is 0,
less than 1, and 1, respectively. If the wind plant is to be dis-
patched depending on the Weibull method, the highest prob-
ability is for the zero power, and as a result, energy will not
be dispatched from this turbine even on windy days. For the
Weibull method, there is no difference between windy or non-
windy days—the dispatch depends on the yearly data.

Considering the proposed RAP model, a wind speed of
4 m/s is used to represent Case 1 (non-windy day), which is
less than the cut-in speed. The resultant wind speed during the
day is 1 m/s, and as a result, zero power is delivered from the
wind turbine. For Case 2, a wind speed of 12m/s is considered
to represent a sample of the semi-windy day. Using 99%
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RAP, the forecast error is−3 m/s. The estimated wind power
to be dispatched is associated with 9 m/s wind speed. The
generated power from the turbine will be deficient (about
6.4% of the rated power) using a typical wind power curve
with the presented cut-in and cut-off wind speed. On windy
days and considering a wind speed of 20 m/s, the estimated
wind speed is 17 m/s. As this speed is higher than the rated
speed, the estimated wind power to be dispatched is the rated
power.

From this comparison, it is clear that the Weibull distri-
bution method is not suitable for non-windy sites where the
highest probability is directed to be lower or around the cut-in
speed. However, the proposedRAPmodel shows the ability to
harvest more wind power when it is sufficient to be converted.
Another critical point in the proposed RAP model is related
to the selection of the cut-in wind speed, which is mainly
linked to the structure of the wind plant. Another security
factor is introduced here to enhance power system security.
For extremely high accuracy (99%), 3 m/s is added to the cut-
in speed to check the suitability of the site. Fig. 13 shows an
example of a windy site [28]. The same procedure presented
in Section 5 is repeated for this wind data, and the power
probabilities for this site all over the year are 90.21% for
Pw > Prated , 0.27% for Pw = 0, and 9.52% for the other
range.

The estimated wind power using the Weibull distribution
method is 19.5 m/s for Cases 1 and 2, which is higher than the
actual available wind power. This will degrade the power sys-
tem security. On windy days, the estimated wind power will
match with the rated power as the wind speed is higher than
the cut-off speed. On a windy day, if the wind speed is higher
than the rated speed, the system security will be reserved. The
proposed RAP model is secure in both Case 1 and Case 2 as
only the available wind power will be dispatched. For Case 3,
the scenario is similar to the Weibull probability method,
as the wind speed is high.

IX. CONCLUSION
This article provides a realistic solution for the
security-constrained OPF by developing a mathematical
optimization problem. For accurate and realistic outcomes,
the optimization problem considers the modeling of wind
power resources, wind power fluctuations, wind speed uncer-
tainty, valve-point effect, gas-emission effect, and transmis-
sion losses. Therefore, the impact of each of these parameters
on the outcomes is captured. The proposed framework can be
applied and used as an OPF tool for any system with any
number of buses and sources.

Compared to the commonly used statistical probability dis-
tribution function methods used in the literature, the proposed
model provides a more accurate wind speed forecast model.
The model uses a safe region in which the worst forecast
error is selected to be the limit that cannot be exceeded by the
allowed dispatchable wind power. This is implemented con-
sidering different forecast periods (d = 10, 20, and 30 min).
The proposed statistical analysis converts the scattered wind

speed over one year to a useful frequency-distributed infor-
mation. Rounding the values to the closest integer shows
accurate and informative results.

In this study, the proposed approach is examined using
the IEEE 39-bus with different approaches. TLBO and SOS
optimization methods have been applied to solve the OPF
problem. The significance of considering all environmental
and operational constraints makes the results of OPF to be
directed toward harvesting optimal power from the available
wind power resources. The energy harvest using the proposed
model is higher than the commonly used Weibull method for
non-windy sites and is more reliable for windy sites. The
fluctuation and the uncertainty in the wind speed are not part
of theWeibull distributionmethod, while it is an essential part
of the proposed model.

REFERENCES
[1] J. Luo, L. Shi, and Y. Ni, ‘‘A solution of optimal power flow incorporat-

ing wind generation and power grid uncertainties,’’ IEEE Access, vol. 6,
pp. 19681–19690, 2018.

[2] P. Du, J. Wang, W. Yang, and T. Niu, ‘‘A novel hybrid model for short-
term wind power forecasting,’’ Appl. Soft Comput., vol. 80, pp. 93–106,
Jul. 2019.

[3] E. E. Elattar, ‘‘Optimal power flow of a power system incorporating
stochastic wind power based on modified moth swarm algorithm,’’ IEEE
Access, vol. 7, pp. 89581–89593, 2019.

[4] M. A. M. Shaheen, H. M. Hasanien, S. F. Mekhamer, and H. E. A. Talaat,
‘‘Optimal power flow of power systems including distributed genera-
tion units using sunflower optimization algorithm,’’ IEEE Access, vol. 7,
pp. 109289–109300, 2019.

[5] Z. Ullah, S. Wang, J. Radosavljevic, and J. Lai, ‘‘A solution to the optimal
power flow problem considering WT and PV generation,’’ IEEE Access,
vol. 7, pp. 46763–46772, 2019.

[6] H. Holttinen, M. Milligan, E. Ela, N. Menemenlis, J. Dobschinski,
B. Rawn, R. J. Bessa, D. Flynn, E. Gomez-Lazaro, and N. K. Detlefsen,
‘‘Methodologies to determine operating reserves due to increased wind
power,’’ IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 713–723,
Oct. 2012.

[7] J. Hetzer, D. C. Yu, and K. Bhattarai, ‘‘An economic dispatch model
incorporating wind power,’’ IEEE Trans. Energy Convers., vol. 23, no. 2,
pp. 603–611, Jun. 2008.

[8] C.-M. Huang, C.-J. Kuo, and Y.-C. Huang, ‘‘Short-term wind power fore-
casting and uncertainty analysis using a hybrid intelligent method,’’ IET
Renew. Power Gener., vol. 11, no. 5, pp. 678–687, Apr. 2017.

[9] M. Jawad, S. M. Ali, B. Khan, C. A. Mehmood, U. Farid, Z. Ullah,
S. Usman, A. Fayyaz, J. Jadoon, N. Tareen, A. Basit, M. A. Rustam, and
I. Sami, ‘‘Genetic algorithm-based non-linear auto-regressive with exoge-
nous inputs neural network short-term and medium-term uncertainty mod-
elling and prediction for electrical load andwind speed,’’ J. Eng., vol. 2018,
no. 8, pp. 721–729, Aug. 2018.

[10] M. Xu, Z. Lu, Y. Qiao, and Y. Min, ‘‘Modelling of wind power forecasting
errors based on kernel recursive least-squares method,’’ J. Modern Power
Syst. Clean Energy, vol. 5, no. 5, pp. 735–745, Sep. 2017.

[11] S. Wang, Y. Sun, S. Zhai, D. Hou, P. Wang, and X. Wu, ‘‘Ultra-short-term
wind power forecasting based on deep belief network,’’ in Proc. Chinese
Control Conference (CCC), Guangzhou, China, 2019, pp. 7479–7483.

[12] Q. Bian, Y. Qiu, W. Wu, H. Xin, and X. Fu, ‘‘Generation dispatch method
based on maximum entropy principle for power systems with high pene-
tration of wind power,’’ J. Modern Power Syst. Clean Energy, vol. 6, no. 6,
pp. 1213–1222, Nov. 2018.

[13] W. Hu, Y. Min, Y. Zhou, and Q. Lu, ‘‘Wind power forecasting errors mod-
elling approach considering temporal and spatial dependence,’’ J. Modern
Power Syst. Clean Energy, vol. 5, no. 3, pp. 489–498, May 2017.

[14] R. Xue and Z. Wu, ‘‘A survey of application and classification on
teaching-learning-based optimization algorithm,’’ IEEE Access, vol. 8,
pp. 1062–1079, 2020.

[15] Z. Liao, Z. Chen, and S. Li, ‘‘Parameters extraction of photovoltaic models
using triple-phase Teaching-Learning-Based optimization,’’ IEEE Access,
vol. 8, pp. 69937–69952, 2020.

176984 VOLUME 8, 2020



S. Albatran et al.: Realistic Optimal Power Flow of a Wind-Connected Power System With Enhanced Wind Speed Model

[16] H. Feng and Q. Li, ‘‘An improved teaching-learning based optimization
algorithm and its application to aero-engine start model adaptation,’’ IEEE
Access, vol. 7, pp. 136525–136534, 2019.

[17] B. Khan and P. Singh, ‘‘Selecting a meta-heuristic technique for smart
micro-grid optimization problem: A comprehensive analysis,’’ IEEE
Access, vol. 5, pp. 13951–13977, 2017.

[18] H. Zhang, Z. Gao, X. Ma, J. Zhang, and J. Zhang, ‘‘Hybridizing
teaching-learning-based optimization with adaptive grasshopper opti-
mization algorithm for abrupt motion tracking,’’ IEEE Access, vol. 7,
pp. 168575–168592, 2019.

[19] C. Han, G. Zhou, and Y. Zhou, ‘‘Binary symbiotic organism search
algorithm for feature selection and analysis,’’ IEEE Access, vol. 7,
pp. 166833–166859, 2019.

[20] P. Govender and A. E. Ezugwu, ‘‘A symbiotic organisms search algo-
rithm for optimal allocation of blood products,’’ IEEE Access, vol. 7,
pp. 2567–2588, 2019.

[21] M.-Y. Cheng and D. Prayogo, ‘‘Symbiotic organisms search: A newMeta-
heuristic optimization algorithm,’’ Comput. Struct., vol. 139, pp. 98–112,
Jul. 2014.

[22] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching–learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011.

[23] M. U. Yousuf, I. Al-Bahadly, and E. Avci, ‘‘Current perspective on
the accuracy of deterministic wind speed and power forecasting,’’ IEEE
Access, vol. 7, pp. 159547–159564, 2019.

[24] X. Wang, P. Guo, and X. Huang, ‘‘A review of wind power forecasting
models,’’ Energy Procedia, vol. 12, pp. 770–778, Jan. 2011.

[25] C. Tian, Y. Hao, and J. Hu, ‘‘A novel wind speed forecasting system based
on hybrid data preprocessing and multi-objective optimization,’’ Appl.
Energy, vol. 231, pp. 301–319, Dec. 2018.

[26] Y.-K. Wu and J.-S. Hong, ‘‘A literature review of wind forecasting tech-
nology in the world,’’ in Proc. IEEE Lausanne Power Tech., Jul. 2007,
pp. 504–509.

[27] D. B. Alencar, C.M.Affonso, R. C. L. Oliveira, and J. C. R. Filho, ‘‘Hybrid
approach combining SARIMA and neural networks for multi-step ahead
wind speed forecasting in Brazil,’’ IEEE Access, vol. 6, pp. 55986–55994,
2018.

[28] National Renewable Energy Laboratory Website. [Online]. Available:
https://www.nrel.gov/midc/nwtc_m2

[29] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control. Hoboken, NJ, USA: Wiley, 2012.

[30] J. D. Glover, M. S. Sarma, and T. Overbye, Power System Analysis &
Design, SI Version. Boston, MA, USA: Cengage Learning, 2012.

[31] M. A. Pai, Energy Function Analysis for Power System Stability. Boston,
MA, USA: Kluwer, 1989.

VOLUME 8, 2020 176985


