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ABSTRACT Potato grading is related to weight. Three-dimensional (3D) reconstruction can provide
highly accurate volume measurements of potatoes, which can help farmers to analyze their phenotypic
characteristics and grade them. Considering their low cost and the required accuracy, a monocular camera
and line laser were used to build a potato phenotype determination scanning device. The system obtains
coordinates along the surface of a potato, collects laser light reflected from the surface in real time,
and completes the coordinate calculation of the original points using the triangulation method. However,
the original point clouds lose large areas of point clouds at the top and bottom of the potato. Point cloud
repair is carried out by interpolation of points. In addition, the surface point cloud is smoothed. Finally,
the generated point cloud is used for 3D reconstruction and volume calculation. In a volume error analysis
test, potatoes are divided into calibration and verification groups. First, linear regression is used to relate
the real and measured potato volume, and then the density of the potato is calculated. The volume and mass
of potatoes in the verification group are measured by the device, and the standard volume and mass are
measured manually. The results show that the average relative error in measured volume is−0.08%, and the
average relative error in estimated mass is 0.48%. These results indicate that the combination of a line laser
and a single camera provides accurate measurements of potato volume that can be used for yield estimation
and potato grading.

INDEX TERMS Line laser, volume estimation, feature prediction, weight estimation.

I. INTRODUCTION
Non-destructive measurement methods are important for
yield monitoring. Mechanical sensors, such as belt weights
and impact measurements, can damage crops and are difficult
to calibrate due to vibration. By measuring the volume of
cultivated crops or agricultural products, yields can be accu-
rately calculated [1], [2]. Geometric characteristics and yield
monitoring of crops can give farmers feedback [3] that can
help them grade fruits and vegetables for added value [4], [5].
However, the analysis of phenotypic features is mostly artifi-
cial [6], which is labor-intensive and inefficient, resulting in a
so-called ‘‘phenotyping bottleneck’’ [7], [8]. Using computer
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vision [9] or three-dimensional (3D) imaging [10], farmers
can analyze the quality of crops, so they can estimate yields
and grades [11].

The potato (Solanum tuberosum L.) is one of the most
important crops around the world, totaling 17.6 million
hectares (FAO, 2018). In many cases, it is difficult to measure
and grade potatoes due to their uneven surface and vulnerabil-
ity to damage [12]. In the last decade, with the development
of machine vision, images have been widely used to analyze
the quality and weight of fruits and vegetables [13]–[15],
including potatoes [16], [17]. However, the thickness of
the potato cannot be obtained without the depth of field
in a two-dimensional image. 3D reconstruction technology
allows for precise measurements of potato volume [18], and
phenotypic reconstruction has become possible.
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FIGURE 1. (A) Device structure. (B) Reconstruction process.

3D reconstruction has long been used to measure forest
canopy parameters [19]–[21] and to monitor crop pheno-
types [22], [23] and poultry [24]–[26]. It also has been used
to measure the volume of crops, such as the fresh weight
of lettuce [27], volume of onion fruit [28], or volume of
cauliflower [29]. 3D laser scanning provides fast measure-
ments with moderate accuracy and low cost [30]. Common
methods include the use of structured light [31], [32] and
time-of-flight measurements using the phase of received
light [33], where the former is most used in 3D modeling,
such as with the Microsoft Kinect sensor. However, due to
the complexity of crop phenotypes, it is difficult to complete
scanning from one angle at a time. There have been studies
using multi-view stereovision [34]–[36] and structure from
motion [37]–[39].

This study aims to use a single camera and line laser
to build a 3D reconstruction system for potato volume
measurements, through which potato surface information
can be collected and stored. By analyzing point cloud data,
the appearance of a potato can be reconstructed, and the exact
volume calculated. Due to the limitations of a low-cost device
and the influence of the camera angle, the camera cannot
move and collect color information from the surface, result-
ing in point cloud measurements with missing information,
especially at the bottom and top of a potato’s rotation axis.
To remedy this problem, we process the original point cloud
data and reconstruct a 3D model of the potato from a grid.
The potato volume measurement error from the device is
determined by comparing the exact volume to the standard
volume container. A non-destructivemethod is used to predict
the weight of potatoes.

II. MATERIALS AND METHODS
A. POTATO SAMPLES AND MANUAL ASSESSMENT
The sampling standard refers to GB/T 8855-2008, and the
minimum sampling quantity is 3 kg. Fresh potatoes were
purchased in the afternoon fromQixia Agricultural Market of
Nanjing on the day before the experiment. The total weight
of 35 fresh potatoes was 6.056 kg; potatoes were randomly
selected and did not have deformities. All potatoes were
manually cleaned and washed to remove dirt and clay clouds
before testing. The potatoes were separated into groups for
calibration and verification. The weight of five potatoes used
for calibration was 0.835 kg, and the weight of 30 potatoes
used for verification was 5.221 kg.

The volume of potatoes was measured manually by a
metrologist at Jiangsu Institute of Metrology at a constant
temperature of 20◦C and 50% RH. The standard device used
for volume measurement is a standard glass gauge, which
has an error of −0.07% in 500 mL. An electronic count-
ing balance (Sartorius, Germany) with an error of 0.04%
within 1000 g was used for mass measurement.

B. HARDWARE AND SYSTEMS
The hardware system is shown in Fig. 1A. The motion mech-
anism is composed of a reducer with a deceleration ratio
of 2.5:1, a stepping motor (57 steps, SNOWIT, Changzhou), a
two-phaseDC synchronous subdivision step driver (LiChuan,
Shenzhen), and an Arduino UNO R3 microcontroller board
(Arduino, Italy). The data acquisition system consists of
a 532-nm linear laser with 10 mW output power, and a
2048× 1536 pixel CCD camera with a focal length of 21mm.
The system is controlled by a computer (Intel i5 CPU,
Windows 7 operating system, 16 GB RAM, Hewlett Packard,
USA). Both the camera and laser were placed 300 mm from
the rotation axis, and the angle between the camera and laser
was set to 50◦.
A program for controlling the system was written in

LabVIEW 2019 SP1 (National Instruments, USA); the data
acquisition process is shown in Fig. 1B. Access 2016
(Microsoft, USA) was used for data storage, and MATLAB
R2019a (MathWorks, USA) for 3D visualization.

C. ORIGINAL POINT CLOUD COLLECTION
A flowchart of the process for acquiring original point cloud
coordinates is shown in Fig. 2A. The potato is placed on a
rotating surface, and the compression force of a spring clip
is used to fix the potato to the surface. The stepping motor
drives the reducer and rotates the surface. Data are gathered
by rotating the potato 1◦ in 0.5 s.
The camera is used to gather successive images as the

motor moves through each step. The coordinates of points
on the potato surface are calculated by image processing.
A schematic diagram is shown in Fig. 2B. The actual radius
r of the potato surface point and the imaging distance 1d in
the image are related by the formula

r·sinγ
1d ·sinβ

=
f−r·cosγ

f ′+1d · cosβ
(1)

where r is the distance to the center of rotation for the potato
surface point; 1d is the distance between the light contour
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FIGURE 2. (A) Flowchart of the process for acquiring original point cloud coordinates. (B) Schematic
diagram of radius coordinate calculation.

and the axis of rotation on the imaging surface; γ is the angle
between the laser beam axis and the optical axis of the imag-
ing lens; β is the angle between the imaging surface and the
optical axis of the imaging lens; f is the object distance on the
optical axis of the imaging lens; and f’ is the image distance
on the optical axis of the imaging lens. The missing point
coordinates in the original coordinate data are interpolated,
and all coordinates are stored in the database. The ratio of the
pixel coordinates of the ROI area in the image to the actual
coordinates is stored in the computer memory, and the ROI
area is determined manually. Images collected by the camera
are converted to 32-bit RGB format. The green component in
the image is converted to an 8-bit grayscale image, which is
transformed to a matrix. The program traverses each column
of the matrix, calculates its brightness value using a threshold
method [40], [41], and coordinates of the laser centerline
in the picture are obtained. The centerline coordinates of
the potato contour are compared to the axis coordinates to
obtain the coordinates of the points at θ i. A small number
of noise points in the point cloud cause the centerline to
be discontinuous. These isolated points can be removed by
threshold judgment. Cubic interpolation is carried out to
make discontinuous coordinate points continuous within the
original range, and all coordinates are stored in an Access
database. This process is repeated until the potato has rotated
through a full revolution.

D. SEARCH FOR VERTEX AND HEIGHT DIRECTION
INTERPOLATION
In the process of collecting the original point cloud coordi-
nates, a large region of data will be missing from the bottom
and top of the potato due to the camera angle, occlusion of
the fixed device, and self-occlusion of the potato, as shown
in Fig. 3A.Methods to repair 3D point clouds include implicit
surface reconstruction with radial basis functions [42], sur-
face hole filling with a context sampling model [43], and
point cloud repair using Poisson’s equation [44] or partial dif-
ferential equations [45]. These methods are computationally
intensive and may lose some detail. This study is based on the
original data-acquisition device in potato fixation. There are
two fixed points along the Z-axis direction, so all points in the
missing area will intersect at one point. Finally, the missing

points can be repaired by interpolating the intersection point
and the point at each angle.

In the program, the missing regions of the point cloud
at the top and bottom of the potato are first extracted, and
points from 15 layers outside the missing regions are taken
as the interpolation regions, as shown in Fig. 3B. The top and
bottom interpolation regions are searched to find the point
closest to the Z-axis and the point with the lowest height at
the bottom. Points on the angles of the two search points are
fitted to obtain the points intersecting the Z-axis, as shown
in Fig. 3C. Various angles on the potato are traversed, and
the coordinates of all the points at each angle are interpolated
to obtain filled point cloud coordinates. The repaired point
cloud is shown in Fig. 3D.

E. SLICING AND SMOOTHING
Point clouds on the surfaces of potatoes can be divided into
two categories. The first contains unprocessed raw data, and
the second contains data obtained through interpolation. Each
layer is sliced according to the Z-axis, and one finds that
coordinate points with no interpolation in the cross section
are smooth in polar and x-y coordinates, as shown in Fig. 4A.
The coordinates of the points on the interpolated cross section
are too scattered, as shown in Fig. 5A. To reduce variance
in the interpolation region of the point cloud, the data are
fitted to a B-spline curve, which is often used for modeling
in mechanical 3D design software [46], to obtain a smooth
contour. All points on each slice are fitted to B-spline curves
to obtain a smooth contour, as shown in Figs. 4B and 5B.
By controlling the RMSE threshold of the distance between
the original point and the B-spline curve, a small fluctua-
tion is obtained and superimposed on the B-spline fitting
curve. The optimized point cloud coordinates are shown
in Figs. 4C and 5C.

F. VOLUME CALCULATION
The volume of the potato is calculated using the point cloud
in cylindrical coordinates, as shown in Fig. 6A. The system
reads all point cloud coordinates from the Access database,
with coordinates formatted as shown in eq. (2). The area of
the slice at height hjθi is integrated, as shown in eq. (3). Finally,
the total volume of potatoes can be obtained by integrating the
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FIGURE 3. Point cloud interpolation process. (1) Point cloud from the bottom of a potato. (2) Point cloud from the top of a potato. (A) Original
point cloud. (B) Point cloud interpolation region. (C) Region used to search for the intersection point. (D) Repaired point cloud.

FIGURE 4. Slice graph of a point cloud region without interpolation. (A) Original point cloud. (B) B-spline fitting curve. (C) Processed point cloud in:
(D) polar coordinates; and (E) Cartesian coordinates.

height of area S j, as shown in eq. (4):

EPjθi =
(
θi, h

j
θi
, r jθi

)
(2)

S j =
∑n

0

1θ i · π ·
(
r jθi

)2
360

(3)

V =
∑m

0

∑n

0

1θ i · π ·
(
r jθi

)2
360

 ·1hj. (4)

θ
j
θi
, hjθi , r

j
θi
are respectively the measurement angle, height,

and radius of the surface point in cylindrical coordinates; S j is

the area of the section corresponding to height 1hj at height
hjθi ;1θ i is the stepping angle; n is the number ofmeasurement
angles; and m is the total number of potato slices along the
Z-axis.

III. RESULTS
A. SYSTEM CALIBRATION RESULTS
The potatoes used for calibration were measured, and the
measured volume, standard volume, and standard mass were
determined. Relationships between the measured volume and
standard volume, and between the standard volume and stan-
dard mass, were determined using linear regression, as shown
in Figs. 7A and B, respectively.
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FIGURE 5. Slice graph of a point cloud region with interpolation. (A) Original point cloud. (B) B-spline fitting curve. (C) Processed point cloud in:
(D) polar coordinates; and (E) Cartesian coordinates.

FIGURE 6. Potato volume calculation results. (A) Potatoes in Cartesian
and cylindrical coordinates. (B) Potato slice area integration region.

SPSS version 23.0 (IBM Corp., Armonk, NY, USA) was
used to perform linear regression between the measured vol-
ume and standard volume; the resulting model is shown in
eq. (5):

V = V0 ∗ 0.992+ 13.171, (5)

where V is the corrected volume and V0 is the measured
volume. The coefficient of determination is 1.000 and
RMSE = 1.02 cm3. The average density of potatoes used for
calibration was calculated to be 1.0805 g/cm3.

B. VERIFICATION OF POTATO VOLUME
For the point cloud used for verification, the volume was
calculated using eq. (3), and the volume and mass were
determined using eq. (4) and the potato density. The stan-
dard volume and standard mass were measured manually,
as shown in Fig. 8.

C. CHANGE OF POTATO VOLUME DURING ALGORITHM
PROCESSING
In processing the potato point cloud, the steps to change the
computational value of potato volume include interpolation
and smoothing. The volume of a potato is obtained in two
processing steps. The volumes of the unprocessed potato
point cloud, interpolated potato, and smooth potato are shown
in Figure 9.

D. 3D RECONSTRUCTION
3D reconstruction of potatoes was accomplished using the
alphaShape [47] toolbox in MATLAB. The surface mesh
effect of the potato based on the original point cloud and
the treated post-point cloud is shown in Figs. 10A–C. The
maximum alpha radii of the original and processed point
clouds are respectively 12 and 3 mm. For the potato in the
figure, the relative error between the original point cloud
volume and the standard volume is −2.12%, and the relative
error between the treated point cloud volume and the standard
volume is −0.98%, where the uncertainty of the standard
volume measurement is 0.96%.

We materialized the surface mesh of the potato using
Geomagic Wrap 2017 (3D Systems, USA) and printed a
materialized model using a 3D printer with a precision
of 0.2 mm from polylactic acid material. The models of real
potatoes and 3D printed potatoes are shown in Figs. 11A–C.

IV. DISCUSSION
A fixed wire laser and camera were used to complete a
full revolution surface scan by rotating a potato. The device
can also be used to measure the volumes of vegetables and
fruits, such as sweet potatoes, corn, oranges, and avocados.
However, this device is not suitable for apples, pears, and
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FIGURE 7. Linear regression results between: (A) measured volume and standard volume; and (B) standard
volume and standard mass.

FIGURE 8. Volume and mass measurements.

FIGURE 9. Potato volume change during point cloud processing.

other fruits with large depressions at the top, which cause
large distortions in the local area. This can be solved by
gathering data from multiple azimuths or by using a point
cloud registration method [48], [49].

Local vertex search, interpolation, slicing, and smoothing
are used in data processing to improve the detail effect of

the 3D model, reducing the alpha radius after point cloud
processing from 12 to 3 mm. The relative error of volume
measurement after different processing steps of potatoes is
shown in Fig. 12.

From the relative error of potato volume after different
treatments, the calculated average relative error of the original
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FIGURE 10. Point clouds of potatoes. (1) Grid diagram of an original point cloud. (2) Grid diagram of a processed point cloud. (A) Top of a
potato. (B) Bottom of a potato. (C) Side of a potato.

FIGURE 11. Real potatoes and 3D printed potatoes.

point cloud is −0.4%, the average relative error after inter-
polation is 0.29%, and the average relative error after
smoothing is −0.08%. In addition, the volume of the potato
in Fig. 10 was studied using 3D point cloud repair, after
which the measurement error could be reduced by 1.14%.
This means that point cloud repair has a small impact on the
measurement of volume, but a large impact on 3D visualiza-
tion. By changing the potato’s volume, we can see that our
processingmethods are beneficial and useful in correcting the
volume of the potato.

The relative error between the measured volume and
estimated mass of potatoes is shown in Fig. 13.

The average relative error of potato volume in the ver-
ification group is −0.08%, the maximum relative error is
2.17%, and theminimum relative error is 0.03%. The volume,
mass, and surface point cloud of the potato can be obtained

simultaneously with structured light and camera. The volume
of the potato can be accurately measured, and a fixed density
can be used to estimate its mass. The average relative error of
the estimatedmass is 0.48%, and themaximum andminimum
relative errors are 2.92% and 0.12%, respectively. In compar-
ison, the average error of cauliflower volume measured by
Kinect was 0.58% [29], the average error of grape volume
measured by air displacement techniques was 3.8% [51],
and the average error of potato volume measured by RGB-D
camera was 9% [52]. Our device has obvious advantages in
accuracy, at a much lower cost.

The linear correlation equation between the measured and
standard volume of potatoes was analyzed using SPSS. The
R2 value was found to be 1.000 with an RMSE of 1.80 cm3;
thus the measured surface volume was in good agreement
with the actual volume. It is believed that the point cloud
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FIGURE 12. Relative error of potato volume during point cloud processing.

FIGURE 13. Relative error of measuring volume and estimating mass of potatoes.

coordinates obtained with the device for this paper and the
reconstructed 3D model are strongly correlated with the
potato surface, whose pits and buds can be visualized.

V. CONCLUSION
In this paper, a monocular camera and line laser were used
to build a rotary phenotype scanning mechanism, which can
be used to acquire point cloud data from the surface of a
potato. We searched the point closest to the Z-axis and the
intersection with the Z-axis through the point cloud at the
angle of the nearest point and completed the repair of the
point cloud through the intersection point and the original
point cloud. Then the potatoes were sliced along the Z-axis,
and the points in each section were fit to B-spline curves.
The entire point cloud was used to calculate the volume
and mass of a calibrated potato. The standard volume and
mass of a calibrated potato were measured manually. A lin-
ear relationship between the measured and standard volume
was determined using linear regression, and the density of
the potato was obtained by manually measuring the mass
and volume of potatoes in a modified group. The regression

model of volume was used for potato verification, and the
volume and mass of the potato obtained using the point cloud
were compared with those that were manually measured. The
coefficient of determination between potato mass and volume
was 1.000, with an average relative error of −0.08% and
RMSE of 1.80 cm3. The potato mass could be accurately
estimated with an average relative error of 0.48%. The results
show that the error in potato mass estimation is very small.
According to the NY/T 1066-2006 standard, the grading error
rate of a potato is 0%. This result showed better accuracy
than the 91% accuracy based on color image processing
[50] and the 93% accuracy based on depth image process-
ing [18]. This device and treatment can be used for potato
grading and yield estimation. The results illustrate the use-
fulness of 3D point cloud reconstruction for potato phenotype
reconstruction.

3D reconstruction has potential use in potato yield estima-
tion, phenotypic studies, and quality grading. In the future,
we hope to improve the performance of the system and reduce
the measurement time by using depth cameras or coding
structured light.
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