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ABSTRACT Semantic image segmentation is of crucial importance to many applications, such as
autonomous driving, robot vision, and scene understanding. However, the border of a segmented image
tends to be rough, and the labeling process is tedious and labor-intensive. Therefore, this study is the first
proposing to use a deep generative adversarial network (GAN) with double-layered upsampling based on
max-pooling indexed deconvolution. Our proposed upsampling method replaces the bilinear interpolation
upsampling method; i.e., we fuse the deep deconvolution method by saving the indices of relative locations
of the max weights computed during pooling. Combined with the deep GAN, our upsampling method
can improve the extraction of low-resolution features, and compensate for the loss of the image size.
To further reduce the whole network’s dependence on labeled datasets, a weakly supervised feedback
method is proposed. The unlabeled data can improve the generalization ability of the model. Considering
the generalization to unseen image domains, we introduce transfer learning based on a deep GAN and a
weakly supervised method. The segmentation model using the trained data in the source domain can obtain
good segmentation in the target domain using transfer learning. Extensive experiments in various domains
demonstrate the advantages of the proposed method compared to the generalization ability of semantic
segmentation. This method also significantly decreases the dependence on labeled data and ensures the

network accuracy.

INDEX TERMS Semantic segmentation, GAN, deep transfer learning.

I. INTRODUCTION

Traditional approaches such as manually designed features,
support vector machines (SVMs) and probability graphs,
have been used to build semantic segmentation algorithms.
Ren and Malik [7] propose a simple linear iterative clus-
tering (SLIC) algorithm that can result in unstable super
pixels, wrong classification, and weak boundary region. This
algorithm is difficult to apply in the segmentation of super
pixels. With the development of deep learning, many image
semantic segmentation methods based on deep learning have
been proposed, including image classification [8], [9] and
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object detection [10]-[13]. Recently, convolutional neural
networks (CNNs) have been a common approach for seman-
tic segmentation [14]-[16] since they provide an initial
category label for every pixel. A convolutional layer can
effectively capture the local features of an image and nest
the modules together in a hierarchical manner [17], [18],
but the traditional CNN may lose spatial information in
the deep layers of the network, and the size of the input
picture is fixed. Fully convolutional networks (FCNs) were
proposed to handle images of any size by transforming the
fully connected layer to a convolutional layer [19]. Genera-
tive adversarial networks (GANs) have also been applied to
semantic segmentation [20], [21]. A deep GAN can be used to
judge real label images and predictive segmentation images,
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which can reduce the inconsistency between them. However,
the detailed information of the final segmentation image is
lost, and the segmentation boundaries are rough.

This paper proposes a double-layered upsampling method
based on a deep GAN. The discriminator output of a deep
GAN uses a supervision signal to feed back the predictive
results of the semantic segmentation. Then, the lost detailed
information is captured in the samples of the semantic seg-
mentation network, which can improve the quality of the
boundaries of the segmented regions. Most of the traditional
semantic segmentation networks use fully-supervised CNNss,
which require strict training conditions and imply training
using labeled data. The labeled data needs manual labor, and
the labeled data set also needs to be specially processed. This
paper proposes a double-layered upsampling method based
on a deep GAN. The classification output of the deep GAN
is used to feed back the predicted results of the semantic
segmentation network. Then, the lost detailed information is
captured during the upsampling process of the bilinear inter-
polation, which can improve the quality of the boundaries
of the segmentation. The weakly supervised segmentation
method with feedback is used to train the whole semantic
segmentation network, and to avoid the problem of requiring
numerous manual labels.

These semantic segmentation methods can only be used
in a specific environment. The generalization ability of the
segmentation model is low for data outside the specific envi-
ronment. A highly accurate network that is trained using a
specific data set cannot obtain similar performance on other
similar data sets which belong to the same kind of scene.
In this paper, we present a novel semantic segmentation
method using a GAN and weakly supervised segmentation
based on deep transfer learning. Our method trains the whole
semantic segmentation network using a weakly supervised
segmentation method with feedback, which is based on a
deep GAN. The proposed method can solve the problem
of requiring lots of manually labeled data and simplify the
work of obtaining high quality data. We use two kinds
of data sets, labeled data and unlabeled data sets, during
the training process of the network. The unlabeled data is
similar to the labeled data. Weakly supervised training can
reduce the dependency on labeled data for the whole network,
which further reduces the semantic segmentation network’s
dependence on the external environment. The unlabeled data
samples are used to perform segmentation predictions auto-
matically, which can improve the generalization ability of
the model. Transfer learning is combined with the proposed
GAN and the weakly supervised segmentation method based
on deep learning. The segmentation model that is trained
using the data from the source domain can obtain a good
segmentation effect in the target domain via transfer learning.

The remainder of this paper is organized as follows.
In Section II, we discuss the related works on semantic seg-
mentation in further detail. In Section III, we introduce our
novel method to address this problem, focusing on improving
the efficiency and accuracy of the semantic segmentation
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based on deep GAN. The comparative experimental results
are described in Section IV, and, finally, Section V summa-
rizes our method and concludes the paper.

Il. STATE OF THE ART

Recently, some semantic segmentation methods have
been proposed to recognize rich semantic features using
pre-trained networks [22]-[25], but these methods have
low segmentation accuracy. Pohlen er al. [26] propose the
ResNet network architecture to obtain accurate segmen-
tation boundaries. Ref. [27] proposes the Border network
(BN) to distinguish different adjacent regions of semantic
labels with similar forms, which can determine the semantic
boundaries and guide the network learning. Dai et al. [28]
introduce the set of manually labeled image boundaries; and
in their method, the convolutional features of super-pixels
are extracted from the image domains and used to train
a classifier. Reference [29] introduces a GAN to improve
the boundary accuracy of segmentation. Krdhenbiihl and
Koltun [30] propose an effective fully-connected conditional
random field (CRF) to improve the segmentation and labeling
accuracy. The above methods mainly consider the seman-
tic relevance of the object segmentation boundaries at the
pixel level rather than focusing on the feature extraction of
shallow channels, including boundary textures. Meanwhile,
these methods are only used in specific environments or data
sets and require manually labeled data. The trained network
model is not suitable for similar or different environments.
Some studies [31], [32] have reported the use of game engines
to fuse image data for automatic driving. This approach
can decrease the amount of manual labor and computational
requirement.

However, synthetic images and tangible images have con-
siderable errors. Some researchers propose using a model
trained using synthetic data to transfer tangible images.
Hoffman et al. [33] introduce a domain adaptive semantic
segmentation method that solves the pixel prediction prob-
lem using the first unsupervised GAN method based on the
work of [34]. Zhang et al. [35] propose a learning method
that reduces field gap of the semantic segmentation in city
scenes. Huang er al. [36] propose a layering unsupervised
domain adaptive semantic segmentation method that uses a
GAN to adjust the activation distribution. Zou et al. [37]
propose a UDA framework based on an iterative self-training
process and a balanced self-training framework. The above
domain transferring networks outperform single domain net-
works when semantic segmentation is performed. However,
these networks are directly transferred to the deep layer of
the segmentation network. A shallow network cannot obtain
good transfer learning because it is far from the semantic
output of the deep layer. We propose transitive domain adap-
tive transfer learning based on a deep GAN. The proposed
method combines i) the multi-level GAN [38] together with
ii) Appearance Adaptation Networks [39] and iii) the Shared
Domain [40]. Different feature layers are applied to differ-
ent weight transfer learning processes in the double-layered
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upsampling of the segmentation network. The source domain
and target domain train the semantic segmentation using the
double-layered upsampling of the segmentation network. The
source domain, a set of the labeled data, is trained in a fully
supervised way, while the target domain, a set of the unla-
beled data, is trained in an unsupervised way. In the transfer
learning module, according to the GAN training, the data of
different spaces is mapped to a certain feature space using the
transitive domain adaptive method, and then the distribution
of the conditional probability in the feature space becomes
similar. The data in the source domain and target domain will
be integrated when they cannot be distinguished.

lll. PROPOSED METHOD

In this section, we first provide a method used in our com-
putationally efficient semantic segmentation model. Then,
we provide a detailed explanation of the method that fuses
double-layered upsampling and weakly supervised learn-
ing in order to reduce the dependence on labeled data and
improve the accuracy of the semantic segmentation. In order
to improve the generalization ability of the segmentation
model, this paper combines transfer learning with the pro-
posed GAN and weakly supervised learning based on deep
learning.

A. SEMATIC SEGMENTATION BASED ON
DOUBLE-LAYERED UPSAMPLING AND WEAKLY
SUPERVISED LEARNING

The detailed boundary information of a segmented image will
experience losses when using bilinear interpolation upsam-
pling because this method can result in an inaccurate recon-
struction of the nonlinear structure of an object boundary
of the segmented image. Therefore, we propose a double-
layered upsampling method based on the deep GAN network.
The deep GAN network refers to a deep generative adversar-
ial network. The deep GAN network uses two independent
sub-neural networks, which are called the “generator”” and
the “discriminator’’. During the training process, these two
sub-networks perform the minimum and maximum value
mechanisms. The generator outputs a sample of the target
data distribution with a random vector, and the discriminator
distinguishes the sample generated by the generator from
the target sample. The generator obfuscates the discriminator
through backward propagation, and thus the generator gen-
erates samples similar to the target sample. We propose a
double-layered upsampling method based on a dense upsam-
pling convolution structure [41] and the idea of saving the
indices of relative locations of the max weights computed
during convolution pooling in a SegNet network [42]. The
relative position of maximum weights is the position informa-
tion of the maximum value in the maximum pooling process,
that is, the relative position information of the brown squares
in figure 11. In the process of deep deconvolution upsam-
pling, the downsampled sparse feature map is compensated
by the segmentation network. The discriminator output from
the deep GAN is used as a supervisory signal that feeds
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back to the predictive results of the semantic segmentation
network. Our proposed upsampling method can replace the
bilinear interpolation upsampling method; i.e., we fuse the
deep deconvolution method with saving the indices of rela-
tive locations of the max weights computed during pooling.
Combined with the deep GAN, our upsampling method can
improve the extraction of low-resolution features, and com-
pensate for the loss of the image size. The network structure
is shown in Fig. 1.
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FIGURE 1. Deep deconvolution upsampling of a semantic segmentation
network.

In figure 1, the proposed double-layered upsampling
method replaces the bilinear interpolation upsampling
method by fusing the deep deconvolution method with saving
the indices of relative locations of the max weights computed
during pooling. The discriminator output from the deep GAN
is used as a supervisory signal that feeds back to the predictive
results of the semantic segmentation network.

Our semantic segmentation network model uses the
DeepLab v2 network without multi-scale fusion as the base-
line network. We use the ResNet-101 model pre-trained on
ImageNet. Atrous spatial pyramid pooling (ASPP) is used
for the final classification. Finally the double-layered upsam-
pling method is used to output a classification prediction with
the same size as the input image. The discriminator network
uses 5 full convolutional layers. The generator net contains
convolutional layers.

First of all, the original image is input, and the final output
of the semantic segmentation network is the initial segmen-
tation prediction map that maps with the original image.
The deep anti-neural network serves as a component of the
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discriminator, and the discriminator network is trained with
the real labeled image; then the semantic segmentation is
performed. The initial segmentation prediction map output
by the network is input to the discriminator. If the pixel-
level label in the segmentation prediction map matches the
pixel-level label in the real marked image in the discriminator,
then the discrimination is true, otherwise, the discrimination
is false, and finally the deep adversarial neural network will
output a discriminated probability map. The probability graph
is used as the supervising signal of the semantic segmentation
network to train again. After many iterations, it can achieve
the effect of deeply resisting the indistinguishability of the
neural network. According to the discriminator network pro-
posed by Yu et al. [27], the anti-loss function and the standard
cross-entropy loss function are combined through the seman-
tic segmentation network to improve the effect of semantic
segmentation.

The entire network optimizes the objective function.
It combines the traditional standard cross-entropy loss func-
tion with the confrontation loss function. This confrontation
mechanism motivates the semantic segmentation network to
generate prediction labels. Since the deep adversarial neural
network can evaluate the joint configuration of multiple label
variables, it can enforce various forms of higher-order consis-
tency. This kind of consistency cannot be performed by paired
terms or cross-entropy losses of per pixel are measured. The
adversarial training method enhances the continuity of spatial
labeling without increasing the complexity of the model used
in the test. Moreover, the adversarial model can flexibly
detect mismatches in a large range of high-order statistics
between the model prediction and the real image without
manual labeling. The entire training process is a classic
game idea, improving the network’s ability mutually, refining
the segmentation accuracy and enhancing the discriminating
ability.

The probability map in the network shows the regional
quality of the predicted labels output in the semantic segmen-
tation network, so that the semantic segmentation network
can automatically identify which regions are judged to be
true labels and which regions are judged to be the predicted
labels output by the segmentation network during the training
process. A loop iteration of network training is performed on
the predicted label regions that meant to be the output of the
segmentation network, and the result of the segmentation pre-
diction map is maximized, which is close to the real labeled
image.

The double-layered upsampling method uses the method
of saving the indices of relative locations of the max weights
computed during the SegNet network pooling process. Dur-
ing the upsampling process, each maximum weight position
will be saved after the maximum pooling in the entire seg-
mented network is restored. The position where the largest
weight is located and the weights of the other positions are 0,
that is, we get the feature map after depooling. In addition,
the input feature map is subjected to deep deconvolution
upsampling, and a deep deconvolution method is used to
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increase the number of channels. The depth deconvolution
network graph is shown in Fig. 2.
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FIGURE 2. Depth deconvolution network graph in double-layered
upsampling semantic segmentation network.

In figure 2, when the size of the input image is (H, W, 3),
the size of the feature map of the entire model before predic-
tion is (h, w, ¢), where ¢ is the number of feature channels,
H/d = h, W/d = w, d is the downsampling factor, and
the channel of the output feature map (h, w, c) is converted
to (h, w, d? x C). C is the number of semantic categories
of the segmented object. Then, the feature map is enlarged
to (H, W, C) through dimensional conversion, which obtains
the feature map after deep deconvolution. Finally, the fea-
ture map after de-pooling and the feature map after deep
de-convolution are superimposed. The feature map obtained
by deep de-convolution is used to fill the missing content
of the de-pooled feature map, and finally the label predic-
tion map is obtained by the segmentation network output.
The segmented and predicted image (H, W, C) is input to
a deep GAN, and finally the discriminant probability map
(H x W x 1) is output through network discrimination. The
probability map is used as the supervised signal to perform
self-learning by combining it with the supervisory signal
of the discriminator. Through network iterations, the out-
put of the segmentation network is continuously optimized
to obtain an accurate semantic labeled map. The yellow
box is the segmented and predicted image. The pink box
is the discriminant probability map output through network
discrimination.

The semantic segmentation network uses the DeepLabv2
network without multi-scale fusion as the baseline network,
uses the ResNet-101 pre-training model on ImageNet, sets
the stride of the last two convolutional layers to 1, and sets
the dilation settings of the 4th and 5th convolutional layers.
For 2 and 4, the final layer uses porous spatial pyramid pool-
ing (ASPP) for final classification, uses a two-level merge
upsampling method, and finally outputs a classification pre-
diction with the same size as the input image. The deep
adversarial neural network uses 5 full convolutional layers,
kernel_size is set to 4, stride is set to 2, the number of channels
is {64,128,256,512,1}, in addition to the input layer, BN layer
is added after the convolution of each layer. Each of the
first 4 convolutional layers is followed by a leaky Relu layer
to prevent gradient sparseness. Its parameter is 0.2, and the
last convolutional layer is followed by an upsampling layer.
The BN layer is not used in the output layer of the seman-
tic segmentation network and the input layer of the deep
anti-neural network. The BN layer added after the remaining
layers are convolved to prevent the semantic segmentation
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network from converging all segmentation prediction results
to one point.

In order to simplify the work of obtaining high-quality
data, the weakly supervised method is applied to semantic
segmentation, and the deep GAN network is used to achieve
the weakly supervised learning of image segmentation. Tradi-
tional image semantic segmentation networks require a large
number of manually labeled datasets for training, and each
pair of accurately labeled images takes about one hour to pro-
cess. In order to simplify the work of obtaining high-quality
data, the weakly supervised method is applied to semantic
segmentation, and the deep GAN is used to perform the
weakly supervised learning of the image segmentation [43].
The deep GAN using unsupervised training can be widely
used in the fields of unsupervised learning and weakly super-
vised learning. Compared to other models, the deep GAN can
produce clearer and more realistic samples. The structure of
the semantic segmentation network trained using the weakly
supervision method is shown in Fig. 3. For the weakly super-
vised learning, a few labeled dataset samples are used for net-
work training, which can reduce the demands on the number
of manually labeled samples in the preparation process of the
dataset and save considerable resources.

map

'
'
! .
'
DeepLab V2-+two-
level merged GAN  mem=e= Network model
upsampling

..................................................

Input image

FIGURE 3. Weakly supervised semantic segmentation algorithm structure.

The weakly supervised method [43] is used to train the
whole segmentation network, and the input of the given image
is the labeled and unlabeled datasets. The semantic segmen-
tation network combines the cross-entropy loss function Leg
and the deep GAN loss function L4, to generate the seg-
mentation prediction graph S(&) which is similar to the real
labeled image in a high-order form by stimulating the seman-
tic segmentation network. We use the same definitions of
Lagy, Lsemi and Lgeg as ref. [43].

The total loss function L, is defined as follows:

L, = seg + AMLady + A2 Lsemi (D

where Ly, represents the segmentation loss function, Lggy
represents the adversarial loss function, Lg.,; represents
the weakly supervised loss function, and Al, A2 are
two weights for minimizing the proposed multi-task loss
function.

The final goal is to minimize the segmentation loss
function in the segmentation network and maximize the prob-
ability that the label prediction graph is regarded as the

176484

real label graph in the deep GAN discriminator. It can be
expressed as

max min L, 2)
D G

Polynomial decay is used for network training to decrease
the learning rate in this paper. The learning rate will attenuate
to 0 when the maximum number of iterations is reached. The
formula is defined as follows:

Ir = base_lr o (1 — T/N)P°"e" 3)

where power = 0.9, Ir is the learning rate, base_Ir is the
initial learning rate, t is the current iteration number, and N
is the maximum iteration number.

To evaluate the segmentation accuracy of the proposed
method, we use the following evaluation metrics.

10U = —— “

where SR is the segmentation result, and GT is the Ground
Truth.

The proposed method adds a double-layered upsampling
method to the weakly supervised method [43] segmentation
network, which can obtain better segmentation results for
small objects. As shown in Fig. 3, we use the DeepLab v2 net-
work as the baseline network, and use the ResNet-101 trained
using ImageNet as the pre-trained model. The stride of the last
two convolution layers is 1, and the dilations of the fourth and
fifth convolution layers are 2 and 4, respectively. In the last
layer, atrous spatial pyramid pooling (ASPP) is used for the
final classification. The double-layered upsampling method
is used to output a classification prediction with the same size
as the input image. The deep GAN uses 5 full convolutional
layers, where the kernel size is 4, the stride is 2, and the
numbers of channels are {64,128,256,512,1}. A BN layer is
added to each convolution layer except the input layer. Each
layer of the first 4 convolutional layers is followed by a leaky
ReLU layer and its parameter is 0.2. The last convolutional
layer is the upsampling layer. The weakly supervised method
randomly iterates using the labeled dataset and the unlabeled
dataset. When randomly selecting labeled data and unlabeled
data, different random seeds are used for selection to ensure
the robustness of the overall network. In order to prevent
the model from being affected by the initial noise mask,
the segmentation network starts weakly supervised training
after 5000 labeled data set training sessions. Compared with
deeplab v2-adv, we can highlight that our method has a better
segmentation effect.

Table 1 is the evaluation results of our proposed method
compared with SmallFov-light [21] and DeepLab v2-adv [43]
using the supervised and weakly supervised processes with
25% labeled data after 20,000 iterations. The results show that
our method has much better segmentation accuracy than the
other methods.
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TABLE 1. MIOU evaluation of different algorithms after 20000 iterations.

Methods MIOU/%
Lue P! 72.00
Segmentation Network™! 74.90
Segmentation Network + Dense upsampling 76.80
Weakly-supervised Network!*! 72.10

B. TRANSFER LEARNING BASED ON THE DEEP GAN
NETWORK

The overall network structure is shown in Fig. 4. This struc-
ture mainly includes two semantic segmentation networks
based on source domain data, target domain data and a
multi-threaded transfer GAN. The semantic segmentation
network acts as a generator, and the transfer GAN acts as a
discriminator. The features of the shallow level in the seg-
mentation network cannot well adapt to the network because
they are far from the deep level of the output labels. In order
to solve this problem, according to the multi-layer strategy of
adversarial learning composed of different feature layers in a
segmentation model which was proposed in [39], adversarial
learning is added in the shallow layer and the final output
layer of the network. In order to make the output target predic-
tion closer to the source prediction, the discriminator network
is used to distinguish whether the input is an image from the
source domain or the target domain. Then, the adversarial loss
is computed based on the output of the target prediction and
back propagated to the segmentation network. After several
iterations, domain adaptation segmentation is achieved.

......................

Segmentation
networks

H
.\

@@Im\

image

Segmentation
networks

FIGURE 4. Semantic segmentation structure based on the multi-threaded
transfer GAN.

In Figure 4, the yellow box indicates the training of the
semantic segmentation on the source and target domain data
via the double-layered upsampling semantic segmentation
network. The red box indicates that the data of different
spatial distributions are mapped to a feature space through the
domain adaptation method, and the conditional probability
distribution in the feature space becomes increasingly closer
via adversarial training. The features learned by the network
are equally applicable to the source and target domain tasks
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rather than just a specific segmentation task, which makes the
learned features generalizable. Finally, the probability of the
segmentation network prediction based on the target domain
and the source domain approaches is maximized, and this
completes the transfer task from the source model to the target
domain.

In this paper, the alignment of the inherent pixel-level and
feature space structures in the two domains is included in
the GAN of each thread to improve the domain distribution
alignment problem between the synthesized data and the real
data [40].

It is supposed that each picture is divided into m x m areas,
wherem=1,2,3, ...... N; I, is the index of the sub-domain
in each image; I';, is the activation function of domain /,,
where the image in the source domain is located; Fﬁn is the
activation function of domain /,, where the image in the
target domain is located. Then, the loss function of the spatial
adaptation is

Sa_mmZLda (I3, 1)) 5)

where Ly, is the loss function of the domain adaptation, which
is used to measure the difference in the feature domains of the
two domains. Ly, is the loss function of the spatial adaptation.
The training loss function of the domain classifier is defined
as:

1
Lo(¢",§") = min £ Y LE©),y) (6)

xeé&

where y is the tag data, £ is the sum of the training data,
and L (.) is the cross-entropy loss function. The equation is
defined as:

LE©. ==Y Gi=kelogf €, )

yi = k represents the indicator function and f (§) is the
prediction classifier.

In the segmentation network, the shallow layer of the
network generally extracts the spatial feature information
of the image, and the deep layer of the network generally
represents the complex semantic information. By combining
image &° with the domain adaptation image &', the shallow
level features of the data image in the target domain are
separated in the whole segmentation network, which mainly
encodes the shallow texture features of data images. The deep
level features of the data image of the source domain are
separated in the whole segmentation network, which mainly
encodes the semantic features of the data image. Combin-
ing the shallow level texture features in the target domain
with the deep level semantic features in the source domain
produces the final domain adaptation image. It is assumed
that each convolutional layer / in a deep convolutional neu-
ral network has 0; corresponding to the mapping response
(i.e., 6; channels), and the size of each channel is H; x W;.
Then, the characteristic response of each convolutional layer
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I can be expressed as ©/ € RO>HWi (j = 0, 1), where O rep-
resents the target domain and 1 represents the source domain.
The responses of different convolutional layers characterize
the image content at different semantic levels. The shallow
layer responds to the underlying features, and the deep layer
responds to higher semantic features. In order to control
the semantic content in the source image &° better, different
weights W are assigned to different layers to reflect the effect
of each layer. The content in image £° is preserved in the
domain adaptation image £° by minimizing the Euclidean
distance of the function. The response objective function of
the content is expressed as

Disy = min 3 W DL (040,000)  @®)
1

The total objective function of the transitive transfer GAN
is

L (&%, €") = Lea +Lp(§°,§") + Dis.y ®

In other words,

M
) ' 1
L (EA, g’) = min E Laa(T3,, 7)) + ming E L&), y)

m=1 xeé

+ min 32 WL, (040,0%) (o)
1

The segmentation loss function is the cross-entropy loss
function in the segmentation network, and Ly, represents the
cross-entropy loss function.

Lug == Y Y T log [t ®] 11y
hw ceC

The adversarial loss function is the loss function in the dis-
criminator network, and L,g, is the adversarial loss function.

Latv ==Y log {D1SCt)1 "V} (12)
h,w

The total loss function is
L, = seg + A1Lady (13)
The standard function for network optimization is
inL,L (£, &' 14
max min L, (&', &) (14)

By maximizing the discrimination of the GAN and min-
imizing the function of the segmentation network, finally,
the transfer from the source domain to the target domain
is achieved, thus improving the generalization ability of the
network.

IV. EXPERIMENTAL RESULTS
In this section, we perform a set of experiments to evaluate
our proposed method and compare it with other state-of-the-
art methods [38].

In order to reduce the detail information loss caused by the
bilinear interpolation in the semantic segmentation networks
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FIGURE 5. The relationship between the loss and the steps of iterations
based on different network models.

and improve the accuracy of the segmentation boundaries,
we propose a double-layered upsampling method. Different
from the traditional one-time return to full resolution pre-
diction image segmentation method, we use a deep decon-
volution to gain a series of amplification filters, which are
the convolution kernel of the segmentation network when
amplifying low-resolution features, and enlarge the reduced
feature map to the same resolution as the input image. Then,
we combine this with the maximum pooling after saving the
maximum weight of each filter location. The deconvolution
depth is used as the characteristic of the figure in the pooling
to get the characteristics of the figure which can be used to fill
in the missing content. Finally, the result will be divided by
the boundary of the network output informative label forecast
figure. The experimental structure is shown in Fig.6. It can
be seen that our method has better results in the boundary
segmentation of the bottle, the girl’s leather shoes, and the
regressing animal, which indicates that the double-layered
upsampling for smaller objects is more ideal than the bilinear
interpolation upsampling segmentation network.

The experimental results after 20,000 iterations under full
supervision training are shown in figure 10. In Figure 10,
the first column is the original image, the second column
is the Ground Truth, the third column is the baseline net-
work, the fourth column is the DeepLab v2-adv network [43],
and the fifth column is the proposed method. In Figure 10,
the third column is the segmentation result without using the
GAN, and the fourth and fifth columns are the segmentation
results using the GAN. Figure 10 shows that using the GAN
can improve the accuracy of segmentation boundaries. Espe-
cially, the proposed method performs better on the boundary
of the bottle, the boundary of the little girl’s leather shoes, and
the boundary of the animal leg.

Table 4 compares the evaluation results of the pro-
posed method with the other segmentation methods after
20,000 iterations under full supervision training. Through
the comparison of the MIOU, the accuracy of the proposed
method improves from 74.9% to 75.7% compared with the
DeepLab v2-adv [43] method.

Table 5 is the evaluation value of the segmentation pre-
diction of the dataset category after the baseline network.
DeepLab v2-adv [43] method and the method in this paper
are iteratively trained 20,000 times under full supervision.
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FIGURE 6. The results of the segmentation prediction using a fully-supervised baseline network, a double-layered upsampling network and the proposed
algorithm with 50% of the samples.
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FIGURE 7. Comparison of the segmentation accuracy of the fully supervised and weakly supervised training
segmentation networks in 21 categories.

It can be seen from the data in the table 6 that the In addition, we choose the weak supervised training net-
proposed method data is significantly different from other work with the 50% labeled data set to compare it with the
algorithms. double-layered upsampling network and the baseline network
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FIGURE 8. Comparison of the semantic segmentations of four network models.
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FIGURE 9. Results of the segmentation accuracy of the baseline
segmentation network, the transfer GAN based on the shallow channel
and deep channel and the multi-thread segmentation network using the
proposed method, in which 1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, and 20 represent road, sidewalk, building, wall, fence, pole,
light, sign, vegetation, terrain, sky, person, rider, car, truck, bus, train,
motorcycle, bicycle, and MIOU, respectively.

with full supervision. The results show that when using weak
supervision, the thinning of the segmentation image bound-
aries is not as accurate as that when using full supervision,
but the accuracy of the intra-class segmentation prediction is
higher than that of the baselines when using full supervision.

We use two challenging available datasets, “GTAS” [44],
and “Cityscapes” [45], for double-layered upsampling
semantic segmentation to quantitatively evaluate the pro-
posed method in section B.

The cityscapes dataset contains 5000 images (2975 train-
ing images, 1525 test images and 500 validation images)
with a resolution of 2048 x 1024. The GTAS5 dataset con-
sists of 24966 images with a resolution of 1914 x 1052.
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During testing, we conduct the evaluation on the Cityscapes
validation set with 500 images that contain 19 categories.

The Stochastic Gradient Descent (SGD) with momentum
is used for the double-layered upsampling semantic segmen-
tation network of the baseline network in the experiment.
The initial learning rate of the network is set to 2.5 x 1074,
and polynomial attenuation of n = 0.9 is used to reduce
the learning rate. When the maximum number of iterations
is reached, the learning rate is attenuated to 0. The equation
is shown as equation (3).

The transfer GAN based on the transitive domain adapta-
tion proposed in this paper is trained. The transfer GAN based
on multi-thread feature extraction and deep level and shallow
level feature extraction are respectively trained, and the max-
imum number of iterations for each network is 120,000. The
relationship between the loss and the number of iterations in
the training process of the network model which is obtained
by the transfer in the deep channel and shallow channel is
shown in Fig. 5. Figs. 5 a) and b) show that the loss of
the deep channel and shallow channel transfer network is
basically stabilized at 1.0 or less in the training process of the
transfer GAN based on multi-thread feature extraction when
the number of iterations is about 60000. Furthermore, when
the number of iterations of the network based on the deep
channel is 80,000, the loss is basically stabilized below 0.5.
The results show that the deep channel and shallow channel
transfer can achieve good results, and the network model can
converge.

The shallow layer of the network generally extracts the
spatial feature information of the image, and the deep layer
of the network generally displays abstract semantic informa-
tion. The loss value can intuitively demonstrate the accuracy
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FIGURE 10. Comparison of the segmentation accuracy of the baseline network, the DeepLab v2-adv [43] method and the
proposed method after 20,000 iterations under full supervision training.

change of the model during the training process. The lower
the loss value is, the higher the model accuracy is and the
better the performance is. We use cross entropy loss function
in this paper. The T-SNE is a non-linear dimensionality reduc-
tion machine learning algorithm. It was proposed in 2008 and
itis very suitable for the situation when decreasing the dimen-
sionality from high dimensionality to 2 or 3 dimensions. It is
not applicable to this article. The effect of the PAC is worse
than T-SNE, so we do not use these two methods.

The trained segmentation network based on the transi-
tive domain adaptation transfer adversarial method which
is proposed in this paper is performed. The final network
model is evaluated by using 500 verification images from
the Cityscapes dataset, and the output of the semantic seg-
mentation images is shown in Fig. 8. In Fig. 8, the first
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column is the image in the target domain, the second column
is the Ground Truth, the third column is the image using
the baseline segmentation network, the fourth column is the
transfer GAN segmentation based on the shallow channel,
the fifth column is the transfer GAN segmentation based
on the deep channel, and the sixth column is the transfer
GAN segmentation based on multi-thread feature extraction.
The baseline segmentation network only trains the network
model using the source domain dataset. Through the com-
parison of the semantic segmentations of the four network
models in Fig. 8, the results show that the segmentation effect
based on the transitive domain adaptation transfer adversarial
method which is proposed in this paper is more accurate,
and the boundary information of the object is also more
accurate. Particularly, the semantic segmentation of larger
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TABLE 2. Different proportional labeled datasets using the proposed method in this paper.

12.5% labeled samples 25% labeled samples 50% labeled samples
categories  DeepLab v2-advt*’! our DeepLab v2-advi*’) our DeepLab v2-adv!*! ours
background 0.93 0.93 0.93 0.93 0.93 0.94
plane 0.83 0.84 0.87 0.86 0.88 0.88
bicycle 0.42 0.39 0.40 0.41 0.40 0.41
bird 0.82 0.84 0.81 0.87 0.84 0.87
ship 0.62 0.61 0.63 0.67 0.64 0.67
bottle 0.75 0.74 0.71 0.75 0.78 0.78
Bus 0.89 0.88 0.90 0.90 0.90 0.91
car 0.80 0.80 0.84 0.84 0.85 0.83
cat 0.84 0.86 0.86 0.87 0.89 0.88
chair 0.31 0.33 0.33 0.32 0.35 0.34
cow 0.65 0.73 0.75 0.76 0.84 0.77
table 0.46 0.48 0.49 0.50 0.46 0.55
dog 0.73 0.79 0.78 0.80 0.83 0.81
horse 0.72 0.66 0.72 0.74 0.79 0.77
motorcycle 0.75 0.71 0.79 0.81 0.82 0.81
human 0.82 0.80 0.83 0.83 0.83 0.84
potted 0.46 0.50 0.59 0.53 0.57 0.58
sheep 0.76 0.75 0.82 0.79 0.82 0.80
sofa 0.40 0.44 0.45 0.46 0.42 0.50
train 0.79 0.81 0.80 0.81 0.82 0.83
display 0.73 0.70 0.74 0.73 0.72 0.74
MIOU 0.68 0.69 0.71 0.72 0.73 0.74

volume categories in the target domain can be accurately
obtained by using the pixel-level features of the same spa-
tial domain for domain alignment. Furthermore, the smaller
volume categories are easily segmented into categories that
are close to the larger volumes by the transfer model.

The comparative evaluations of the proposed method and
the method in ref. [38] are shown in Table 3 and Fig. 9. In the
multi-thread transfer GAN, the basic texture features of the
data are extracted by the shallow convolution layer, and the
complex semantic features of the data are extracted by the
deep level convolutional layer. Then, using the feature struc-
ture alignment method for the spatial domain, the features
of the shallow layer in the target domain are combined with
the semantic features of the deep layer in the source domain,
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and finally transitive domain adaptation transfer learning
is achieved. In the transfer learning of the deep channel,
a domain adaptation method combining the semantic feature
of the deep level in a source domain with the underlying
feature of the shallow level in the target domain is compared
with the single-level [38] based on the DeepLab v2 baseline
network. Table 3 shows that the segmentation accuracy of
the transfer learning method proposed in this paper is more
accurate. We compare the two methods in the shallow chan-
nel which add spatial feature domain distribution alignment
in a discriminator using a baseline network and a domain
adaptation method in the pixel-level output space based on
the DeepLab v2 baseline network [38]. Table 3 demonstrates
that the adaptation effect of the proposed method in this
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TABLE 3. Results of the segmentation accuracy using the proposed method and ref. [38].

=1 2
= on 2 &
S| 5 3 £ | s g % g s | 2
=] [ = = 131 K} = = 3 s 2 5 " £ = > s}
S| 2| 2| 8| &8 || 2| 2| ¢ 5| & || 2| 8| B s E|E 2| =
multi(our) 88.23 36.70 80.69 25.74 23.02 26.24 32.90 18.74 82.56 29.92 76.69 58.45 29.61 77.89 30.57 29.43 7.23 25.74 36.86 43.01
multi[38] 86.50 36.00 79.90 23.40 23.30 23.90 35.20 14.80 83.40 33.30 75.60 58.50 27.60 73.70 32.50 35.40 3.90 30.10 28.10 42.37
single(our) 86.94 17.85 80.90 26.81 24.05 27.72 33.01 20.42 83.38 32.29 76.10 55.97 27.95 78.14 21.38 35.51 7.61 30.94 38.72 42.41
single[38] 86.50 25.90 79.80 22.10 20.00 23.60 33.10 21.80 81.80 25.90 75.90 57.30 26.20 76.30 29.80 32.10 7.20 29.50 32.50 41.43
feature(our) 84.34 242 78.04 19.57 19.73 23.89 33.71 15.85 82.65 35.73 78.86 57.24 28.18 76.87 34.96 28.48 2.88 27.07 39.85 41.69
feature[38] 83.70 27.60 75.50 20.30 19.90 27.40 28.30 27.40 79.00 28.40 70.10 55.10 20.20 72.90 22.50 35.70 8.30 20.60 23.00 39.25
baseline(our) 83.46 17.88 76.26 15.93 20.64 2223 31.99 18.93 75.01 15.77 66.38 56.45 27.55 78.60 36.00 23.88 0.00 25.30 38.53 38.46
baseline[38] 75.80 16.80 77.20 12.50 21.00 25.50 30.10 20.10 81.30 24.60 70.30 53.80 26.40 49.90 17.20 25.90 6.50 25.30 36.00 36.64
TABLE 4. MIOU evaluation of different algorithms after 20000 iterations.
method MIOU/%
SmallFov-light!*!! 72.00
DeepLab v2-adv baseline network*" 73.60
DeepLab v2-adv(* 74.90
Proposed method 75.70
The datasets used for network training in the table 3 are
GTAS dataset, Cityscapes dataset and SYNTHIA dataset.
718 The Cityscapes dataset mainly uses data from the leftImg8bit
— 96 folder and the gtFine folder. Each folder of the leftimg8bit
folder and the gtFine folder contains three subfolders, namely

FIGURE 11. Max-pooling process.

paper is better than that of the discriminator of the baseline
network [38].

Table 1 and table 2 adopting Pascal VOC2012 dataset [46],
mainly use 21 categories of image segmentation data of
Pascal VOC2012 dataset. The Pascal VOC2012 dataset is
used to select labeled datasets of different proportions,
and the weakly supervised learning segmentation network
proposed in this paper is compared to ensure the consistency
of the experimental dataset. This experiment evaluates the
output of the network model on the standard verification set
of 1449 images. In the training process, a random crop size
of 321 x 321 is used.

VOLUME 8, 2020

train, val, and test, with a total of 5000 labeled images.
Including 2975 training images, 500 verification images and
1525 test images, each image has a resolution of 2048 x
1024, which contains 50 city scenes with different scenes,
different backgrounds, and different seasons, a total of 19 cat-
egories. The GTAS dataset is a synthetic online game dataset,
which contains 24,966 images from the game Grand Theft
Auto and the label map of each image. The resolution of
each image is 1914 x 1052, and there are 19 categories in
total. The SYNTHIA dataset is similar to the GTAS dataset.
In this paper, the SYNTHIA-RAND-CITYSCAPES dataset
for urban landscapes is selected, which contains 9400 labeled
data. The resolution of each image is 1024 x 760, and there
are 13 categories in total. First, the GTAS dataset is used to
train the fully supervised segmentation model of the unsu-
pervised domain adaptive segmentation network proposed in
this paper, and then combine it with the Cityscapes dataset
for unsupervised semantic segmentation evaluation and
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TABLE 5. Segmentation accuracy of baseline network, DeepLab v2-adv [43] method and proposed method after 20,000 iterations.

categories baseline network DeepLab v2-adv* proposed method
background 0.93 0.94 0.94
plane 0.87 0.89 0.89
bicycle 0.41 0.41 0.41
bird 0.87 0.87 0.87
ship 0.67 0.67 0.69
bottle 0.80 0.81 0.81
bus 0.91 0.91 0.92
car 0.84 0.85 0.87
cat 0.88 0.88 0.89
chair 0.34 0.36 0.36
cow 0.79 0.83 0.83
table 0.51 0.53 0.56
dog 0.79 0.82 0.82
horse 0.77 0.80 0.81
motorcycle 0.83 0.83 0.83
human 0.85 0.85 0.85
potted 0.55 0.59 0.59
sheep 0.82 0.83 0.83
sofa 0.49 0.49 0.52
train 0.81 0.83 0.85
display 0.74 0.74 0.75
MIOU 0.74 0.75 0.76

TABLE 6. Comparison of proposed method in table 5 with other algorithms.

Algorithms. Baseline network

DeepLab v2-advl*”

Probability 4.94*10°

1.89%107

verification. In this paper, 500 verification maps and 19 cat-
egories of semantic labels are used to verify and evaluate
the semantic segmentation method of direct push domain
adaptation in the experiment.

Table 4 and table 5 use the Pascal VOC2012 dataset.
In this paper, we mainly use the image segmentation data
of the PascalVOC2012 dataset, which contains 20 fore-
ground object classes and 1 background class. The Pas-
calVOC2012 dataset mainly includes three types of tasks:
classification, detection and segmentation. The main research
content of this paper is semantic segmentation, so the selected
dataset is Pascal VOC2012 segmentation task dataset. The
Pascal VOC2012 segmentation task dataset is used to test
the effect of fully supervised segmentation on the two-level
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merged upsampling segmentation network proposed in this
chapter. The segmentation task dataset contains 1464 training
sets, 1449 verification sets and 1456 test sets, and pixel-
level labeled images are used for training, verification and
testing. In this paper, the network model is evaluated on
the standard verification set of 1449 images. In the training
process, the size of 321 x 321 was randomly scaled and
cropped.

V. CONCLUSION

In this paper, we develop a segmentation structure and share
many similarities between the source and target domains.
Our method combines transitive domain adaptation, trans-
fer learning and a deep GAN in a novel way. This method
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improves the generalization ability of the semantic segmen-
tation and reduces the number of manually labeled samples in
an unsupervised way. We construct a multi-level GAN to train
the shallow layer and deep layer of the segmentation network.
To enhance the adaptive learning of the model, the feature
of the shallow layer in the target domain is combined with
the semantic feature of the deep layer in the source domain
and the spatial structure of the pixel-level features in both
domains is aligned by every thread of the GAN. The experi-
mental results demonstrate that the proposed method is more
accurate compared to the state-of-the-art algorithms.
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