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ABSTRACT The Internet of Things (IoT) has been envisioned as an enabler of the digital transformation
that can enhance different features of people’s daily lives, such as healthcare, home automation, and smart
transportation. The vast amount of data generated by a massive number of devices in an IoT system could
lead to a severe performance problem. Edge cloud computing and network function virtualization (NFV)
technologies are potential approaches to improve the efficiency of resource use and the flexibility of
responsive services in an IoT system. In this paper, we consider the joint optimization problem of gateway
placement and multihop routing in the IoT layer, the problem of service placement in the edge and cloud
layers of an NFV-enabled IoT system in edge cloud computing (NIoT). We propose three optimization
models (i.e., GMO, SP1O, SP2O) that allow an IoT service provider to find the optimal deployment of
gateways, the optimal resource allocation for service functions, and the optimal routing according to a cost
function with a performance constraint in a NIoT system. We then develop three approximation algorithms
(i.e., GMA, SP1A, SP2A) for tackling the problems in a large-scale NIoT system. The evaluation results
under a set of scenarios with various topologies and parameters show that the approximation algorithms
can obtain results close to the optimal solution with a significant reduction in computation time. We also
derive new insights into the strategy for an IoT provider to optimize its objectives. Specifically, the results
suggest that an IoT provider should select an appropriate service placement strategy with regard to a
charging agreement with an NFV infrastructure provider, and only deploy service functions with a strict
delay requirement on the edge of networks for optimizing its cost.

INDEX TERMS NIoT, resource management, optimization, NFV-enabled IoT systems, edge cloud
computing.

I. INTRODUCTION
The Internet of Things (IoT) as the interconnection of a set of
things (e.g., humans, actuators, sensors) over the Internet has
been envisioned as an enabler of the digital transformation
that can enhance different features of people’s daily lives such
as healthcare, home automation, and smart transportation. For
example, an IoT based smart transportation system, which
uses data collected from numerous sensors and processed by
several service functions deployed in the cloud, can resolve
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many problems such as traffic congestion, traffic accident
prediction, and the scarcity of car parking facilities. With an
estimated number of 41.6 billion devices interconnected by
2025, the enormous amount of data created by those devices
needs to be transmitted, stored, and processed in a specific
time requirement for providing responsive applications [1].
Hence, the design of an IoT system with the efficiency of
resource use and the flexibility of responsive services is
strongly desired.

Edge cloud computing and network function virtualiza-
tion (NFV) technologies are potential approaches to improve
resource use efficiency and highly flexible services in an
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IoT system by moving computing resources to the edge of
networks close to IoT nodes [2]–[4]. Further, the adoption
of NFV can provide a high degree of dynamic elasticity of
IoT services due to the high versatility in the location and
position of a particular service function composing an IoT
service. This paper aims to develop optimization models and
algorithms to provide efficient usage of resources and energy
for an NFV-enabled IoT system in edge cloud computing
(NIoT).

More specifically, we consider a NIoT system composed of
three layers: the IoT layer, the edge layer, and the cloud layer.
Data generated by sensors at the IoT layer is routed through
an IoT gateway to the edge and cloud layers for being pro-
cessed by service functions. We take into account the support
of multihop routing at the IoT layer for efficient data commu-
nication. In such aNIoT system, the challenging questions are
the following:What is the optimal location of gateway nodes?
What is a routing solution with a performance guarantee in a
NIoT system with the support of multihop communication?
What is the optimal location of service functions at the edge
and cloud layers to minimize the computing and energy cost?
We aim at addressing those questions as an essential part of
designing a high-performance, flexible, and responsive NIoT
system.

A detailed discussion of the literature on the use of NFV for
IoT in edge cloud computing has been provided in Section II.
As discussed in Section II, much of the existing work has
investigated the integration of IoT and edge cloud computing
[2], [4]–[10]. Some works have considered the performance
of an IoT system based on NFV and edge cloud computing
[3], [11]. However, none of these works have addressed the
optimization problem of resource management, taking into
account multihop routing and service functions chaining for
the energy efficiency, efficient resource use, and high flexi-
bility of a NIoT system.

The main contributions of the paper are as follows:
• We introduce two optimization problems of resource
management for NFV-enabled IoT systems in edge
cloud computing: the joint optimization problem of gate-
way placement and multihop routing at the IoT layer,
the problem of service placement at the edge and cloud
layers. Our proposed optimization models (i.e., GMO,
SP1O, SP2O) allow us to determine the optimal loca-
tion of gateways, optimal routing, and optimal service
placement according to a cost function with a perfor-
mance guarantee represented by the maximum number
of relays.

• We propose approximation algorithms for tackling the
problems in a large-scale system. The approximation
solutions for the gateway placement, routing, and ser-
vice placement are very close to the optimal solutions.

• The evaluation results present some useful insights
into the optimization of computing and energy costs
related to IoT providers’ deployment strategy. Specifi-
cally, a charging agreement with an NFV infrastructure
provider has a significant impact on the IoT provider’s

optimization objective. An IoT provider should only
deploy service functions with a strict delay requirement
on the edge of networks for minimizing its cost.

The rest of this paper is organized as follows. Section II
presents an overview of related works. In Section III,
we describe the evolution of IoT systems in resource man-
agement from a physically isolated system to an NFV-
enabled IoT system in edge cloud computing. In Section IV,
we present the details of an IoT system based on NFV in
edge cloud computing and define the optimization problems
of gateway placement, routing, and service placement in the
system. In Section V and VI, we propose three mixed-integer
linear programming (MILP) models to obtain the optimal
solutions for the problems previously described. Section VII
presents our proposed approximation algorithms for address-
ing the problems in a large-scale NIoT system. Section VIII
shows the evaluation results for the optimization models and
approximation algorithms. Finally, we conclude the paper in
Section IX.

II. RELATED WORK
Massive data generated by multiple sensors need more pro-
cessing in remote server applications for a wide variety of
intelligent functions. An IoT system can gain the practically
infinite resources from the cloud to compensate its small
storage and limited processing capability when IoT functions
are implemented on the cloud. Resource management for
such a Cloud-IoT system has been studied extensively. For
example, Mitton et al. propose an infrastructure design of
a Cloud-IoT system for smart cities [12]. He et al. present
a cloud platform of IoT-based vehicular data for intelligent
parking and a vehicular data mining service [13]. In [14],
Botta et al. provide a survey of researches on the integration
of Cloud computing and IoT.While these proposals produce a
performance advantage in completion times and energy costs,
they cannot obtain the minimum energy consumption and
responsive time.

When we explore new IoT applications with big data and
real-time requirements, the virtues of proximity becomemore
critical. The edge computing paradigm provides a promising
solution to enhancing service quality and energy consumption
by offloading computation tasks to multiple edge nodes close
to consumers. Several recent studies have been dedicated to
resource management problems in edge cloud computing for
IoT by investigating various critical problems. For instance,
Lan et al. propose an IoT access framework focused on edge
computing that allows the exposure of massive devices and
resource capacity as a single unified interface [2]. Xu et al.
propose a computation oï"oading method for dynamic task
scheduling in an IoT system based on cloud edge comput-
ing to improve the completion time and save the energy
consumption for mobile devices [5]. Kherraf et al. study
optimization models and algorithms for resource allocation
and workload assignment in IoT networks concentrated on
mobile edge computing (MEC) [6]. Mehrabi et al. show that
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device-to-device (D2D) communication can be exploited in
MEC for computation offloading and content caching [15].
However, it requires an appropriate amount of resources
available at end nodes. In another direction, some authors
use machine learning techniques to improve throughput and
reduce the amount of transmitted data in an IoT system based
on edge cloud computing [7], [8].

Recently, Zhao et al. propose an approximation algorithm
for the placement problem of IoT services, which concerns
the decision of where to place multiple IoT functions in edge
cloud computing according to their requirements of service
quality [9]. In [10], the authors investigate an optimiza-
tion model for addressing the service placement problem.
However, as the model is nonlinear, it is time-consuming
to find the optimal solution. These studies propose various
approaches for addressing different resource management
problems in an IoT system based on edge cloud computing.
While edge cloud computing enables responsive functions in
an IoT system by the virtues of proximity, it is not able to
provide a true service overlay, which can be supported by
NFV due to the capacity of chaining service functions.

NFV is a network architecture paradigm in which a
communication service can be created by chaining vari-
ous blocks of network functions (e.g., middle-box func-
tions) scattered over numerous data centers. Researchers
have recently considered many problems in NFV, including
resource allocation, service function chaining (SFC), and
routing optimization [16]–[20]. Within the research litera-
ture, various topics have also been explored, highlighting
how future IoT networks should use NFV. For example,
Wang et al. suggest NFV with multiflow transmissions in
an IoT environment to establish a network slice [11]. The
same goals refer to Mouradian et al. [3]. The aim, however,
is to design the distributed IoT gateway for on-the-fly disaster
management with NFV and SDN technologies. Differently,
Fu et al. build an NFV controlled IoT platform, which
separates large VNFs into simple VNF components and uses
machine learning for robust SFC integration [21].

However, no existing research has focused on the optimiza-
tion problem of resource management for NFV-enabled IoT
systems in edge cloud computing, which takes into account
the feature of service functions chaining for resource use
efficiency and flexibility of responsive services thanks to
virtualization techniques in NFV and edge cloud computing.
This paper is an extended version of our work presented at the
6th NAFOSTED Conference on Information and Computer
Science (NICS 2019) [4]. In [4], we consider the resource
management at the IoT layer for delivering data from sensors
to IoT gateways. In this work, we provide novel results of
optimization models and algorithms for resource manage-
ment in a NIoT system, taking into consideration optimal
resource allocation at both the edge and the cloud layers,
and the service function chaining for optimizing computing
cost and energy cost under various performance and resource
constraints.

FIGURE 1. Evolution of IoT systems from a physically isolated system to a
cloud-IoT system.

III. EVOLUTION OF IoT SYSTEMS IN RESOURCE
MANAGEMENT
IoT is generally characterized by real-world small things,
widely distributed, with limited storage and processing
capacity. Due to the availability of virtually unlimited storage
and processing capabilities at low cost in the cloud, many IoT
service providers widely adopted a cloud computing model
for delivering IoT services over the Internet. In this section,
we start by discussing resource management in the cloud for
IoT systems, including advantages, architectures, and issues.
We then analyze the characteristics of NFV, which support
edge cloud computing in IoT systems.

A. THE DEVELOPMENT OF IoT SYSTEMS FROM
PHYSICALLY ISOLATED SYSTEMS TO CLOUD
COMPUTING
IoT services have been offered in single domains, such
as car parking systems, smart ignition systems, and smart
home [22]. Domain-specific or project-specific specifications
define the implementation of all components in these sys-
tems, from sensors and actuators to smart service modules.
While this service delivery model based on single domains
has guided the development of providing IoT services over
the past several years, it leads to many geographically sep-
arated vertical structures in which hardware, networks, and
application logics are tied directly. Cloud can offer an effi-
cient resource management system for IoT infrastructure as
virtualized cloud resources can be rented on-demand and
delivered as general utilities.
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The cloud infrastructure systems are usually available for
users in one of three service models, including Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Soft-
ware as a Service (SaaS). In particular, IaaS offers comput-
ing resources as a service. PaaS contains operating systems
and application systems as well as other elements of the
system (e.g., database and file system). SaaS means that
the provider offers the software on the common platforms.
IoT service providers may implement a domain-independent
PaaS framework that provides essential cloud infrastructure
for IoT services. In such a PaaS framework, an IoT service
in various application domains can be allocated without a
constraint on specific application logics (Fig. 1).

B. NFV SUPPORT FOR EDGE CLOUD COMPUTING
IN IoT SYSTEMS
Whenwe explore new IoT applications with big data and real-
time requirements, the virtues of proximity become critical.
Edge computing, where resources are placed at the network
edge close to service consumers, has attracted much attention
in recent years. Edge cloud computing offers highly respon-
sive, scalable, and reliable services for IoT. Specifically,
the physical proximity of IoT services to service consumers
first allows the achievement of reduced end-to-end delay and
low bandwidth in cloud-based applications. It is valuable
for high responsive services such as smart transportation,
healthcare monitoring, and quality control in factory automa-
tion that offload computation to the edge. Second, when the
raw data is analyzed at the edge, the extracted information
required to be transmitted to the cloud is significantly lower.
Third, a backup service at the edge will adequately cover a
failure if a cloud service becomes inaccessible due to network
failure or server collapse.

The use of edge cloud computing with NFV is a potential
approach to flexible, efficient, and responsive IoT services.
While edge computing allows the achievement of highly
responsive services, NFV supports a high degree of dynamic
elasticity of IoT services due to the high versatility in the
location and position of a particular service function compos-
ing the IoT service. By the support of SFC in NFV, we can
create a new service and update an existing service at rapid
rates. Those services can be allocated resources on the fly in
an automated fashion. In addition to the use of establishing
a service path from the service chain, an essential feature of
SFC is that it gives the provider a flexible approach for adding
missing functionality to the highly integrated solution set.

This work enforces the added values of NFV technology
in edge cloud computing for highly responsive IoT services,
and scalability and flexibility of service composition. In par-
ticular, the Network Functions Virtualization Infrastructure
as a Service (NFVIaaS) can support generic IaaS computing
loads, including cloud-based applications (IoT applications)
and network functions. It also allows us to establish connec-
tivity dynamically (e.g., NaaS) among virtual functions for
creating a new SFC. The services provided by the NFVI-
aaS should be available across providers for cost-efficiency.

FIGURE 2. End-end IoT services in an NFV-enabled IoT system across
providers.

FIGURE 3. An edge cloud computing model in NFV-enabled IoT systems.

Figure 2 shows an example of end-end IoT services in an
NFV-enabled IoT system across providers. In the figure,
Provider 2 runs IoT functions on the NFVI of Provider 1 by a
contractual service agreement between them. Provider 2 can
combine its instances running on its own NFV infrastructure
and its instances running on Provider 1’s NFV Infrastructure
into an SFC to create an end-to-end service.

Our work considers the problem of resource management
in an edge cloud computing model in NFV-enabled IoT sys-
tems composed of three layers: the cloud layer, the edge
layer, and the IoT layer (Fig. 3). We aim to design models
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and algorithms for coordinating the resources and networks
needed to set up cloud-based services and applications, which
can be located at the edge and cloud layers. The optimization
models and algorithms can be deployed as a component of
the NFV Orchestrator, a functional block of NFV MANO
developed by ETSI for the management and orchestration of
all virtual resources.

IV. SYSTEM DESCRIPTION
In this section, we formally describe a NIoT system and state
the research problem. In aNIoT system, edge nodes and cloud
nodes are NFVI nodes deployed at the edge and the cloud
layers, respectively (Fig. 3). IoT nodes are nodes attached
to the IoT layer. We classify IoT nodes into two types:
end nodes and IoT gateways. End nodes are devices with
capacity limitations such as sensors and actuators typically
fitted with simple functions, i.e., collecting and delivering
data to their gateways. IoT gateways, called gateways for
short, are responsible for gathering data from end nodes
and maintaining a stable link to several service functions
deployed in the edge and cloud layers.

We represent a NIoT system by a directed graph G(V ,E).
V = VS ∪ VK ∪ VQ is a set of nodes in the NIoT system,
where VS is a set of IoT devices, VK is a set of edge nodes,
and VQ is a set of cloud nodes. E = {eij} (i, j ∈ V ) is a
set of links in the NIoT system. Network congestion rarely
happens at the IoT layer but on the path from a gateway
to the cloud. It comes from the fact that an amount of data
increase significantly after the data are gathered at a gateway.
Hence, we only consider the bandwidth capacity of a link
among nodes among a gateway, an edge node, and a cloud
node. At the IoT layer, if node i and node j have a direct link,
eij = 1, otherwise eij = 0. In a NIoT system with a massive
number of sensors, it is crucial to consider the hop-by-hop
communication at the IoT layer for efficient data transmis-
sion. Since we focus on optimizing resource management at
the software level rather than the physical level, our system
model does involve several physical factors of IoT, such as
wireless low-power technologies and data transmission at
the IoT embedded device’s hardware level. We denote the
maximum relays used in multihop routing at the IoT layer by
η. Let FK and FQ denote a set of service functions deployed
at the edge and cloud layers, respectively. We define ck to be
the computing capacity of edge node k , k ∈ VK . cq is the
computing capacity of cloud node q, q ∈ VQ. We summarize
the main mathematical notations in Table 1.

In a NIoT system, data are collected from end nodes to
IoT gateways. The data then are routed to the edge layer and
the cloud layer, depending on services requested from cus-
tomers. We consider the resource management problems in
the planning and operating stages. In the first stage, a provider
wants to optimize the gateways’ location for minimizing
the deployment cost while fulfilling system requirements. In
the second stage, a provider aims at optimizing the service

TABLE 1. Summary of notations.

placement for minimizing the operating cost while satisfying
customer requests.

In the first optimization problem, we assume that data
generated by an end node are required to be routed to a gate-
way. Given the support of multihop routing at the IoT layer,
data generated by end nodes might pass across multiple relay
nodes (i.e., end nodes) before entering a gateway.We suppose
that the delay (i.e., the routing performance) is represented by
a number of end nodes used as a relay along a routing path
from an end node to a gateway. The deployment cost of a
gateway node depends on where it is located. We denote by
ςi the cost for deploying node i ∈ VS as an IoT gateway. We
state the joint optimization of gateway placement and routing
as follows.
Problem 1 (Gateway placement and multihop routing

(GM)): Given a set of nodes VS , a set of links among these
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nodes, and the maximum delay η, find a solution of gateway
placement and routing, satisfying constraints on routing and
delay in order to minimize the deployment cost.

In the second optimization problem, we assume that bg
is the total traffic passing IoT gateway g ∈ VS . Let ωf be
the number of computing resources required for providing
function f for one unit of traffic. We denote by τfi the cost for
providing function f deployed at node i for one unit of traffic.
We consider two optimization problems of service placement
with two different objectives:minimization of computing cost
(SP1), minimization of energy cost (SP2). The problems are
stated as follows.
Problem 2 (Service placement (SP1, SP2)): Given G =

(V ,E) and a set of service functions deployed at the edge
and cloud layers, find a solution of service placement, satis-
fying constraints on system capacity and services requested
in order to minimize the computing cost (SP1) and the energy
cost (SP2).

We will develop our solution for solving the GM, SP1, and
SP2 problems in the next section.

V. OPTIMIZATION MODEL FOR GATEWAY PLACEMENT
AND MULTIHOP ROUTING
We formulate theGMproblem as aMILPmodel, calledGMO
(i.e., the GM optimization model) that enables us to achieve
the optimal gateway placement and routing for minimizing
the deployment cost in a NIoT system with the support of
multihop routing. The variables are as follows:
• xi is a binary variable that represents a solution for the
deployment of IoT gateways. If node i is an IoT gateway,
xi = 1, otherwise xi = 0.

• zvg is a binary variable that represents a solution for the
gateway selection of node v at the IoT layer. If data gen-
erated by v are routed to gateway g, zvg = 1, otherwise
zvg = 0.

• yvgij is a binary variable that represents a routing solution
at the IoT layer. If a link from node i to node j is used for
the data flow from node v to node g, yvgij = 1, otherwise
yvgij = 0.

Definition 1 (Deployment cost): The formula for comput-
ing the deployment cost is given by:

9GM =
∑

i∈VS
ςixi. (1)

The GMO model is as follows:

Minimize 9GM

Subject to: yvgij 6 zvg, ∀v, g, i, j ∈ VS (2)

yvgij 6 eij, ∀v, g, i, j ∈ VS (3)

zvg 6 1− xv, ∀v, g ∈ VS (4)

zvg 6 xg, ∀v, g ∈ VS (5)∑
g∈VS

zvg = 1− xv, ∀v ∈ VS (6)∑
i∈VS

yvgig 6 1, ∀v, g ∈ VS (7)

∑
i∈VS

yvgig > zvg, ∀v, g ∈ VS (8)∑
i∈VS

yvgvi 6 1, ∀v, g ∈ VS (9)∑
i∈VS

yvgvi > zvg, ∀v, g ∈ VS (10)∑
j∈VS

yvgij =
∑

j∈VS
yvgji , ∀v, g,

i ∈ VS , i 6= v, i 6= g (11)∑
i,j∈VS

yvgij 6 η, ∀v, g ∈ VS . (12)

We aim at optimizing the cost of gateway deployment
while satisfying a requirement of routing performance rep-
resented by a maximum number of relays from an end node
to its gateway. Conditions (2) and (3) assure that link (i, j)
belongs to path from s to d (i.e., ysdij = 1) only if data
generated by end node s is routed through IoT gateway d
(i.e., zsd = 1) and link (i, j) exists (i.e., eij = 1). Conditions
(4) and (5) guarantee that data is routed from v to g only if
v is an end node (i.e., xv = 0) and g is an IoT gateway (i.e.,
xg = 1). Condition (6) assures that an end node sends data
to one gateway. Conditions (7), (8), (9) and (10) ensure that
the number of paths routing data from an IoT sensor to an
IoT gateway is one. The constraint on a flow conservation
guarantee for each routing path is given by (11). Condition
(12) is the delay constraint represented as the maximum
number of relays used to send data from an end node to a
gateway. The MILP model’s output is the optimal solution
for gateway placement and multihop routing represented by
xi and ysdij .

VI. OPTIMIZATION MODEL FOR SERVICE PLACEMENT
A. MINIMIZATION OF THE COMPUTING COST
We formulate the SP1 problem as a MILP model, namely
SP1O (i.e., the SP1 optimization model), to find the opti-
mal solution to service placement in edge cloud computing
with the objective of minimizing the computing cost. We
represent a solution to the problem by binary variable rgkq.
If a data flow generated by IoT gateway g is processed by
node k in the edge and node q in the cloud, rgkq = 1,
otherwise rgkq = 0.
A number of computing resources required for providing

function f at the edge layer when data traffic is routed from
gateways to edge node k are given by:

ψfk = ωf
∑

g∈N ,q∈Q
bgrgkq. (13)

A number of computing resources required for providing
function f at the cloud layer when data traffic is routed from
gateways to cloud node q are given by:

ψfq = ωf
∑

g∈N ,k∈K
bgrgkq. (14)

Definition 2 (Computing cost): The formula for calculat-
ing the computing cost is given by:

9SP1 =
∑

k∈VK ,f ∈JK
τfkψfk +

∑
q∈VQ,f ∈JQ

τfqψfq. (15)

178222 VOLUME 8, 2020



T.-M. Pham, T.-T.-L. Nguyen: Optimization of Resource Management for NFV-Enabled IoT Systems in Edge Cloud Computing

The SP1O model is as follows:

Minimize 9SP1

Subject to:
∑

k∈VK ,q∈VQ
rgkq = 1, ∀g ∈ VS (16)∑

g∈VS
bgrgkq 6 ekq, ∀k ∈ VK ,

q ∈ VQ (17)∑
f ∈JK

ψfk 6 ck , ∀k ∈ VK (18)∑
f ∈JQ

ψfq 6 cq, ∀q ∈ VQ. (19)

The objective of SP1O is to minimize the usage cost of
computing resources for realizing service requirements. Con-
dition (16) assures that one edge node and one cloud node
are selected for processing data traffic collected at an IoT
gateway. Condition (17) guarantees that data traffic routed
through a link between edge node k and a cloud node q is not
more than link capacity ekq. Conditions (18) and (19) present
the constraints on the computing capacity of an edge node
and a cloud node.

B. MINIMIZATION OF THE ENERGY COST
We further develop the SP1O model for finding the optimal
solution to service placement in edge cloud computing with
the objective of minimizing the energy cost, called SP2O (i.e.,
the SP2 optimization model). A solution to the SP2 problem
is represented by a binary variable rgkq, which was explained
in the SP1Omodel. The energy usage depends on the number
of active nodes of the edge and cloud layers. If a node of
the edge and cloud layers provides a service function for a
data flow from the IoT layer, its state is active, otherwise
its state is inactive. We ignore the power consumption in the
inactive state as it is a negligible quantity, compared with that
in the active state. The objective of minimizing the energy
cost can be represented as the number of active nodes in the
edge and cloud layers. To represent the state of a node in the
edge and cloud layers, we introduce binary variables uk and
uq, respectively. If edge node k is active, uk = 1, otherwise
uk = 0. If cloud node q is active, uq = 1, otherwise uq = 0.
To describe constraints on uq and uk , we define θ as a large
integer number.
Definition 3 (Energy cost): The formula for computing

the energy cost is given by:

9SP2 =
∑

k∈VK
uk +

∑
q∈VQ

uq. (20)

The SP2O model is as follows:

Minimize 9SP2

Subject to: Condition (16), (17), (18), (19)∑
g∈VS ,q∈VQ

rgkq 6 θuk , ∀k ∈ VK (21)∑
g∈VS ,q∈VQ

rgkq > uk , ∀k ∈ VK (22)∑
g∈VS ,k∈VK

rgkq 6 θuq, ∀q ∈ VQ (23)∑
g∈VS ,k∈VK

rgkq > uq, ∀q ∈ VQ. (24)

In the SP2O model, the constraints on the fulfilment of
service requirement and the system capacity are similar to
those used in the SP1Omodel (i.e., Eq. (16), (17), (18), (19)).
Conditions (21) and (22) assure that edge node k will be
in the active state if k is selected for processing data traffic
collected at any gateway, otherwise k will be in the inactive
state. Conditions (23) and (24) guarantee that cloud node q
will be in the active state if q is selected for processing data
traffic collected at any gateway, otherwise q will be in the
inactive state.

VII. APPROXIMATION ALGORITHMS
In the previous section, we develop three MILP models for
finding the optimal location of IoT gateways, the optimal
routing, and the optimal placement of service functions in a
NIoT system. However, the MILP solvers often fail to solve
a large model with hundreds of gateways. For example, for a
scenario with 300 IoT devices, GMO has tens of billions of
variables, which is too large for CPLEX to handle. Hence,
we propose an approximation algorithm for a large-scale
NIoT system. We start by describing the primary steps of
the algorithm. We then present some adaptations for solving
the two optimization problems of resource management in a
NIoT system.

A. PRIMARY STEPS
The key concept of the algorithm approach is based on
the Simulated Annealing (SA) with the development of a
neighborhood function and a solution representation for the
resource management problems in a NIoT system. SA is a
heuristic approach to a search of the global optimum for
the optimization problem whose solution set contains a local
optimum [23]. It considers a worse scenario with a cer-
tain probability in the searching procedure for the optimal
solution. This approach has the advantage of being simple
and effective due to the capacity for escaping from local
optimum.

The algorithm starts with a temperature parameter T
decreasing after some steps in the searching procedure by
a cooling function C(T ). It loops until T is less than a stop
temperature Tf . We denote byM the number of iterations for
each T . Let S be an initial solution. The details of the search
procedure are as follows:

• Step 1: Initialize a set of algorithm parameters including
T , Tf , and a counter variable n = 1 that represents a
number of iterations for T . Find an initial solution S.

• Step 2: Generate a neighborhood solution S ′ from the
current solution S. If the objective function value of
the neighborhood solution 8(S ′) is less than that of the
current solution 8(S), move to a better solution S ← S ′

and go to Step 4. Otherwise, go to Step 3.
• Step 3: Let 1 = 8(S ′) − 8(S). ε is a random num-
ber uniformly distributed on the interval (0,1). If ε <
exp(−1/T ), move to a new solution S ← S ′ and go to
Step 4.
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• Step 4: Increase a number of iterations for T , n← n+1.
If n > M , go to Step 5. Otherwise, continue the loop
from Step 2.

• Step 5: Use C(T ) to update the current temperature:
T ← C(T ). If T ≥ Tf , n ← 1 and go to Step 2.
Otherwise, finish the searching procedure.

B. ALGORITHM FOR NEIGHBORHOOD GENERATION OF
GATEWAY PLACEMENT AND MULTIHOP ROUTING
We represent a solution of the gateway placement in a NIoT
system at the IoT layer by a set of integers (i.e., SGM =
{g ∈ VS}). For example, SGM = {1, 2, 3}means the positions
of gateways are 1, 2, and 3 at the IoT layer, the positions of
end nodes are VS\SGM . We propose a neighborhood func-
tion, namely GMA-N, to move from a solution SGM to a
neighborhood solution S ′GM . The SA algorithm for finding an
approximation solution of the problem of gateway placement
and multihop routing, called GMA, follows the necessary
steps presented in Section VII-A and uses our proposed
neighborhood function GMA-N.

In GMA-N, we propose three moving operators that allow
us to change the current solution to a neighborhood solution:
• Add(v, S ′GM ): The procedure adds a new gateway to the
current solution by inserting a new integer v ∈ VS\S ′GM
into S ′GM .

• Remove(g, S ′GM ): The procedure removes a gateway in
the current solution by deleting one integer g ∈ S ′GM
from SGM .

• Exchange(g, v, S ′GM ): The procedure moves one gate-
way to a new location by changing one integer g ∈ S ′GM
to another value that is not in SGM (i.e., v ∈ VS\S ′GM ).

The details of the GMA-N algorithm for neighborhood
generation of gateway placement and multihop routing are
presented in Algorithm 1. The rules for selecting a moving
operator are as follows. If the number of gateways is one,
Add() or Exchange() is allowed to operate with a probability
depending on a probability parameter γ (i.e., line 7-10). If
all IoT nodes are selected as gateways (i.e.,

∣∣S ′GM ∣∣ = |VS |),
Remove() is selected (i.e., line 11-13). If the number of gate-
way is more than one and less than the number of IoT nodes
(i.e., 1 <

∣∣S ′GM ∣∣ < |VS |, one of three operators is selected
with a probability depending on probability parameters α and
β (i.e., line 14-18). Note that S ′GM is a feasible solution if there
exists a routing solution for delivering data from all end nodes
to gateways. We use parameters α, β, γ to control the priority
of moving operators in generating a neighborhood solution.

C. ALGORITHM FOR NEIGHBORHOOD GENERATION
OF SERVICE PLACEMENT
We represent a solution of service placement of a
NIoT system as a list of tuples composed of an edge
node and a cloud node, which is denoted by SSP =(
(ki, qi) : i = 1 . . . |SGM |, ki ∈ VK , qi ∈ VQ

)
. The solution

shows that a set of virtual service functions for gateway iwith
a light workload is deployed at an edge node ki and that with
a heavy workload is deployed at a cloud node qi.

Algorithm 1 Algorithm for Neighborhood Generation of
Gateway Placement and Multihop Routing
1: function GMA-N(SGM )
2: S ′GM ← SGM
3: 6GM ← ∅

4: 5GM← all pairs of gateways and end nodes in SGM×
{VS\SGM }

5: for all (g, v) ∈ 5GM do
6: ε← a random number in (0,1)
7: if

∣∣S ′GM ∣∣ = 1 then
8: S ′GM ← Exchange(g, v, S ′GM ) if ε < γ

9: S ′GM ← Add(v, S ′GM ) if ε ≥ γ
10: end if
11: if

∣∣S ′GM ∣∣ = |VS | then
12: S ′GM ← Remove(g, S ′GM )
13: end if
14: if 1 ≤

∣∣S ′GM ∣∣ ≤ |VS | then
15: S ′GM ← Exchange(g, v, S ′GM ) if ε < α

16: S ′GM ← Add(v, S ′GM ) if ε ∈ [α, β]
17: S ′GM ← Remove(g, S ′GM ) if ε > β

18: end if
19: if S ′GM is feasible and S ′ /∈ 6GM then
20: 6GM ← 6GM ∪ S ′GM
21: return S ′GM
22: else
23: S ′GM ← SGM
24: end if
25: end for
26: end function

We propose the SA algorithms for the SP1 problem and
the SP2 problem, called SP1A and SP2A, respectively, which
use a similar neighborhood function, namely SPA-N. The
difference between SP1A and SP2A is in Step 2 and Step 3
presented in Section VII-A when we compute the objective
value. In particular, the SP1A algorithm uses Eq. (15) and
the SP2A algorithm uses Eq. (20). The detail of the SPA-
N algorithm for neighborhood generation of service place-
ment is presented in Algorithm 2. In SPA-N, we denote
all pairs of edge nodes and cloud nodes by 5SP =(
(k, q) : k ∈ VK , q ∈ VQ

)
. We define an operator for moving

from a solution to another solution. The Replace(k, q, i, SSP)
operator changes the edge node and cloud node associated
with gateway i in solution SSP by edge node k and cloud
node q. We use the Replace operator for a random gateway
i and each (k, q) of5SP in succession until we find a feasible
solution.

VIII. EVALUATION
This section presents an assessment of our optimization mod-
els and algorithms for the two problems of resource man-
agement in a NIoT system. We will start with a summary of
various evaluation scenarios and several parameter settings
for the algorithms. We then evaluate the performance of our
proposed solutions in terms of several primary performance
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Algorithm 2 Algorithm for Neighborhood Generation of
Service Placement
1: function SPA-N(SSP)
2: S ′SP← SSP
3: 6SP← ∅

4: 5SP ← all pairs of edge nodes and cloud nodes in
VK × VQ

5: for all (k, q) ∈ 5SP do
6: i← a random number in [1, |SSP|]
7: S ′SP← Replace(k, q, i, S ′SP)
8: if S ′SP is feasible and S ′SP /∈ 6SP then
9: 6SP← 6SP ∪ S ′SP
10: return S ′SP
11: else
12: S ′SP← SSP
13: end if
14: end for
15: end function

TABLE 2. Evaluation scenarios.

metrics. The evaluation also gives new insights into the strat-
egy for an IoT provider to optimize its objectives.

A. SCENARIOS AND PARAMETERS SETTING
The topologies of the IoT layer used in our evaluation are the
grid networks and synthetic topologies based on the Barabasi-
Albert model [24], which are illustrated in Fig. 4. The param-
eters are summarized in Table 2. In the GMA algorithm,
we assign γ = 0.5 as we consider the same probability for
the Exchange and Add operators. We choose α = 0.4 and
β = 0.7 as we give a higher probability for the Exchange
operator when the number of gateways is larger than or equal
to one. A set of service functions required to be processed
at the edge layer and that provided by the cloud layer is five
functions. We define the basic unit of computing resources
in our evaluation as 103 cycles per second. The computing
resource required by a service function for processing one
unit of data traffic is a random number uniformly distributed
between 1 and 5. The computing resource of an edge node
and a cloud node is 50× 106. The capacity of a link between
an edge node and a cloud node is 50 Gbps. The capacity of
a link between a gateway and an edge node is 5 Gbps. The
cost of processing a traffic unit at an edge node is uniformly
distributed between 5 and 10. The cost of processing a traffic
unit at a cloud node is uniformly distributed between 1 and
5. The data volume generated by an end node is a random
number uniformly distributed between 10 and 1000. We use
CPLEX to solve the GMO, SP1O, and SP2O models for
finding the optimal results [25].We carried out experiments in
anX86-based PCwith a two-core 2.7GHz Intel processor and
8 GB memory. We evaluate the performance of our proposed

FIGURE 4. The grid and Barabasi-Albert topologies.

solutions in terms of some primary metrics, including the
deployment cost, the computing cost, the energy cost (i.e.,
the number of active nodes in the edge and cloud layers),
and the computation time, which are computed as the average
value in 50 runs.

B. PERFORMANCE EVALUATION OF GATEWAY
PLACEMENT AND MULTIHOP ROUTING
We begin by assessing the efficiency of GMA in comparison
with the optimal results produced by GMO for the problem
of resource management at the IoT layer of a NIoT system.
The maximum relay is three nodes for all topologies. We
vary the network size between 16 and 49. Fig. 5 depicts the
computation time of GMA and GMO. Note that the time
is plotted on a log-10 scale. The results show that GMA
is significantly faster than GMO in both grid and Barabasi-
Albert topologies. More specifically, the ratio between the
computation time of GMA and that of GMO increases from
3 times to 17 times when the number of nodes varies from
16 to 49 nodes.

Second, we evaluate the impact of the maximum relay on
the deployment cost of gateways at the IoT layer of a NIoT
system. We vary the maximum relay between one and four
in the grid and Barabasi-Albert topologies with 49 nodes.
We plot the deployment cost as a function of the maximum
relay in Fig. 6 and Fig. 7. Fig. 6a and Fig. 7a show that
the results produced by GMA are very close to the optimal
results. We observe that GMA is more efficient when the
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FIGURE 5. Comparison between the computation time of GMA and that
of GMO when varying network size.

FIGURE 6. Comparison between GMA and GMO when varying the
maximum relay with the grid topology.

maximum relay increases. We argue that the higher num-
ber of relays would lead to more possibility to improve an

FIGURE 7. Comparison between GMA and GMO when varying the
maximum relay with the Barabasi-Albert topology.

approximate solution. Both figures show that the deploy-
ment cost decreases when the maximum relay increases. This
occurs because a large number of the maximum relay could
result in an increase in the number of end nodes connected
to one gateway, or a decrease in the number of gateways.
Therefore, the deployment cost reduces. Fig. 6b and Fig. 7b
plot the computation time in seconds. The results show that
GMA’s computation time is always significantly lower and
more stable than that of GMO. We note that the maximum
relay should be selected appropriately because of some per-
formance issues of multihop routing in the IoT layer [26].
We can control the maximum relay used in multihop routing
by parameter η.
Third, we investigate the impact of the network density

represented by the average node degree on the deployment
cost. Fig. 8 plots a comparison between GMA and GMO
regarding the deployment cost and the computation time in a
Barabasi-Albert topology with 36 nodes when the maximum
relay is three. The results show that the deployment cost of
the solution produced by GMA is very close to the optimal
solution, while the computation time of GMA is considerably
smaller than that of the optimization model. We also note
that the deployment cost rapidly reduces as the average node
degree grows. We argue that the improvement of the number
of potential connections in a high-density network leads to a
decrease in the number of gateways. As a result, the deploy-
ment cost decreases. To summarize, the GMA approximation
algorithm can find a feasible solution that is very close to the
optimal one with significantly reduced time.
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FIGURE 8. Comparison between GMA and GMO when varying the
average node degree with the Barabasi-Albert topology.

FIGURE 9. The cost of gateway deployment in a large scenario with
400 IoT nodes.

Finally, we evaluate GMA in a large scenario with 400 IoT
nodes for demonstrating the scalability of GMA.We compare
GMA with a greedy algorithm because it is time-consuming
for GMO to obtain the optimal solution of gateway placement

FIGURE 10. Computing cost of a solution produced by SP1A, SP2A, SP1O
and SP2O.

FIGURE 11. Energy cost of a solution produced by SP1A, SP2A, SP1O
and SP2O.

FIGURE 12. Computation time of SP1A, SP2A, SP1O and SP2O.

in a large scenario. In the greedy algorithm, we sort a list of
IoT nodes first by their degree in descending order, then by
their cost in ascending order. After the list of IoT nodes is
sorted, the algorithm selects an IoT node as a gateway, then
connects the gateway to other IoT nodes that can deliver their
data through the gateway. The process of gateway selection
completes when all IoT nodes are linked to a gateway. Fig. 9
depicts the cost of gateway deployment in a large scenario
when the maximum relay varies between 1 and 5 hops. The
result shows that GMA is capable of finding an approxima-
tion solution for gateway placement and routing in a large
scenario.

C. PERFORMANCE EVALUATION OF SERVICE PLACEMENT
In the performance evaluation of our proposed solution for
service placement, we consider a NIoT system composed

VOLUME 8, 2020 178227



T.-M. Pham, T.-T.-L. Nguyen: Optimization of Resource Management for NFV-Enabled IoT Systems in Edge Cloud Computing

FIGURE 13. Comparison between the computing cost of the cloud case
and that of the edge-cloud case.

FIGURE 14. Energy cost of the cloud and edge-cloud cases.

of 30 edge nodes and 50 cloud nodes. We vary the num-
ber of IoT gateways between 5 and 200 nodes. We com-
pute three metrics, including the computing cost of service
placement, the number of active nodes used for fulfilling the
service requirements, and the computation time for finding a
solution.

We first evaluate the performance of the SP1A and SP2A
algorithms in comparison with the SP1O and SP2O opti-
mization models solved by CPLEX. Fig. 10 shows that the
computing costs of the approximation solutions produced
SP1A and SP2A are very close to those solved by SP1O
and SP2O, respectively. We observe a trade-off between the
number of active nodes used at the edge and cloud layers
(i.e., the energy cost) and the computing cost. For example,
as shown in Fig. 10 and Fig. 11, SP1A is better than SP2A in
terms of the computing cost while it is worse than SP2A in
terms of the energy cost. We can infer that an IoT service
provider might need to select an appropriate optimization
strategy according to a charging agreement with an NFVIaaS
provider. Furthermore, Fig. 12 shows that the computation
time of the SP1A and SP2A algorithms are significantly
lower than the SP1O and SP2O model solved by CPLEX.
In summary, the SP1A and SP2A algorithms are efficient
approaches for finding an approximation solution of service
placement for a NIoT system.

Next, we study the impact of the location of service func-
tions in edge cloud computing.We consider two cases: all ser-
vice functions are deployed in the cloud layer (i.e., the Cloud

FIGURE 15. Computation time of SP1A and SP2A in the cloud and
cloud-edge cases.

case), and service functions are deployed in both the edge
and the cloud layers (i.e., the Edge-Cloud case). In the Cloud
case, note that data traffic is still routed from a gateway
through an edge node to a cloud node. However, as we do
not deploy any service function in the edge layer, the cost
related to edge nodes is not included in the cost functions
(i.e., Eq. (15), (20)). Fig. 13, 14, and 15 plot the computing
cost, the number of active nodes, and the computation time
in the two cases. We observe that the computing cost of
the Edge-Cloud case is higher than that of the Cloud case.
This was to be expected due to the high resource cost at
the edge. In other words, a customer is charged more for
responsive service functions. Furthermore, Fig. 14 shows that
the number of active nodes in the Cloud case is lower than
that in the Edge-Cloud case. Consequently, the Edge-Cloud
case requires more energy than the Cloud case. We argue
that it is the cost of highly responsive, scalable, and reliable
services offering by edge cloud computing. It implies that
an IoT service provider should only deploy service functions
with a strict delay requirement on the edge for optimizing
its cost.

IX. CONCLUSION
We addressed the joint optimization problem of gateway
placement and multihop routing in the IoT layer, the problem
of service placement in the edge and cloud layers for a NIoT
system. We proposed the GMO, SP1O, and SP2O models
for obtaining the optimal solutions. An IoT service provider
can exploit our solution for determining the optimal gateway
deployment, the optimal routing, and the optimal resource
allocation to service functions in a NIoT system. We then
developed the GMA, SP1A, SP2A algorithms for tackling
the problems in a large-scale NIoT system. The evaluation
results under diverse topologies show that the approxima-
tion algorithms can find the results close to the optimal
solution with significantly reduced time. We observed that
the deployment cost reduces as the maximum number of
relays and the network density increase. We can infer from
our evaluation that an IoT service provider might need to
select an appropriate optimization strategy according to a
charging agreement with an NFVIaaS provider. The results
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also suggest that an IoT service provider should only deploy
service functions with a strict delay requirement on the edge
for optimizing its cost. Our future work will consider the
strict delay requirements of certain IoT services, the support
of D2D communication for computation offloading, and the
optimization of resource management at the physical level. It
would also be of interest to study the collaboration between
several IoT service providers for further improving the per-
formance, the flexibility, and efficiency of a highly responsive
NIoT system [19], [27].
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