
Received September 1, 2020, accepted September 13, 2020, date of publication September 25, 2020,
date of current version October 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3026666

Optimized Path-Planning in Continuous
Spaces for Unmanned Aerial Vehicles
Using Meta-Heuristics
GEOVANNI FLORES-CABALLERO 1,
ALEJANDRO RODRÍGUEZ-MOLINA 2, (Member, IEEE),
MARIO ALDAPE-PÉREZ 1, AND
MIGUEL GABRIEL VILLARREAL-CERVANTES 1, (Member, IEEE)
1Postgraduate Department, Instituto Politécnico Nacional, CIDETEC, Mexico City 07700, Mexico
2Tecnológico Nacional de México/IT de Tlalnepantla, Research and Postgraduate Division, Estado de México 54070, Mexico

Corresponding author: Alejandro Rodríguez-Molina (alejandro.rm@tlalnepantla.tecnm.mx)

This work was supported in part by the Secretaría de Investigación y Posgrado (SIP), and in part by the Comisión de Operación y Fomento
de Actividades Académicas (COFAA) of the Instituto Politécnico Nacional (IPN).

ABSTRACT This work presents a novel path-planning approach for Unmanned Aerial Vehicles (UAVs)
in continuous 3D environments. This proposal aims to minimize the path length while avoiding collisions
through the suitable adjusting of control points (the points that take the UAV from a start position to a target
location). The above is stated as a constrained global optimization problem. This problem considers the
overall length of the path as the single objective function. Regarding the problem constraints, they are related
to the collision of the obstacles with the 3D shape of a path. The assignment of the path shape is also proposed
in this work to streamline the planning process. Due to the optimization problem features (high nonlinearity,
multimodality, non-differentiability, and the lack of an initial guess solution), a constraints-handling mecha-
nism is used in meta-heuristics to find suitable optimized paths. Also, an enhanced path-search mechanism is
included in these algorithms to deal with complex planning scenarios. The enhancedmechanism incorporates
a path computed by a variant of the A-Star method (the Pruned A-Star) in the first set of candidate solutions
of the meta-heuristics. The proposed approach is tested through six complex scenarios. Moreover, the
performance of three well-knownmeta-heuristics, Differential Evolution (DE), Particle SwarmOptimization
(PSO), and the Genetic Algorithm (GA), is studied to find a potential candidate to solve the path-planning
problem. In this way, the paths found by DE show outstanding performance. The paths obtained by the
Pruned A-Star technique are adopted as a point of comparison to determine the advantages and drawbacks
of the proposal.

INDEX TERMS Path-planning, optimization problem, aerial vehicles, meta-heuristics, continuous spaces.

I. INTRODUCTION
Autonomy is a highly desirable feature of robots because
it endows them with skills to perform complex tasks with
minimal human intervention [1].

In the context of mobile robotics, motion planning is one
of the most challenging problems due to the large number of
issues that need to be addressed. The issues related to motion
planning of mobile robots include environment perception,
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localization, map building, recognition, path-planning, and
motion control [2].

The motion planning is used to determine how a robot
must move to perform a task successfully. In perception,
the mobile robot processes environmental sensor data [2],
so threats, obstacles, or agents can be identified. In the case
of localization and map building, they determine the current
position of the mobile robot regarding its environment [2].
According to a specific observed agent’s actions or motion
effects, the purpose of recognition is to deduce the agent’s
behavior [3]. The path-planning involves searching for an
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optimized collision-free path from a current location to a
target goal [2]. Finally, motion control solves various control
problems to govern the robot movements (given by the actua-
tors and stabilizers) in such a way that it successfully follows
the optimized path by compensating the robot dynamics,
uncertainties, and disturbances [4].

By themselves, the above issues conform to full research
areas. Among them, the path-planning is one of the most
attractive due to the notable evolution of mobile robots, which
can navigate through the most diverse spaces [5]; the extent
of their use for a wide variety of tasks beyond the industrial
field [6]; and the increasing complexity of the operation
environments [7], e.g., regarding a more significant number
of agents and obstacles, and their different arrangements,
geometries, and behaviors. Therefore, this work is focused
on this particular problem.

In a first analogy, named as the the piano mover’s problem
[8], the path-planning issue is compared to the problem
of moving furniture (with complex geometries such as a
big piano) from one place to another inside a furnished
house, where the information about the objects (locations and
geometries) is wholly known.

A more accurate definition is found in [9], which indicates
that the path-planning problem is to determine the suitable
intermediate configurations (e.g., positions and orientations)
that a robot should reach to move effectively (e.g., traveling
the shortest possible distance) between two locations inside a
workspace while avoiding threats or obstacles [10].

When a particular kind of mobile robot is pointed out,
the features of the associated path-planning problem are
bounded, and its relevance is highlighted. The above is the
case of Unmanned Aerial Vehicles (UAVs).

The UAVs are mobile robots designed to operate in the
air without human actors aboard. They have a great set of
features and advantages, including a relatively low cost and
outstanding maneuverability [11]. The UAVs are especially
useful to perform tasks such as object manipulation, surveil-
lance, transportation, search and rescue, mapping, and moni-
toring [10]. For this reason, the application fields of the UAVs
are increasing daily. Nowadays, there is a wide variety of
areas that take advantage of these robots. Many application
examples are found in the military [12], construction [13],
research [14], health [15], and service [16] contexts.

Unfortunately, the most critical drawback of the UAVs
is related to their energetic limitations concerning the
onboard battery capacity. In this way, the effectiveness of the
path-planing turns critical. Moreover, the path-planning prob-
lems with UAVs are related to 3D spaces in the vast majority
of the cases, which make them harder when compared to the
path-planning in the plane (e.g., for wheeled mobile robots).
In many cases, the 3D spaces include a significant number
of threats or obstacles with different geometries and config-
urations (e.g., the office furniture in an indoor environment),
which further complicates the search for a suitable route.

Throughout the decades, several methods have been pro-
posed to solve the path-planning problem in general for

3D environments, which are also valid for UAV appli-
cations. Those methods can be classified into five cate-
gories according to [17]: the sampling-based, node-based,
mathematical-model-based, bio-inspired, and multi-fusion-
based algorithms. The latter is referred to the use of two
or more of the algorithms mentioned above to obtain an
improved path but taking into consideration the combined
advantages and drawbacks of them (these are discussed next).

The sampling-based algorithms require a mathematical
representation of the workspace. Then, these methods sample
nodes or cells, typically in a stochastic way, until a feasi-
ble path is generated [18]. An example of these methods
is observed in [19], where the Random Tree (RT) algo-
rithm and three proposed variations are used to successfully
sample feasible paths from a graph in such a way they
avoid collisions between the UAV and moving obstacles.
The graph is generated with nodes representing positions
in the discretized workspace and edges as collision-free
connections of two nodes. Another work based on RTs
for the path-planning with UAVs is found in [20]. In that
research, a Biased Sampling Potentially Guided Intelligent
Bidirectional Rapidly-exploring Random Tree Star (BPIB-
RRT-Star) method is proposed to adjust the sampling space
flexibly and, in consequence, improves the convergence
rate.

On the other hand, the work in [21] proposes two
sampling methods to solve the path-planning problem for
a fixed-wing UAV stated as a variation of the travel-
ing salesman problem for finite discrete graphs. A differ-
ent sampling-based approach is found in [22]. That work
presents a path-planning framework with Smart Exploration
and Exploitation (Sampling-SEE). The exploration in the
Sampling-SEE samples path alternatives uniformly in the
search space, while the exploitation enhances those paths by a
biased sampling of their surrounding regions. The application
of the framework can be extended to the UAVs.

In the node-based algorithms, the workspace is conceptu-
alized as a graph or a grid, and the feasible path is obtained
using approaches similar to the well-known Dijkstra algo-
rithm [23]. Within this category, the work in [24] describes
an improved variant of the A-Star algorithm that allows the
online path-planning forUAVs. This improvement is based on
the partition of the problem into a series of independent grids
to decrease the computational burden. Each grid includes a
reduced number of cells that consider the threats and other
valuable information of the 3D environment. Then, the A-Star
algorithm performs local searches for feasible paths. The
optimization of the traditional A-Star performance is also
addressed in [25] by the use of a Field Programmable Gate
Array (FPGA) system. That proposal accelerates the con-
vergence of the A-Star method to achieve real-time path-
planning performance. The research in [26] also uses the
A-Star algorithm in the path-planning for UAVs that flight
around restricted areas. In this case, the graph required by
A-Star is built based on the information of the Global Position
System (GPS).
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The node-based approach is also addressed in [27],
where a variant of the Dijkstra algorithm is used in the
path-planning of a fixed-wing UAV. A visibility graph defines
the workspace, and its nodes are close to the vertexes of poly-
gons that represent threats or obstacles. Hence, the Dijkstra
algorithm can find the shortest route, considering the terrain
elevation.

In all the above methods, a discretization of the workspace
is required. The above implies a trade-off between the com-
putational complexity and path-planning accuracy. The larger
the size, the less precision and computational resources
needed for planning, and vice versa. Moreover, an actual
optimal path cannot be obtained with a discretization (an
infinite graph or grid would be necessary).

In the case of the mathematical-model-based algorithms,
a dynamic mathematical programming problem is stated
considering constraints regarding the environment and robot
dynamics. The feasible path is obtained as the solution
to such a problem by typically using classical optimiza-
tion approaches. In [28] for example, the dynamics of a
quad-rotor and its associated Artificial Potential Field (APF)
(this models the attraction of the robot to the goal and its
repulsion to threat regions) are used to state an unconstrained
optimization problem, which is in turn transformed into an
optimal control problem. Then, the solution to this problem
includes the control actions that the UAV must take to track
the optimized path. The path-planning problem for UAVs
is also addressed as an optimal control one in [29]. The
non-convexities of the problem are approximated by a series
of sequential convex programming problems to obtain more
stable solutions in a faster way.

Other optimal control problems related to path-planning
for UAVs can be found in [30], [31]. In [30], the problem
is stated and solved to generate different optimal paths that
satisfy diverse payloads and oscillation angles in a quadrotor
with a suspended cable load. On the other side, the work
in [31] establishes an optimal control problem based on the
Dubin Traveling Salesman Problem that considers the reach-
ing and exploration of particular regions of the flight space
for surveillance missions.

The mathematical-model-based methods do not take into
account the entire environment or mobile features. The
behavior of these elements is dynamically modeled as
time-variant systems subject to kinematic and dynamic con-
straints. A crucial drawback of these methods is the require-
ment of an accurate model, which is critically affected by
the environmental conditions for UAVs, including uncertain-
ties (e.g., discrepancies in model parameters), disturbances
(e.g., gusts of wind), and unmodeled dynamics. Also, the
formulation of the associated mathematical programming
problems is complex, and the computational burden required
to find a solution increases proportionally. On the other hand,
the classical optimization approaches tend to stagnate at local
minima when the above problems are very complex.

On the other hand, bio-inspired algorithms model the
behavior of natural phenomena to solve very complex

problems for which the methods mentioned above are not
successful enough. In this way, the path-planning problem is
stated as an optimization problem considering environmental
information. The solution to this problem includes the opti-
mized feasible path.

Among bio-inspired techniques, meta-heuristics have
gained popularity due to their attractive and valuable features,
including high performance, universality, and simplicity [32],
[33]. These techniques are typically inspired by the operation
of natural systems and encompass full research fields like
evolutionary computation [34] and swarm intelligence [35].

There are several path-planning approaches for UAVs
that adopt these kinds of methods. In [36], the Wolf Pack
Search (WPS) algorithm is modified with the concepts of
Genetic Algorithms (GAs) to optimize the points of the
B-splines that conform to the path. The workspace is dis-
cretized by uniformly dispersed waypoints marked as feasi-
ble or unfeasible. WPS solves the established unconstrained
single-objective problem that considers both the total path
length, obstacle avoidance, the height, and the smoothness,
to generate optimized paths. The research in [37] compares
the performance of the GA and the Particle Swarm Optimiza-
tion (PSO) in the path-planning for UAVs. The related uncon-
strained optimization problem considers the path length, the
threat evasion, the obstacle collisions, the altitude, the fuel,
and the power in a single objective. Then, a fixed number of
points are set by the GA and PSO in a discretized workspace
to generate the optimized path. A similar approach is found
in [38]. In that work, the Ant Colony Optimization (ACO)
algorithm distributes the path points in a workspace repre-
sented by a finite 3D grid whose cells contain information
about obstacle occupancy.

More examples of the bio-inspired path-planning approach
are observed in [39], [40]. In [39], an improved PSO
that incorporates a chaos-based Logistic map, linear-varying
parameters, and a mutation strategy is adopted to find UAV
paths that minimize a cost function, which considers the
length, environmental constraints, and collision avoidance.
The work in [40] improves the PSO by incorporating an
APF that enhances the evaluation of the paths cost in highly
obstacle-dense environments. Then, the control points of the
path can be adjusted by minimizing a cost function that
considers the attraction to the goal and the repulsion to the
threat regions. In [41], path planning is design considering the
length and the altitude of the flight. The constraints-handling
with α level comparison-based technique is incorporated in
the Differential Evolution (DE) algorithm to avoid inappro-
priate turning angle, climbing/gliding slope, and attitude,
to prevent the UAV flying into specific areas and limit the
map range. This technique promotes the search into the
constrained space to find search directions where feasible
solutions are located.

Despite most of the recent meta-heuristics handle con-
tinuous optimization problems, the discretization of the
workspace is still the preferred approach in the above works.
It is also observed that the majority of the works address
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unconstrained optimization problems by incorporating the
constraints as penalization values into a single objective func-
tion. The above could be dangerous in many cases since
there is not a guarantee of obtaining a feasible path or even
the most suitable feasible path [41]. On the other hand,
an additional advantage of the use of bio-inspired methods
is the possibility of incorporating more requirements to the
path-planning beyond the minimization of the path length
(e.g., the reduction of the energy consumption). Finally, like
the three previous methods, the bio-inspired ones do not take
into account the full geometry of the obstacles or the UAV. So,
valuable workspace regions are not considered in the search.

The present work aims to overcome the difficulties found
in the studied path-planning methods. Therefore, this paper
presents a new approach to the path-planning for UAVs in
continuous 3D environments with static obstacles. In this
approach, the path-planning problem is established as a con-
strained global optimization problem. For this, the control
points between the start and target points must be optimized
such that they minimize the overall path length. The con-
straints are related to the obstacle avoidance of both the con-
trol points and the edges that are generated between them. All
obstacles and edges aremodeled as Oriented Bounding Boxes
(OBBs), while spherical shapes are adopted by control points
to ease the collision detection. An enhanced path-search
mechanism, based on a proposed variant of the traditional
A-Star method (the Pruned A-Star), is included in the con-
strained version of the Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), and Differential Evolution (DE)
to deal with complex planning scenarios. The enhanced
mechanism incorporates a feasible path in the first set of
candidate solutions of these meta-heuristics. The proposed
path-planning approach is tested in six complex scenarios
with the three different meta-heuristic algorithms. Because
those meta-heuristic algorithms are the three most represen-
tative in the path planning for UAVs, we mainly consider
them in the proposal to solve the problem and compare the
proposed path planning approach with the obtained results
given by the Pruned A-Star algorithm.

Hence, the main contributions of this work are listed
next:
• A novel path-planning approach for continuous search
spaces through a proposed multi-fusion based algorithm
that adjusts the control points in such a way that the
path length is minimized and the collisions are avoided
in complex scenarios. The multi-fusion based algorithm
enhanced the path-search mechanism by incorporating
in the explorative search of the most used meta-heuristic
algorithms, the feasible sub-optimal path of the Pruned
A-Star algorithm.

• The proposed path-planning approach is stated assigning
a 3D geometry to the path that provides a safe navigation
space for the UAV and allows the selection of a suit-
able trade-off between the obstacle collision detection
accuracy and the computational cost required in this
procedure.

• The tackling of the collision avoidance problem through
the use of feasibility rules for constraints-handling in the
meta-heuristic algorithms to ensure feasible paths.

The remaining sections of this paper are organized as
follows. Section I introduces the elements of the proposed
path-planning approach, including the workspace represen-
tation, the optimization problem formulation, and the devel-
opment of the meta-heuristic optimizers. The experimental
conditions and the discussion of the results are presented
in Section II. Finally, the conclusions and future work are
addressed in Section IV.

II. OPTIMIZED PATH-PLANNING APPROACH FOR UAVs
IN CONTINUOUS SPACES
The proposed approach consists of three steps. The first
step is related to the representation of the workspace and
all the elements in it. These elements include the UAV, the
obstacles, and the start and target points. Given the workspace
information, it is possible to formulate a constrained global
optimization problem in the second step, whose solution con-
tains the shortest possible path composed by distinct control
points between the predefined start and target ones. This path
must ensure the avoidance of threats or obstacles. In the last
step, the above problem is solved through a meta-heuristic
optimizer, and the obtained solution can be implanted in the
UAV application.

A. REPRESENTATION OF THE WORKSPACE
The workspace of the UAV is its flight space, i.e., the volume
reachable by this vehicle. On the other hand, the obstacles
are defined as a group of objects within the workspace that
cannot share the space of the UAV at the same time.

In virtual reality, the workspace and its elements can be
described by a computational 3D representation or simulation
[42]. One of the simplest and useful ways to perform the
above representation is using bounding volumes with simple
geometries such as spheres or boxes [43]. These geometries
allow the execution of complex tasks, such as collision detec-
tion, at a low computational cost.

Therefore, the workspace is represented by an Axis-
Aligned Bounding Box (AABB) [44] with dimension dw =
[xw, yw, zw]T and origin pw0 = [0, 0, 12 z

w]T , i.e., as a
fixed-dimension box placed on the floor in the center of the
room or scenario.

Analogously, an Oriented Bounding Box (OBB) [44] is
used to simplify the representation of the UAV. It has dimen-
sion du = [xu, yu, zu]T and its origin and orientation contin-
uously change during a flight mission. The dimension of the
OBB should be chosen in such a way that the bounding box
conforms to the geometry of the UAV and allows short-range
maneuvers.

Regarding the obstacles, the OBB is also used for their
representation. Depending on the actual obstacle geometry,
different OBB configurations can be adopted, as observed in
Fig. 1. Nevertheless, there is a trade-off between the com-
putational complexity of the path-planning problem and the
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FIGURE 1. Representation of obstacles through oriented bounding boxes. (a) Two oriented bounding boxes
wrap three objects in a more straightforward obstacle representation. (b) Four oriented bounding boxes
wrap three objects in a more detailed obstacle representation.

detail level of the obstacle representation (a higher detail
level implies a better path-planning accuracy). The simpler
obstacle representation in Fig. 1-(a) requires less computa-
tional burden, while the more detailed one in Fig. 1-(b) needs
additional processing. In any case, the selection of suitable
trade-off depends on the application necessities.

Given the above, a set of no obstacles is distributed within
the workspace, and their corresponding OBBs are referred as
Bk ,∀ k = 1, . . . , no. For each Bk , the origin of the OBB
is placed in the geometric center of the obstacle, while its
orientation and dimension are chosen to accurately fit the
geometry of the original object.

Finally, the start point ps and target point pt are considered
as two 3D points that can be placed arbitrarily inside the
workspace.

B. OPTIMIZATION PROBLEM STATEMENT
A constrained global optimization problem can be stated as
in (1). The aim is to find a design variable vector x that
minimizes a cost function or objective function J (x). The
possible values of x can be bounded by inequality constraints
gi(x), equality constraints hj(x), and box constraints given
by the lower and upper bounds of x, denoted by x lb and xub

respectively.

min x∈Rn J (x)

subject to: gi(x) ≤ 0, i = 1, . . . , n1
hj(x) = 0, j = 1, . . . , n2
x lbk ≤ xk ≤ x

ub
k , k = 1, . . . , n (1)

The path-planning problem for UAVs is proposed as a
constrained global optimization problem, and its elements are
described next.

1) DESIGN VARIABLE VECTOR
The design variable vector is observed in (2) and includes the
coordinates of each 3D control point pl = [pxl , p

y
l , p

z
l ]
T ,∀ l =

1, . . . , n along the path. The order of the points inside x
is important, in the sense that each control point in x is
connected with its predecessor and successor points to define

FIGURE 2. An arbitrary path which includes the start point, three control
points, and the destination point.

the path depicted in Fig. 2. In the case of the first control point
p1 its predecessor is ps, while the successor of the last point
pn is pt . It is essential to mention that the number of control
points n, used to describe a path from ps and pt , is a tunable
parameter of the path-planner.

x = [p1, p2, . . . , pn]T (2)

2) OBJECTIVE FUNCTION
The cost or objective function in (3) determines the dis-
tance of the complete path from ps to pt , i.e., the sum of
the Euclidean distances (obtained by the Euclidean norm)
between all the pairs of consecutive points in the path (edges),
including ps and pt .

J (x) = ‖ps − p1‖ +
n−1∑
l=1

(‖pl − pl+1‖)+ ‖pn − pt‖ (3)

3) EQUALITY CONSTRAINTS
The proposed path-planning approach does not consider
inequality constraints. However, a single equality con-
straint h(x) = 0 is included as a mechanism to generate
collision-free paths. The function h(x) indicates the times that
the path collides with the obstacles within the workspace.

It is necessary to assign a 3D geometry to the path to
compute h(x). Since the path is composed by the start and
target points, a set of control points, and the edges between all
the pairs of consecutive points, two different 3D geometries
are considered to represent the path:
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FIGURE 3. The oriented bounding box of the UAV is wrapped by a sphere
that represents a control point.

FIGURE 4. The oriented bounding box of the UAV is wrapped by the
oriented bounding box that corresponds to the edge between two control
points.

1) Spherical geometries Sl,∀ l = 1, . . . , n are selected
to represent all the control points. The diameter of
each sphere depends on the UAV dimension and is
given by ds = ‖du‖, while its center is located at
the control point pl . This kind of geometry allows the
UAV maneuverability, in the sense that it can change
its forward direction towards the next point in the path.
Fig. 3 shows the spherical geometry associated with an
arbitrary control point pl and its relationship with the
OBB of the UAV.

2) The OBBs El,∀ l = 1, . . . , n+ 1 are adopted to repre-
sent the edges in the path. For this, the width is xu, the
height is zu, and the length is the Euclidean distance dE ,
between the extreme points of the edge, i.e., a pair of
consecutive control points or the pair of the start/target
point with the first/last control point. The OBB center
is located at the middle of the extreme points, and it is
oriented considering a forward direction vector given
by the difference of the extreme points, and an upward
direction vector pointing up. Fig. 4 shows the OBB
associated to the edge between two consecutive control
points pl and pl+1 and its relationship with the OBB of
the UAV.

Fig. 5 exemplifies the use of all the considered geometries
in a simple workspace with one obstacle. This figure shows
an arbitrary path with three interconnected control points
p1, p2, and p3, that take the UAV from the start point ps to
the target one pt . The edge geometries allow collision-free

FIGURE 5. An example path with three control points and one obstacle in
the center of the scenario.

linear displacements of the UAV, while the spherical shapes
assigned to the control points permit orientation changes.

Given the 3D representation of the path, the single equality
constraint is defined in (4), where c(G1,G2) in (5) is the func-
tion that determines a colission between the geometries G1
andG2 based on the 3DSeparatingAxis Theorem (SAT) [45].

h(x) =
no∑
k=1

n∑
l=1

c(Bk , Sl)+
no∑
k=1

n+1∑
l=1

c(Bk ,El) (4)

c(G1,G2) =

{
1, if G1 intersects G2

0, otherwise
(5)

4) BOX CONSTRAINTS
The location of the control points in the design variable vec-
tor (2) is limited to the space within the workspace geometry.
Then, for an arbitrary control point xk = pl , the lower bounds
are x lbk = [− 1

2x
w,− 1

2y
w, 0]T , and the upper bounds are

xubk = [ 12x
w, 12y

w, zw]T .

C. OPTIMIZERS
The path-planning problem stated before is constrained,
highly nonlinear, and has a multimodal nature (regarding the
possible control point combinations aligned in a single edge).
Moreover, for complex workspaces, i.e., scenarios with a
reasonably large number of obstacles, an initial guess solution
is hard to propose. Therefore, intelligent techniques such as
meta-heuristics [46] are preferred over classic optimization
approaches [47] in the search for optimized paths.

1) META-HEURISTICS
Meta-heuristics are stochastic computational techniques
designed to find proper solutions to hard optimization prob-
lems, such as the path-planning one, at a reasonable cost
[48], [49]. These techniques have increased their popularity
due to their high performance, universality, and simplicity
[32], [33]. Besides, most of them are inspired by natural
phenomena.

Although many meta-heuristics have been developed over
time, none of them can solve all classes of problems, as stated
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in the No Free Lunch (NFL) theorem [50]. So, different
alternatives must be tested to find the most suitable choice
for a particular class of problems.

Among meta-heuristic optimizers, the Differential Evo-
lution (DE) [51], the Genetic Algorithm (GA) [52], and
the Particle Swarm Optimization (PSO) [53] are recurrently
used in the specialized literature for the solution of a vast
variety of optimization problems showing an outstanding
performance [54]–[56].

For the above reason, the optimizers mentioned above are
adopted for the solution of the path-planning problem, and
they are described next.

1) Differential Evolution (DE) [51]: The natural evolu-
tion phenomenon inspires this technique. During sev-
eral generations, the individuals (solution vectors) of
a population (randomly initialized) mutate and recom-
bine to generate offsprings. The mutation uses the
scaled differences of the solutions in the population to
obtain mutants. At given rates, the mutants interchange
variables with the original individuals to generate off-
springs. If these offsprings are fitter, they can replace
the original solutions. By the end generation, the best
solution is in the population.

2) Genetic Algorithm (GA) [52]: The natural evolution
also inspires this optimizer. For each generation of the
GA, the individuals in the population (randomly ini-
tialized) compete to reproduce. Fitter individuals have
better chances to recombine and generate offsprings.
The obtained offsprings can mutate at given rates to
maintain diversity.When a generation finishes, only the
fittest individuals from both the original and offspring
populations persist. In the last generation, the best indi-
vidual is found in the population.

3) Particle SwarmOptimization (PSO) [53]: This alter-
native is inspired by the collaborative behavior of
species in the search for resources to survive. For each
iteration of PSO, the positions (solution vectors) of the
particles in a swarm (randomly initialized) are updated
based on a velocity factor. This factor is calculated
based on the pondered individual particle memory (the
best position known by the particle) and swarm knowl-
edge (the best position known by the swarm or by a
group of neighbors). When the last iteration is reached,
the swarm knows the best position in the search space.

Due to the presence of hard constraints in the path-planning
problem, a constraints-handling mechanism is necessary to
choose the best alternatives by taking their feasibility into
account. Moreover, for very complex scenarios, the prob-
ability of getting a random feasible path in the early gen-
erations/iterations of the meta-heuristics is too low, and an
enhanced path-search mechanism is necessary. Next, the
above two mechanisms are detailed.

2) CONSTRAINTS-HANDLING MECHANISM
For the selected meta-heuristic algorithms, a fitness criterion
is needed to decide if a solution is better than another. That

criterion is used either to choose the mating partners, to deter-
mine the survivors, or to update the solution knowledge [57].

The proposed path-planning approach adopts a variation of
the rules described in [58]. Those rules determine the solution
fitness based on its feasibility and convergence separately,
instead of using these features together in a single criterion
that considers the penalization of the objective function. The
above due to penalization methods do not allow the dis-
crimination of unfeasible solutions during the optimization
procedure [59]. Then, the obtained paths using penalization
may be dangerous in the context of an actual flight mission
with the UAV.

The rules mentioned above are established in a tournament
selection operator, and the proposal extends it to the context
of path-planning as follows:

• Any feasible path is preferred to an unfeasible one.
• Among two feasible paths, the one with the shortest
length is preferred.

• Among two unfeasible paths, the one with the fewest
collisions is preferred.

In addition to the above rules, if two unfeasible paths have
the same number of collisions, the fittest solution is selected
randomly.

The above criteria is adopted in the selection stages of DE
and GA, and is used to determine the best positions known
by the particles and the swarm in PSO.

3) ENHANCED PATH-SEARCH MECHANISM
The presence of threats and obstacles restricts the safe flying
space of the UAV. The smaller the safe space, the greater the
difficulty in calculating a feasible path stochastically.

As described before, meta-heuristic techniques such as DE,
GA, and PSO start the search from a set of random candidate
solutions. If the workspace is very complex, finding the first
feasible path can take a long time and consume a lot of
computational resources.

Because of the above, the selected meta-heuristic algo-
rithms are endowed with an enhanced path-search mecha-
nism. For each meta-heuristic, this mechanism feeds the first
set of solutions with a single feasible alternative obtained
from a deterministic path generator, i.e., an individual/particle
of the population/swarm.

Among the path generators in the specialized literature,
the A-Star algorithm is a well-known efficient alternative that
deterministically finds sub-optimal feasible paths in complex
scenarios [60]. A-Star operates over a grid discretization
of the workspace that considers the cells containing obsta-
cles or threats as prohibited regions. Moreover, A-Star starts
the search from an initial location in the grid and perform
movements to adjacent feasible cells. For each step, A-Star
evaluates a function to determine the cost of moving from a
current cell to another towards the target.

Hence, A-Star is adopted to feed meta-heuristics with a
single feasible solution. In this work, the A-Star uses the cost
function f̂ (q) = ĥ(q) + ĝ(q) presented in [61], where q is
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FIGURE 6. Scenarios used to test efectiveness of the proposal.

the next cell, ĥ(q) is the Manhattan heuristic function that
measures the cost of the path from q to the target, and ĝ(q)
is the cost from the start cell to q. Also, movements from a
given cell to another are restricted to six directions, including
up, down, right, left, forward, and backward, i.e., diagonal
movements are not allowed to avoid possible collisions with
the 3D corners of the obstacle OBBs.

The path achieved by A-Star is a list of consecutive cells
from the start location to the target one. Based on the above
list, a set of control points is extracted from the center of each
cell in the path, and then is included in the initial solution set
of the meta-heuristics. Then, the number of control points is
also determined by A-Star.

Due to the paths found by A-Star can contain several
consecutive cells along the same edge, a pruning strategy is
proposed to remove all the successive cells with the same
movement direction. This A-Star variant is referred from now
on as Pruned A-Star.

Using the Pruned A-Star, an equivalent path is obtained
with a lower number of cells, and in consequence, the
meta-heuristic optimizers require to adjust a lower number
of control points.

III. RESULTS AND DISCUSSION
A. EXPERIMENT DETAILS
The Parrot ANAFI quadrotor is considered as the UAV. For
this UAV, its container OBB dimension is set as du =
[0.175, 0.24, 0.065]T (m) to allow short-range maneuvers.
Six different scenarios were developed in the Unity

game engine [62] to test the effectiveness of the proposed

path-planning approach, and they are shown in Fig. 6. The
first three scenarios, i.e., the Bug Trap (S1), the Back and
Forth (S2), and the Rooms Easy (S3), are the 3D versions of
three 2D complex scenarios from the motion planning map
repository in [63]. The original 2D obstacles were extruded
to the ceiling of the workspace to generate these 3D versions.

The remaining three scenarios, i.e., the Bug Trap 3D (S4),
the Back and Forth 3D (S5), and the Rooms Easy 3D (S6),
are variations of the first three that consider different
obstacle orientations and shapes to provide additional safe
regions.

All the alternatives depicted in Fig. 6 share the same dimen-
sion dw = [30, 30, 4]T (m), and the location of the start and
target points is highlighted in green and red, respectively.

Table 1 shows additional details about the adopted sce-
narios, including the number of obstacles no, the location
of the start and target points (ps and pt , respectively), and
the complexity ρ. The complexity ρ is the rate of feasi-
ble (collision-free) paths in a set of a million alternatives
generated randomly (between the established ps and pt , and
using the number of control points provided by the Pruned
A-Star for each scenario). So, a smaller value of ρ implies
a more complex path-planning problem. According to the ρ
values in Table 1, the adopted scenarios entail very complex
path-planning problems.

Cubic cells of dimension 1 (m) are considered to dis-
cretize the workspace for the Pruned A-Star. The number
of control points achieved by the Pruned A-Star for all the
scenarios is observed in Table 1. It is important to remark
that the above value denotes the number of points that need
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TABLE 1. Details of the developed scenarios.

TABLE 2. Results of the descriptive statistical analysis.

to be adjusted by the meta-heuristics in the continuous search
space.

Concerning the optimizers, the DE, GA, and PSO meta-
heuristics, with the constraints-handling mechanism and the
enhanced path-search mechanism described in Section II.C,
are selected to solve the path-planning problem.

The remaining details and parameters of the used
meta-heuristics are described next:
• DE: The variant DE/best/1/bin [64] is selected. The
scaling factor and the crossover rate of DE/best/1/bin are
set respectively as F = 0.7 and CR = 0.8.

• GA: The version of the GA proposed in [65] is adopted
in this work. This GA variant uses the polynomial muta-
tion (PM), the simulated binary crossover (SBX), and
the binary tournament selection. The used parameters
are the crossover probability pc = 1.0, the mutation
probability pm = 0.1, the SBX distribution index
ηc = 100 and the PM distribution index ηm = 100.

• PSO: The chosen variant uses a full-connected topology
with variable inertia factor [66]. For this PSO version
the parameters are the local factor C1 = 2.5, the global
factorC2 = 1.5, and the maximum and minimum values
of the inertia ωmax = 0.1 and ωmin = 0.

The above algorithm configurations were obtained by trial
and error, starting from the parameter values reported in their
corresponding researches and then systematically updating
them to minimize the total path length for the test scenario S6
(the most complex alternative regarding the complexity ρ, the
number of obstacles no and the number of control points n).

All the above optimizers are assigned with the same pop-
ulation/swarm size NP = 20 and the same number of gener-
ations/iterations Gmax = 2000 to perform fair comparisons.
The algorithms are implemented using the C# programming
language in a PC with a core i7 − 8th processor at 2.2 GHz
and 8 GB RAM.

B. EXPERIMENT RESULTS
Thirty independent runs of the DE, GA, and PSO optimizers
are performed for each scenario to show the effectiveness of
the proposal. It is important to highlight that there are no
unfeasible solutions by the end generation/iteration of these
algorithms, i.e., all alternatives generate collision-free paths.

The results of the descriptive statistical analysis are shown
in Table 2. The information in this table is grouped by sce-
nario, which is indicated in the first column. Each group
describes the results achieved by each optimizer. They
include the mean path lengthMean(J ) and the corresponding
standard deviation Std(J ), the length of the shortest path Jmin,
and the length of the longest path Jmax . The best results are
highlighted in boldface.
The Mean(J ) value in Table 2 indicates that DE can find

the best paths for S1 and S3. On the other hand, the GA
finds better paths for the rest of the scenarios and is closely
followed by DE in performance. In the case of the PSO,
it does not outperform the other optimizers. Regarding the
Std(J ) values, they describe the repeatability and confidence
of the results. In this sense, the GA obtains similar paths in
every run for all the scenarios and is followed by DE and the
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FIGURE 7. Paths obtained by each meta-heuristic optimizer for all scenarios.
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PSO in this order. Considering Jmin, DE gets the best overall
short paths in all cases, and according to Jmax , the GA reaches
the best overall long path for all the scenarios.

Despite the observed performance differences, the Std(J )
value exhibits small deviations (in the interval of 0.0526(m)
and 0.9248(m)) for the best optimizers DE and GA. It high-
lights the convergence level of the proposal towards the opti-
mal solution.

It is important to mention that while DE and the GA show
different advantages in the path-planning, only PSO is far
from the best performance in all comparisons. The above is
attributed to the lack of a selection mechanism in the PSO
operation, which is included in both DE and the GA.

Fig. 7 shows the thirty paths obtained by each optimizer
for all scenarios. In this figure, the green and red squares
represent the start and target points, respectively. A path of
darker color indicates that the length is closer to the Jmin value
in Table 2. Analogously, a path of lighter color points out a
length similar to Jmax in the same table.

The paths depicted in Fig. 7 can be contrasted with the
values in Table 2. In this figure, the paths of the GA appear
to be similar and evenly separated around a mean shape,
as suggested before by the Std(J ) value. On the other hand,
the paths obtained by DE appear to converge to a reduced set
of shapes. Although these shapes are visibly different, their
mean length is outstanding. Then, DE could be finding dif-
ferent local best solutions, i.e., different paths with congruent
lengths (regarding the low value of Std(J )). In the case of
the PSO, the achieved paths are dispersed, and a mean shape
cannot be easily distinguished. The above leads to the poor
performance discussed before.

Since all the optimizers have a non-deterministic opera-
tion and the result distribution is different than the normal,
additional non-parametric statistical analyzes are necessary
to confirm the best alternative [67]. In this way, the Wilcoxon
pairwise test is adopted in this work to draw robust conclu-
sions. This test allows finding significant median differences
of the length distribution obtained by two optimizers for
a single scenario. For this, a two-sided null hypothesis is
considered, and the statistical significance of the test is set
to 5%. The two-sided null hypothesis claims that the median
of two distributions is identical, and can be rejected if the
resulting p-value is less than 5%.
The results of the Wilcoxon test are observed in Table 3.

They are also grouped by scenario and show all possible
pairwise tests, as well as their resulting p-value. Moreover,
this table includes the R+ and R− values. The R+ value
indicates the times that the first optimizer overcomes the
second one, while the R− value indicates the opposite. The
best alternative in a pairwise test is shown in boldface.

In most of the pairwise tests, there is a clear winner, i.e.,
the p-value allows the rejection of the null hypothesis. Only
in the cases of S2 and S5, the performance of DE and the GA
are equally good, and the null hypothesis is accepted.

The results of the Wilcoxon test are summarized in Table 4
to aid the selection of the most suitable optimizer for the

TABLE 3. Results of the non-parametric statistical analysis.

TABLE 4. Summary of the non-parametric statistical analysis.

path-planning problem. According to the total number of
wins in this table, the DE algorithm has the overall best
performance, and is followed by the GA and the PSO in this
order.

Additionally, the paths achieved by the PrunedA-Star algo-
rithm are considered as a point of comparison to determine
the advantages and drawbacks of the proposal. The informa-
tion of these paths can be consulted in Table 5. This table
indicates the length J and the number of control points n of
the paths obtained by the Pruned A-Star for each scenario.

Compared to the worst paths found by DE (the
best-performing alternative), the ones of the Pruned A-Star
are between 10% and 37% longer. Even if the paths of
the Pruned A-Star are compared to those of PSO (the
worst-performing alternative), a noticeable improvement is
achieved with the proposal. This fact is attributed to the
use of the enhanced path-search mechanism in all the meta-
heuristics, which ensures that the obtained solutions are at
least equally good as those obtained by the Pruned A-Star.

The above differences describe a strong advantage of the
proposed path-planning approach concerning the power sav-
ing in the UAV, whose onboard battery is currently a critical
limitation.

A possible drawback of the proposal regarding the Pruned
A-Star method is the computational cost. Since the proposal
requires the path calculated by the Pruned A-Star method, its
cost is always greater than that of the last. In terms of compu-
tational time, the proposal requires about triple the time of the
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FIGURE 8. Paths obtained by the Pruned A-Star for all scenarios.

FIGURE 9. Paths obtained by the Pruned A-Star for all scenarios.

Pruned A-Star to generate an optimized path. Nevertheless,
the cost is affordable with the considered hardware, and the
mean time required to compute a path with the proposal for
scenario S6 (considered as the most complex) is 15 (s).

Regarding the shapes of the paths obtained by the Pruned
A-Star, they are shown in Fig. 8. Based on these shapes, it is
possible to observe some similarities with the paths presented
in Fig. 7. For example, the paths obtained by the PSO appear

to preserve many features of the original Pruned A-Star solu-
tions; hence its low performance can be explained. In the
cases of DE and GA, their paths present few coincidences
with those of the Pruned A-Star, which is confirmed by the
notable performance differences in Tables 2 and 5.

Finally, the paths achieved by the Pruned A-Star and the
best ones computed by DE are depicted in Figures 9 and 10,
respectively. Contrasting the paths in both figures, DE obtains
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FIGURE 10. Best paths obtained by DE for all scenarios.

TABLE 5. Deterministic results of the Pruned A-Star.

visibly smoother paths than the Pruned A-Star, i.e., paths with
fewer direction changes.

IV. CONCLUSIONS AND FUTURE WORK
The proposed path-planning approach finds feasible
(collision-free) paths for UAVs in continuous 3D environ-
ments. It is based on the solution of a global constrained
optimization problem. This problem aims to minimize the
objective function, which considers the overall path length
while satisfying the constraints related to the collisions of the
3D obstacles geometry and the path 3D shape.

The statement of the path-planing problem as a global
constrained optimization one entails several advantages. The
most representative is related to the computation of paths
in a continuous search space. In this way, the optimized
paths have higher performance when compared to solutions
from path-planning methods based on the discretization of
the search space such as A-Star. The above because the
latter methods only find a limited number of paths, while the
number of alternatives that the proposal can find is incom-
mensurable.

On the other hand, the use of simple 3D shapes to
represent the workspace (using an AABB), the obstacles
(through OBBs), and the path (adopting OBBs and Spher-
ical geometries), allows the efficient and affordable calcu-
lation of collisions (by the SAT). Moreover, it conforms

to a framework to establish a proper trade-off between
path-planning accuracy and computational cost.

By its own nature, the path-planning problems are com-
plex regarding features like high nonlinearity, multimodal-
ity, non-differentiability, and the lack of an initial guess
solution. So, meta-heuristics are exceptional candidates to
find suitable solutions. Due to the absence of a universal
meta-heuristic (as stated in the ‘‘No Free Lunch’’ theorem),
three well-known meta-heuristics, including DE, PSO, and
the GA, were adopted to show the proposal effectiveness for
three complex scenarios. All these methods are endowed with
an enhanced path-search mechanism in the initial solution set
and feasibility rules to handle the constraints.

The penalization methods included in meta-heuristics to
handle constrained problems do not discriminate unfeasible
solutions. The above may be dangerous for the UAV flight
mission. This difficulty is overcome in this work through
the use of a constraints-handling mechanism that allows the
searching for solutions by pondering first their feasibility and
then their convergence.

Moreover, the use of the enhanced path-search mechanism
in the meta-heuristics based on the proposed Pruned A-Star
method reduces the computation effort required to achieve the
first feasible path. Then, the computational burden is invested
in finding better performing paths.

After descriptive and non-parametric statistical analy-
ses over the results of six complex test cases, the paths
found by DE showed outstanding behavior in terms of
convergence and confidence level. In addition, the proposed
path-planning approach presents performance advantages
over a well-known and widely used method like A-Star.

As future work, the global constrained optimization prob-
lem presented in this work can be extended to a dynamic
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one [68] to handle changing and uncertain environments.
The new problemmust consider the time-varying information
of obstacles and threats within a visibility range. Then, the
solution to that problem will be the online tracking of the
optimal path [69]. Moreover, the assignation of simpler 3D
shapes to the workspace elements and the use of dynamic
versions of meta-heuristics [69] could be necessary to achieve
a real-time implementation and prevent the path calculation
from scratch.
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