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ABSTRACT Due to the potential applicability of spectrum sensing, cognitive wireless sensor networks have
attracted plenty of interest in the research community to improve the bandwidth utilization for practical
applications. To alleviate the effect of multi-path fading and resolve the problem of hidden terminal,
collaborative spectrum sensing (CSS) is regarded as effective technology to obtain better sensing accuracy.
However, CSS is usually vulnerable to the attack behaviors originated from malicious sensor nodes. In this
paper, an enhanced cooperative spectrum sensing scheme against SSDF attack based on Dempster-Shafer
evidence theory for cognitive wireless sensor networks is introduced. First, the holistic credibility of sensor
nodes can be evaluated according to the real-time difference between them and the statistical sensing
behaviors. Furthermore, the basic probability assignment function can be defined based on evidence theory,
and the credibility of sensor nodes can be estimated. Finally, by using the weighted probability assignment
for each cognitive sensor node, the fusion center can reduce the influence of malicious sensor nodes on
the final decision and ensure the reliability of reports from cooperative sensor nodes. Simulation results
demonstrate that the proposed method can resist SSDF attacks significantly and outperform the traditional
secure schemes in aspect of sensing accuracy.

INDEX TERMS Cooperative spectrum sensing, Dempster-Shafer evidence theory, data falsification, cogni-
tive wireless sensor networks.

I. INTRODUCTION
By deploying spatially distributed autonomous sensor nodes,
wireless sensor networks (WSNs) can monitor a wide range
of ambient conditions and produce plenty of potential fields
of applications [1]. Technically, most of the solutions for
WSNs applications operate in unlicensed frequency bands
and result in overcrowded status of the unlicensed spectrum
bands, which degrades the performance of coexist systems
significantly. To address above challenges, cognitive wireless
sensor networks (CWSNs) has emerged to implement the
opportunistic access to the spectrum and permit the sensor
nodes to adapt their internal parameters for more reliable
and efficient communication [2], [3]. It should be noted that
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the cognitive sensor node dynamically access the idle spec-
trum without affecting the authorized users, which provides a
feasible measure to solve the problem of wireless spectrum
resource scarcity for CWSNs. It also provides a new idea
to solve the burst demand of wireless services to realize the
utilization of spectrum resources [4].

To resolve the hidden terminal problem and alleviate the
effect of multi-path fading, CSS is regarded as effective tech-
nology to obtain better sensing accuracy as well as reduce
the probability of interference to authorized users. However,
multiple sensor nodes jointly decide whether the primary
user is occupying the spectrum resources, and there are some
risks while obtaining benefits from spatial gains. During the
process of CSS, the sensing results of each node need to be
sent to the fusion center (FC) or other nodes for the data
gathering or final decision making [5], [6]. Once the wrong
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sensing information provided by malicious users is mixed in
the fusion process, the wrong decision will be made, and the
current status of authorization channels will be misjudged.
Technically, spectrum sensing falsified data (SSDF) attack
is one of the most serious threats in cooperative spectrum
sensing [7]. For the sake of protecting the primary users from
the interference, the FC require to gathering the reports from
cooperative sensor nodes with conservative fusion strategies.
Under the constraints, a small number of malicious users
may mislead the FC to make a wrong decision [8], [9].
Therefore, it is of great significance to provide the CSS
with secure mechanism against SSDF attacks. Therefore,
in this paper, we propose an enhanced cooperative spec-
trum sensing scheme against SSDF attack, which employs
Dempster-Shafer evidence theory to evaluate the credibility
of sensor nodes. Generally, the major contributions of our
paper can be summarized as follows:

i) evaluate the holistic credibility of sensor nodes according
to the real-time difference between them and the statistical
sensing behaviors.

ii) define the basic probability assignment function based
on evidence theory, and propose a method to estimate the
credibility of sensor nodes.

iii) utilize the weighted probability assignment for cooper-
ative nodes to reduce the influence of malicious nodes on the
fusion decision.

The remainder of the paper is organized as follows.
Section 2 reviews the related works. Section 3 introduces
the CSS method with energy detection and traditional SSDF
attack types. The proposed cooperative spectrum sensing
scheme against SSDF attack based on Dempster-Shafer evi-
dence theory is presented in Section 4. The simulations and
analysis are provided in Section 5, and the conclusions are
presented in Section 6.

II. RELATED WORK
The emergence of cooperative spectrum sensing enables the
secondary users (SUs) to acquire more reliable messages by
sharing their sensing results, which improves the accuracy of
sensing performance [10]. The whole process of CSS can be
summarized as sensing stage and data fusion stage. SSDF
attack often occurs in the stage of data fusion, in which
malicious users can mislead the channel availability decision
by sending false information [11].

Zhou et al. [12] proposed a defense algorithm based on
Bayesian reputation model, and the main idea is to treat the
cooperation process between cognitive radios as service and
evaluation phase. The reputation value of SUs reflects their
service quality, and the reputation value of secondary users
will be updated by the reputation model. To resist proba-
bilistic SSDF Attack, Wu et al. [13] introduced a weighted
sequential probability ratio test scheme against SSDF attack,
which integrates the reputation value of SUs into weight
coefficient for sequential probability ratio test. By calculating
the SU’s suspicious degree, Liu et al. [14] proposed a defense
model against SSDF attack, in which the defense model can

distinguish malicious users and honest users and remove the
incorrect report data of malicious nodes. By estimating attack
strength, Sharifi et al. [15] proposed a novel method based
on hard decision rule to obtain the optimum threshold value
of voting and minimize the Bayes risk. By mathematical
analysis of the upper and lower bounds of the theshold value,
Wang et al. [16] proposed a dynamic threshold updating
strategy based on the observations of the historical fusion
value to defend against the probability SSDF attacks. When
malicious users account for certain proportion of secondary
users, the launch of large-scale SSDF attacks will make the
system attain wrong sensing results. In such case, the above
defense mechanisms are difficult to resist SSDF attacks.

To resolve the problem of distortion of data fusion in
distributed spectrum sensing, Chen et al. [17] investigated
some traditional data fusion techniques in terms of the
robustness against Byzantine failures, and they proposed a
reputation-based mechanism to the sequential probability
ratio test. Chen et al. [18] applied Modified Grubbs test
and employed Conjugate Prior-based theory to detect the
malicious users based on the soft fusion scheme, in which
the sensing reports is taken as a stochastic process. By inves-
tigating the malicious node’s manipulation of sensing result
independently or collaboratively, Hyder et al. [19] proposed
an adaptive reputation-based clustering mechanism, which
requires no prior knowledge of distribution of attacking nodes
and is applicable for a wide range of attacking scenarios.
Focusing on the massive attacks, Sharifi et al. [20] made use
ofWeighted Likelihood Ratio Test to estimate the credit value
of each SU. Rawat et al. [21] presented a reputation based
strategy to identify SSDF attackers. The shortage is mainly
the inadequate identification of malicious and normal users
as high percentage of independent attackers. Focusing on
selfish attacks, Jo et al. [22] constructed an effective detection
model for selfish cognitive radio attack, in which legitimate
CR neighbors cooperate to prevent the selfish node from
occupying all or partial resources of multiple channels.

Although plenty of the literature and comprehen-
sive research on SSDF attack and defense has been
made, most of them will be not specifically suited for
CWSNs [23], [24]. Basically, the reason is that the framework
of resource-constrained sensor nodes are not be considered,
especially in aspect of the limitation of processing capacity
and battery power. In addition, most CSS methods only
decide whether a node is trusted according to the difference of
the data upload in current sampling period, and do not make
full use of the statistical information of its historical sensing
behavior. However, due to the dynamic characteristics of
wireless channel, those differences are unilateral, sometimes
even inaccurate.

III. SYSTEM MODEL
A. COOPERATIVE SPECTRUM SENSING
CSS can overcome the shortcomings of individual spectrum
sensing, so as to improve the spectrum sensing accuracy.
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However, there exist certain security problems in either cen-
tralized or distributed cooperative spectrum sensing. Some
malicious users will report falsified sensing information,
which may be erroneous local detection results or modified
sensing data, to maximize their personal interests rather than
achieve high spectrum utilization [25], [26]. Therefore, the
countermeasures will cope with the security threats only by
determining the type of attack.

CSS usually consists of the following steps: local spectrum
sensing, reporting transmission and global decision. Each
cognitive sensor node first conducts local spectrum sensing
independently for sampling the primary user’s signals, and
then sends the sensing result to the FC through the common
control channel for final fusion. Finally, the received sensing
results will be combined by linear fusion method, and the
final decision results can be obtained according to the preset
criteria.

Owing to easily implementation and not requiring any prior
knowledge of signal characteristic about primary user, energy
detection method is widely applied in CWSNs for local
sensing [27]. Hence, the spectrum sensing will be modeled
mathematically as a binary hypothesis test, and the sample of
i-th sensor node at t-th interval can be expressed as:

Ei(t) =

{
ni(t), H0

hisi(t)+ ni(t), H1
(1)

where H0 indicates that the detected channel is available for
sensor nodes, and H1 indicates that the detected channel is
currently occupied by PU. si(t) is the i-th sampling value
of the transmitted signal from the primary user at t-th time
interval. Besides, hi represents the amplitude gain of the
channel, and ni(t) is the sampling value of the noise signal
by the i-th sensor node at t-th time interval. It is assumed that
the noise signal by CR users is additive Gaussian white noise
with mean value of 0 and variance of σ 2

i , and the noise and the
transmitted signal from the primary user will be uncorrelated.

If each sensor node collects M samples during the signal
observation interval, the energy detection result of the i-th
sensor node can be expressed as

Xi =
M∑
t=1

[Ei(t)]2 (2)

Under the hypothesis H0, Xi/σ 2
i obeys the central chi

square distribution with degree of freedom M . While under
the hypothesis H1, it obeys the non central chi square distri-
bution of degree of freedomM , and the non central parameter
is λi. Hence, the distribution of Xi/σ 2

i can be expressed as:

Xi/σ 2
i ∼

{
χ2
M , H0

χ2
M (λi) , H1

(3)

where λi = Mµi and µi = h2i
M∑
t=1

(Ei (t))2/Mσ 2
i means the

average SNR of received signals.

According to the central limit theorem, if the number of
the samples is large enough, Xi can be approximately normal
distribution with the mean value

E (Xi) =

{
Mσ 2

i , H0

(M + λi) σ 2
i , H1

(4)

and the variance

Var (Xi) =

{
2Mσ 4

i , H0

2 (M + 2λi) σ 4
i , H1

(5)

Thus, the false alarm probability Pf ,i and detection proba-
bility Pd,i of the i-th sensor node can be expressed as

Pf ,i =
1
2
erfc

(
γi −Mσ 2

i
√
2Mσ 2

i

)
(6)

Pd,i =
1
2
erfc

(
γi − (M + λi) σ 2

i
√
2 (M + 2λi)σ 2

i

)
(7)

where γi denotes the local decision threshold of the i-th sensor
node.

After completing the local spectrum sensing, all sensor
nodes will send the local sensing results to the FC through
the common control channel. Since error-correction coding
in the physical layer can overcome the impact of noise on the
transmitted information, we assumed that the sensor nodes
report the sensing data to the FC through the error free
common control channel.

B. SSDF ATTACK TYPES
By sending falsified observations, malicious nodes aim
to create interference to primary transmitters. The four
cases will be considered in common SSDF attack, which
includes Always-busy, Always-free, Always-opposite and
Random attack [28]–[30]. Among them, Always-opposite
attack can be regarded as the combination of Always-busy
and Always-free attack.

Always-opposite attack has a serious damage to the normal
operation of the whole system. In soft fusion, two strategies
launched by the attackers can achieve the always-opposite
attack. The first strategy can be specifically described as:
when the local decision of malicious user indicates the inexis-
tence of the PU, the malicious user adds a component τ to the
sensing data. Otherwise, the component τ will be subtracted
to the sensing data, which result in the false impression of
PU’s existence. The secondary strategy is that the malicious
user generates the reporting data in accordance with a certain
distribution, i. e., when the local decision determines the PU’s
presence, the attacker falsifies the reports with the distribution
under hypothesis H1, and vice versa.
In addition, the probabilistic attack refers to that malicious

users will launch SSDF attacks with specific probability.
Malicious users can either choose always-busy, always-free
or always-opposite attack strategies to change their reports
when launching attacks, or send real sensing results directly
when they do not launch attacks. Since it is very hard for
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cognitive radio systems to deal with the probabilistic attacks
based on always-opposite, this paper mainly studies the
impact of such attacks on cooperative spectrum sensing based
on soft fusion. The detailed discussions about the attack types
are given as follows.

1) SCENARIO 1
Let θi denote the attacking probability of the malicious node.
The larger value of θi indicates that the more frequent the
malicious users launch attacks, which means that more seri-
ous damage can be created to the cognitive radio network.

The attack strategy of scenario 1 can be described as
follows: the malicious user decides whether to launch an
attack with probability θi. Once the malicious user launches
an attack, it will first make a local decision and immediately
generate the reporting which is opposite to the sensing result
and send to the FC afterwards.

Let X∗H0,i
and X∗H1,i

be the energy sensing result sent by
the i-th malicious user to fusion center under hypothesis H0
and H1, respectively. Then, the distribution of sensing results
received by the fusion center from malicious users under
hypothesis H0 and H1 can be expressed in (8) and (9), as
shown at the bottom of the next page.

2) SCENARIO 2
The attack strategy by malicious node in scenario 2 is to add
or subtract a component on the actual sensing data as we
discussed before. When a malicious user decides to launch
an attack, it will modify the sensing data based on the local
decision so as to mislead the FC to make the wrong decision.

Suppose that the attacking probability of i-th malicious
node is θi, and themodified component value of superposition
or subtraction is τi. Thus, in scenario 2, the distribution of
sensing results received by the fusion center from malicious
users under hypothesis H0 and H1 can be expressed in (10)
and (11), as shown at the bottom of the next page.

where τi = ωλiσ 2
i , and ω ∈ (0, 1)

IV. PROPOSED METHOD
A. EVIDENCE THEORY
Owing to the advantage of reasoning with uncertainty,
Dempster–Shafer theory is widely applied in network secu-
rity, intelligent search and other fields [31]. Especially in
information fusion, evidence theory can deal with the uncer-
tain problems, such as signal detection, data classification,
target recognition and so on [31]. Due to the randomness of
the wireless channel, the detection of PU’s signal is uncertain
to detect. To resist the SSDF attack and enhance the accuracy
of decision making in CWSNs, in this paper, we utilize the
Dempster–Shafer theory to construct mathematical model for
combining evidence from different sensor nodes and evaluate
their credibility.
Definition 1: Assuming that 2 = {ρ1, ρ2, · · · , ρn} is a

limited recognition framework. The number of elements is
finite and mutually exclusive framework [33], [34]. If exists

8 : 22→ [0, 1] and8(∅) = 0,∑
Ak⊆2

8(Ak) = 1, (12)

where 8 can be defined as the basic probability assignment
(BPA) function. ∀Ak ⊆ 2 and 8(Ak) > 0, then Ak is a
focal element of 2. Meanwhile, it reflects the credibility of
the evidence to Ak .

Considering that the detection of PU’s activity can be
regarded as a binary hypothesis testing, and the discernment
framework based on Dempster-Shafer theory can be defined
as � = {H0,H1} [35]. During the phase of energy detection,
the BPA function of the i-th sensor node will be defined in
the form of cumulative function as follows:
8t
i (H0) =

∫
+∞

xtEi

1
√
2π

exp

(
−

(
x −Mσ 2

i

)2
2Mσ 4

i

)
dx

8t
i (H1) =

∫ xtEi

−∞

1
√
2π

exp

(
−

(
x − (M + λi) σ 2

i

)2
2 (M + 2λi) σ 4

i

)
dx

(13)

All sensor nodes will send their BPAs to FC, and the report
of i-th sensor node at the t-th sensing slot can be represented
as 8t

i = [8t
i (H0) ,8

t
i (H1)].

In order to eliminate or mitigate the performance degrada-
tion caused by attackers, reports from different sensor nodes
should be treated differently. In our scheme, the credibility
of each sensor node is evaluated by its credibility, which
involves two variables: current reliability and historical rep-
utation. Among them, the current reliability of i-th sensor
node is related to the BPA function of corresponding sensor
node at certain time interval for spectrum sensing. In addition,
the historical reputation should reflect the consistence of
the sensor node’s previous reporting with the final result.
By combining those two variables, we can make good use
of real-time and statistical information about sensor node’s
credibility.

B. FUSION DECISION BY DEMPSTER-SHAFER RULE
Since the reports from a malicious user are falsified occa-
sionally according to the attacking probability, they will not
be consistent with the ones from other sensor nodes all the
time. Therefore, the current reliability of sensor node can be
evaluated based on its reports’ similarity with other sensor
nodes at each time interval. Firstly, according to the reporting
submitted by each sensing node, the probability allocation
value of the decision result is calculated. The probability
allocation vector of each node will be taken as evidence, and
the Jousselme distance is estimated to evaluate the degree of
conflict between evidences. Then, the trust degree of each
sensing node is determined according to the obtained evi-
dence conflict, and the weight value can be assigned. Sec-
ondly, the weighted combination of above evidences should
be modified to achieve the purpose of reducing the evidence
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conflict. Finally, the decision will be obtained through the
fusion of evidence theory.
Definition 2: Suppose that 8i and 8j are BPA functions

in recognition framework 2, the Jousselme distance [36]
between relevant evidences can be defined as:

dJ
(
8i,8j

)
=

√
1
2

(
8i −8j

)T
9
(
8i −8j

)
(14)

where9 denotes a matrix with the dimensions of
(
22 − 1

)
×(

22 − 1
)
, and 9(u, v) = u∩v

u∪v , u and v is the subset of 2.
Next, the Jousselme distance can be calculated by introduc-

ing the evidence from each sensing node into the Eq. (15), and
then we can obtain the evidence distance matrix as:

D�

=


0 dJ (81,82) · · · dJ (81,8N )

dJ (82,81) 0 · · · dJ (82,8N )
...

...
. . .

...

dJ (8N ,81) dJ (8N ,82) · · · 0


(15)

Also, the matrixD� reflects the degree of conflict between
the evidences obtained by each cooperative sensing node.
The similarity coefficient in the original Jousselme distance
shows that each element is calculated according to the same
similarity criterion, which prove the basic probability assign-
ment values in set2 be positive. However, the basic probabil-
ity distribution of test statistics of each sensor node is uneven
in practical applications, and the similarity measurement of
evidence is also different.

Therefore, the trust degree between the evidences can be
deduced based on the degree of conflict among the evidences,
and it can be expressed by the matrix R:

R =


1 r12 · · · r1N
r21 1 · · · r2N
...

...
. . .

...

rN1 rN2 · · · 1

 (16)

where rij = 1− dJ
(
8i,8j

)
.

According to the abovematrix, the credibility of i-th sensor
node’s evidence relative to j-th node can be estimated as:

SPi =
N∑

j=1,j 6=i

rij (17)

By normalizing the credibility of each node’s evidence,
we can get their respective weights as follows

wi =
SPi
N∑
i=1

SPi

(18)

Furthermore, the FC obtains the modified evidence by
weighting the evidence of each node as:{

8̂t
i (H0) = wi ×8t

i (H0)

8̂t
i (H1) = wi ×8t

i (H1)
(19)

Consequently, by employing the combination rule of
Dempster-Shafer theory, the aggregated result under different
hypotheses can be expressed as:

8t (H0) = 8̂
t
1 (H0)⊕ 8̂

t
2 (H0)⊕ · · · ⊕ 8̂

t
s (H0)

=

∑
∩Ak=H0

s∏
i=1
8̂t
s (Ak)

1−
∑
∩Ak=∅

s∏
i=1
8̂t
s (Ak)

(20)

8̂t (H1) = 8̂
t
1 (H1)⊕ 8̂

t
2 (H1)⊕ · · · ⊕ 8̂

t
s (H1)

=

∑
∩Ak=H1

s∏
i=1
8̂t
s (Ak)

1−
∑
∩Ak=∅

s∏
i=1
8̂t
s (Ak)

(21)

where s is the number of sensor nodes whose BPAs are
selected for result aggregation at the t-th time interval.

Finally, the final decision will be conducted by the FC by
combing the above aggregated result as follows:

FD =

{
0, Decide H0 if

8̂t (H1)

8̂t (H0)
≤ η,

1, Otherwise.
(22)

where η is the decision threshold.

X∗H0,i ∼

{
N
(
Mσ 2

i , 2Mσ
4
i

)
, With probability θiPf ,i + (1− θi) ,

N
(
(M + λi) σ 2

i , 2 (M + 2λi) σ 4
i

)
, With probability θi

(
1− Pf ,i

)
,

(8)

X∗H1,i ∼

{
N
(
Mσ 2

i , 2Mσ
4
i

)
, With probability θi Pd,i,

N
(
(M + λi) σ 2

n , 2 (M + 2λi) σ 4
i

)
, With probability 1− θi Pd,i,

(9)

X∗H0,i ∼


N
(
Mσ 2

i , 2Mσ
4
i

)
, With probability 1− θi,

N
(
(M + λi) σ 2

n − τi, 2 (M + 2λi) σ 4
i

)
, With probability θi Pf ,i,

N
(
(M + λi) σ 2

i + τi, 2 (M + 2λi) σ 4
i

)
, With probability θi

(
1− Pf ,i

)
,

(10)

X∗H1,i ∼


N
(
Mσ 2

i , 2Mσ
4
i

)
, With probability 1− θi,

N
(
(M + λi) σ 2

i − τi, 2 (M + 2λi) σ 4
i

)
, With probability θi Pd,i,

N
(
(M + λi) σ 2

i + τi, 2 (M + 2λi) σ 4
i

)
, With probability θi

(
1− Pd,i

)
,

(11)
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C. IDENTIFICATION OF ATTACKERS
The historical reputation is based on the overall evaluation
of sensor node’s sensing data during the past time intervals.
Although not real-time, it can provide useful references on the
sensor node’s behavior characteristics [37]. In addition, it is
more stable and can be less affected by the results of random
attacks. Only when a certain reputation value is reached,
can it be proved that the sensing data and behavior of the
sensor node are highly consistent with the overall analysis of
the system during the continuous periods. Additionally, for
malicious node, it is often necessary to launch an attack after
the accumulated reputation value exceeds a certain threshold,
so that the attack behavior will be effective.

The reputation update mechanism proposed in this paper
assumes that all nodes are considered to be reliable during
the initialization stage, and the reputation value is R0i . After
receiving the sensing data from all nodes, FCwill estimate the
final state of PU and compare it with the local observation
value received by each node. The reputation value will be
updated according to the following criteria: (1) If the obser-
vation value of the participating node is rejected or not, the
final decision will not be affected conversely and the PU’s
signal can be correctly detected. Then, the reputation will be
increased. (2) For the case that the final decision is contrary to
the observation value, the range of the reputation’s reduction
will be determined according to the average value of histori-
cal reputations. The detained update strategy is expressed as:

Rti =



Rt−1i + 1, if excluding Xi does not affect the
fusion result,

Rt−1i − 1, else if
1
T

T∑
i=1

Rti − R
0
i > (1− Perror,i)t,

Rt−1i − ξ, otherwise.
(23)

where ξ denotes the penalty factor, and ξ > 1. Besides,
Perror,i = Pf ,iP0 + (1− Pd,i)P1 and it represents the sensing
error probability of i-th node, and P0 and P1 indicate the
probability of PU’s presence or absence respectively.

V. SIMULATIONS AND ANALYSIS
In this section, the simulation results are presented to eval-
uate the performance of the proposed method by MatLab.
We setup a CWSN with 20 sensor nodes and a FC, and
assume that the malicious nodes can change their sensing
report to confuse the final decision. The additive white Gaus-
sian noise (AWGN) channel is considered, and the idle and
busy probabilities of the licensed channel are set as 90% and
10%, respectively. Initially, the FC chooses some of sensor
nodes for CSS randomly. Through Monte-Carlo methods,
the experimental scenario has been executed and all results
are obtained over 10000 runs.

Figure 1 shows the effect of the proportion of mali-
cious users and attacking probability on the total error
probability of the system in attack scenario 1. From the

FIGURE 1. Total error probability under scenario 1.

experimental results, we can observe that the total error prob-
ability increases linearly with the increase of attack proba-
bility. In addition, more malicious nodes will result in high
total error probability. The reason is that for a large number
of attackers, their merging attack behaviors will becomemore
severely.

Figure 2 also shows the total error probability under sce-
nario 2. In contrast, when the attacking probability is low,
the error probability in this scenario is lower than in sce-
nario 1. Besides, it illustrates that when the number of mali-
cious nodes is small, the attack strategy in scenario 2 is
slightly less destructive to the whole CSS system. How-
ever, when the attacking probability exceeds 55%, the error
probability will increase rapidly. Moreover, the size of the
modified component also has a certain impact on the sensing
performance. When the modified component is large and
the attacking probability is high, the total error probability
is significantly higher than other parameter settings. On the
whole, the proposed method can effectively suppress the two
attack strategies, and the total error probability is less than
50%. It can ensure that even when the attacking probability
is close to 1, the system will not be completely useless.

FIGURE 2. Total error probability under scenario 2.
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Next, we compare with other traditional methods,
including MTMS [38], Trusted-CSS [39] and TCAM [40],
with respect to the detection probability, false alarm
probability and the detection rate of malicious nodes being
identified. Figure 3 shows the comparison of detection prob-
ability versus different percentage of malicious nodes under
scenario 1. It can be found that when the proportion of
malicious users is less than 30%, the detection probability
performance of all algorithms is basically not affected. How-
ever, once the proportion of malicious users is more than
50%, this attack strategy obviously affects the performance of
cooperative spectrum sensing. Comparedwith othermethods,
our proposed method has been able to show better detection
probability.

FIGURE 3. Comparison of the detection probability versus different
percentage of malicious nodes under scenario 1.

Figure 4 shows the comparison of the false alarm
probability versus different percentage of malicious nodes
under scenario 1. When the proportion of malicious nodes
exceeds 60%, the false alarm probability of TCAM increases
rapidly and is significantly higher than other methods.
It shows that TCAM is not robust enough to resist SSDF
attack. When the proportion of malicious nodes is less
than 50%, the curve corresponding to MTMS can better

FIGURE 4. Comparison of the false alarm probability versus different
percentage of malicious nodes under scenario 1.

approximate Trusted-CSS. However, when the proportion of
malicious users exceeds 50%, the false alarm probability of
MTMS increases sharply, which indicates that the cooper-
ative sensing method based on the coordination of trusted
nodes can not effectively resist the cumulative attack when
there are more malicious users in the cooperation.

The detection rate of malicious nodes is defined as the
ratio of malicious nodes identified to the total number of
actual malicious nodes. Figure 5 shows the comparison of
the detection rate versus different percentage of malicious
nodes under scenario 1. When the attacking probability is
small, malicious users may disguise as normal users and do
not launch attacks. In this way, the FC will treat them as
trusted nodes and unable to effectively identify. Our pro-
posed method and Trusted-CSS are obviously better than
other methods. MTMS is sensitive to the selection of the
trusted cooperative nodes set. When malicious users launch
dynamic attacks non-uniformly, the attacking probability will
be constantly varied. Therefore, MTMS can be easy to fall
into local optimum.

FIGURE 5. Comparison of the detection rate versus different percentage
of malicious nodes under scenario 1.

Figures 6, 7, and 8 show the performance comparison ver-
sus different proportion of malicious nodes under scenario 2.
It can be seen that with the increase of the proportion of

FIGURE 6. Comparison of the detection probability versus different
percentage of malicious nodes under scenario 2.
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FIGURE 7. Comparison of the false alarm probability versus different
percentage of malicious nodes under scenario 2.

FIGURE 8. Comparison of the detection rate versus different percentage
of malicious nodes under scenario 2.

malicious users, the decrease of global detection probability
of cooperative spectrum sensing is significantly higher than
that of attack scenario 1. When the proportion of malicious
users in the network is 60%, the global detection probability
of MTMS and Trusted-CSS is reduced to less than 0.9. The
detection probability of TCAM is only 55.3% when the mali-
cious node is 80%. At this time, the cognitive radio network
can be considered as not working normally. Comparatively,
when the proportion of malicious users reaches 80%, our
proposed method can maintain high detection probability
and low false alarm probability. It demonstrates that our
proposed method can effectively compensate for the perfor-
mance loss caused by these two SSDF attacks. In addition,
we can observe that MTMS and Trusted-CSS can achieve
approximate performance of false alarm probability when the
proportion of malicious users is less than 50%. However,
when the number of malicious users dominates the CSS
system, i.e., the proportion of malicious users exceeds 50%,
the performance of Trusted-CSS decreases significantly.

As for the malicious nodes being identified, the attacks
in scenario 2 behave more confusedly than in scenario 1.
Those malicious users with low attack probability may not

launch attacks in some sensing slots, so their superimposed
components have little impact on the final fusion results. And
then, the fusion center cannot identify the malicious nodes
explicitly. From the simulation results, with the increasing
proportion of malicious users, if the malicious users can not
be identified effectively, the normal nodes will be erroneously
identified due to their reports contrary to the fusion result.
As a result, the sensing process will be dominated by mali-
cious users, which leads to a sharp decline in global sensing
performance. Our proposed method based on D-S evidence
theory can make full use of the cumulative reputation, i.e., the
FC can still employ the irregularity of sending data to distin-
guish the normal users from the malicious users effectively.
Thus, it can make the normal secondary users occupy the
dominant position in the decision process, and improve the
robustness of cooperative sensing.

VI. CONCLUSION
In this paper, an enhanced cooperative spectrum sensing
scheme against SSDF attack based on Dempster-Shafer evi-
dence theory for cognitive wireless sensor networks is intro-
duced. First, the holistic credibility of sensor nodes can be
evaluated according to the real-time difference between them
and the statistical sensing behaviors. Furthermore, the basic
probability assignment function can be defined based on evi-
dence theory, and the credibility of sensor nodes can be esti-
mated. Finally, by using the weighted probability assignment
for each cognitive sensor node, the fusion center can reduce
the influence of malicious sensor nodes on the final decision
and ensure the reliability of reports from cooperative sensor
nodes. Analytical and simulation results have shown that
the proposed method can resist SSDF attacks significantly
and outperform the traditional secure schemes in aspect of
sensing accuracy.
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