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ABSTRACT With the large-scale integration of wind generation into the power grid, violent wind speed
fluctuation will cause wind power ramp events that can affect the safe and stable operation of power
systems. In this article, a forecasting method for day-ahead ramp events is proposed based on wind speed
event definition and profile analysis. Firstly, event-based K-means (EB-K) clustering is used to preprocess
historical wind speed. Typical event indexes, such as change rate, amplitude, and time intervals are then
extensively used to describe ramp event characteristics and decrease the computational burden for the
following event identification within given intervals. Then, the similarity of wind power event set is
obtained through empirical probability estimation of successive history ramp events. Typical event clustering
identification (TECI) algorithm based on EB-K clustering, wind capacity events, and event cluster profiles
is proposed to search the maximum occurrence probability for historical data with the similarity indicator.
Finally, a case study on a practical farm in Hebei, China is used to verify the effectiveness and accuracy of
wind capacity ramp event forecasting by using TECI.

INDEX TERMS Ramp events, event clustering identification, wind power uncertainty, event forecasting.

NOMENCLATURE
A. ACRONYMS
ARIMA Autoregressive Integrated Moving Average
ASD Atomic Sparse Decomposition
BP Back Propagation Neural Network
DRE Down-Ramp Event
EB-K Event-Based K-means
EPDF Empirical Probability Distribution Function
MAPE Mean absolute percentage error
OpSDA Optimized Swinging Door Algorithm
TECI Typical Event Clustering Identification
URE Up-Ramp Event

B. VARIABLES
nk Number of k-th sample data sets
1t Time interval
ρw Air density
A Wind turbine area
S Unit area
Cp Wind energy utilization coefficient
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M Number of occurring ramp events within the
next 2 hours

N Number of similar forecast events patterns
corresponding to the key mode of the k-th
cluster

K Number of clusters
v Wind speed
α Value of weight
Nk Number of wind capacity events in the

K-th cluster
m/m+ n Lower / upper limit of the time interval
vthr Value of threshold
1v Difference of wind speed in a time interval
1Q Difference of wind capacity in a time

interval
ei A wind capacity ramp event
βw Pitch angle of wind turbine
λw Blade tip speed ratio
Qre·(ti+1ti) Wind capacity from time ti to ti +1ti
vtre Wind speed at time t
{Vre−set·p} Wind capacity event sets
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{Wre−set·q} Ramp event sets
fī Ramp amplitude of the sample event
Rī Change rate of the sample event
ρpq Pearson correlation coefficient

fre·p Ramp amplitude of the key wind capacity
event pattern

Rre·p Change rate of the key wind capacity event
pattern

fre·q Ramp amplitude of the wind capacity
event sequence

Rre·q Change rate of the wind capacity
event sequence

EPre−set·nk Relation between history actual ramp
event sets and forecasting ramp event sets

pt0re·i Occurrence probability of ramp event set i
pt0re Probability of a ramp event at time t0
Qre(p.u.) Amplitude of the ramp event during the

time interval (m,m+n)
Qjre(p.u.) Amplitude of the ramp event in the j-th

similar wind capacity event pattern
Q(%) Percentage of the total installed capacity

for a wind farm

I. INTRODUCTION
Wind energy has achieved rapid development in recent years
worldwide [1]. However, due to the intermittency of wind
resources, large-scalewind farm power output can be severely
affected by weather and operation constraints. Thus, ramp
events are defined to describe dramatic wind power fluctu-
ations in the short term [2], [3]. They may seriously threaten
the security of power systems, particularly steam turbines,
and generators which have strict ramp constraints [4], [5].
In February 2008, the active power output of the Texas
Wind Farm in the US dropped from 170MW to 0 MW
within 15 minutes. A total of 1150MW power was cut off
from the grid, and the frequency dropped to 59.85Hz [6], [7].
Therefore, it is necessary to forecast uncertain ramp events
with high accuracy, which can reduce the uncertainty of wind
power [8] and facilitate the use of predictive control [9], [10].

Wind power ramp events caused by violent wind speed
changes [11]–[13] can generally be divided into the up-ramp
event (URE) and down-ramp event (DRE) [14], [15]. When
a strong low-pressure system (or cyclone), low-altitude jet,
thunderstorm, gust, or similar extreme meteorological event
occurs, the corresponding power output of a wind farmwould
fluctuate sharply in a short period. A URE occurs when wind
speed changes from weak to strong, or the speed on a wind
turbine is higher than the cut-out wind speed [16]. Oppositely,
a DRE occurs when the wind power drops suddenly in a short
time or is withdrawn from the main grid [17], [18].

At present, many researchers have studied the evaluation
and detection methods of wind power ramp events. Reference
[19] proposes a risk indicator that can assess ramp events
and risk assessment based on the Monte Carlo method.

A high-risk ramp event detection method is proposed in [20]
based on the boundary area, providing a standard for ramp
event risk analysis to determine the boundary of the wind
power security region. In [21], an optimized swinging door
algorithm (OpSDA) is proposed to detect ramp events by a
dynamic programming algorithm, which has advantages in
calculating cost and performance.

The forecasting of ramp events could be generally divided
into two categories: indirect forecasting and direct forecast-
ing. For the former, wind power is usually forecasted accord-
ing to traditional point-based forecasting methods, and the
ramp events forecasting is achieved indirectly by defining
and detecting from discrete forecasting power points. Ref-
erence [22] investigates wind power in different situations
by building a multivariate time sequence model, in which
the ramp change rate is used to indirectly forecast ramp
events. In [17], an Autoregressive Integrated Moving Aver-
age (ARIMA) algorithm is proposed to forecast wind power
ramp events through calculating wind speed and converting
wind speed into power. Reference [23] adopts a wind ramp
forecasting method based on empirical mode decomposition
to improve forecasting accuracy, which does not distinguish
between upward and downward ramp events. For the latter,
ramp events are generally extracted by using both historical
data and forecasted wind speed, and the forecasting of wind
power is not necessary in this case. In [24], the optimized
revolving door algorithm is proposed to improve forecasting
accuracy. In [25], a data mining algorithm is proposed to
classify and forecast ramp events. In [18], an extreme value
analysis method is proposed to forecast ramp events, depend-
ing on data stability. Furthermore, a combined forecasting
model based on the atomic sparse decomposition (ASD) and
back propagation (BP) neural networks are proposed in [26]
to avoid the impact of historical data instability on results.

Most existing research relies on deterministic analysis
methods, while the uncertainties of ramp events are ignored.
The probability analysis methods are powerful for dealing
with uncertainty problems. Reference [27] proposes a proba-
bilistic forecasting method to analyze characteristic parame-
ters. Reference [28] adopts a data-driven probability inequal-
ity model to estimate the upper boundary of ramp events
with a given probability. In the aforementioned work, most
researchers focus on the detection and indirect forecasting of
ramp events, viewed as point-based or indirect forecasting
methods by using necessary power data, such as combined
methods, sampling training, and interval analysis.

To guarantee forecasting accuracy for ramp events, reduce
the computational burden, this article proposes a new typical
event clustering identification (TECI) algorithm in event sets
for the sequence of wind capacity ramp events, which is
different from the point-based forecasting and single event
analysis methods. The main contributions of this article are:

(i) Event-based K-means (EB-K) clustering algorithm can
cluster ramp events by using empirical probability estimation
and key pattern search, thus reducing the computational bur-
den caused by the point-based iteration strategy.
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(ii) Building event sets can effectively avoid the complexity
of time series. According to the key event sets and event
characteristics, the problems caused by the change of event
correlation and time interval are solved.

The remainder of this article is organized as follows. The
definition and statistical characteristics of ramp events are
given in Section II. Typical event clustering identification
includes history data processing, the key pattern of clustering,
clustering number determination are proposed in Section III.
The ramp events forecasting algorithm based on TECI is
described by using the empirical probability estimation of
event sequence in Section IV. The effectiveness of the pro-
posed forecasting method is verified by using case studies in
Section V. Section VI draws relevant conclusions.

II. DEFINITION AND STATISTICAL CHARACTERISTICS OF
RAMP EVENTS
A. DEFINITION OF WIND CAPACITY RAMP EVENTS
Wind speed is the core parameter that determines the power
output of a wind farm. The relationship between wind speed
and wind power is shown in (1) [29].

Pm =
1
2
ρwAv3wCp(λw, βw) (1)

where ρw is the air density, A is the wind turbine area, v
is wind speed, Cp is the wind energy utilization coefficient,
which is related to pitch angle βw and blade tip speed ratio
λw.

The characteristic curve Cp has been described in detail
in [30]. However, wind power is not always equal to (1)
because of economic dispatching, wind curtailment, or cut-
off operation. Thus, wind speed is the fundamental variable to
directly define a ramp event in this article. The wind capacity
can be obtained according to air volume at wind speed v,
as shown in (2):

Qre·(ti+1ti) =
∫ ti+1ti

ti
Sv (t) dt (2)

where, Qre·(ti+1ti) is wind capacity (m3) from time ti to ti +
1ti, v(t) is wind speed (m/s), and S is the unit area (m2).
A large wind power change in a short period is defined as a

wind capacity ramp event or an energy event within the given
interval, which is different from the wind power ramp event
defined by instantaneous power. In general, if wind power
difference in a short time interval changes significantly (say,
30% capacity in 10 minutes or 15 minutes), it is considered
that a ramp event that affects the safety and stability of the
power grid has occurred [31]. In this article, a wind capacity
ramp event is considered to occur under similar conditions,
as shown in Fig. 1.

Fig. 1(a) shows that a URE and a DRE based on wind
speed occur at time t1 and t2, respectively. 1v1 is the wind
speed change of the URE during the period t1 ∼ t1 + 1t,
and 1v2 is the wind speed change of the DRE during the
period t2 ∼ t2 +1t [32]. In Fig. 1(b), the ordinate Q is wind
capacity calculated by equation (2), it shows that a URE and

FIGURE 1. Definition of ramp event: (a) typical wind speed; (b) wind
capacity ramp events.

a DRE based on wind capacity occur during t1 ∼ t2 + 1t.
1t is the time interval of ramp events, Qt1+1t is the wind
capacity of the URE at time t1, and Qt2+1t is the wind
capacity of the DRE at time t2. According to [33], the def-
inition of wind power ramp events in this article is shown as
follows [34], [35]:
Definition: A wind capacity ramp event ei can be defined

as ei = {ti , 1t , vt , 1v , 1Q}. 1t is the time interval, vt is
the wind speed at the time t−1t ,1v is the difference of wind
speed in a fixed time interval, 1Q is the difference of wind
capacity within the fixed time interval. When the absolute
value of the difference between the start and end wind speeds
within the fixed time interval 1t is bigger than the given
threshold vthr , a ramp event ei occurs, which can be expressed
as∣∣∣v(t+1t)re − vtre

∣∣∣
1t

> vthr ,

{
if v(t+1t)re − vtre > 0, URE
if v(t+1t)re − vtre < 0, DRE

(3)

where v(t+1t)re is the wind speed at the time t +1t , vtre is the
wind speed at time t , vthr is the threshold value,1t is the time
duration of the ramp event whose reference value is given
in [36]. Considering the sampling time of the case in this
article, 1t is selected to be 15min. vthr is the corresponding
wind speed under which the energy reaches 30% of the total
rated energy within the time interval (15min) [37].

B. STATISTICAL CHARACTERISTICS OF RAMP EVENTS
This article uses the ramp event definition in (3) to analyze the
wind speed and wind capacity of a wind farm in Hebei, China
in October 2017, where the recorded data is shown in Fig. 2.

Fig. 2 (a) is the actual wind speed within 48h through
October 4∼5, 2017. According to the definition, the actual
wind capacity ramp event statistics in Fig. 2(b) is taken as
an example. In Fig. 2, the time interval 1t is 15min and vthr
is the relevant threshold speed for 30% of total energy. Each
red line indicates a URE, and each green line indicates a DRE.
Fig. 2(b) can directly demonstrate the characteristics of wind
capacity ramp events by using Qre·(ti+1ti), which change in
proportion to wind speed.

III. TYPICAL EVENT CLUSTERING IDENTIFICATION
This section preprocesses a large amount of historical data,
analyzes key patterns of ramp events, and proposes a
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FIGURE 2. Ramp event characteristics: (a) actual wind speed (15min);
(b) ramp events statistics (15min).

clustering number determinationmethod to effectively reduce
the computational burden.

A. PREPROCESSING HISTORY DATA
The forecasting of wind capacity ramp event relies on time
sequence analysis of historical wind speed data. Firstly,
the historical data is normalized to eliminate dimensions and
build connections under different conditions. This article uses
the z-score normalization to include the average and standard
deviation for defined events in (3), as shown in (4):

z =
h− µ
σ

(4)

where, h represents historical data, such as wind speed,
µ is the average value, and σ is the standard deviation.
By implementing normalization, bad data can be taken out
and removed, and the improved wind capacity event sets
{Vre−set·p} can be rebuilt to decrease forecasting errors.

B. KEY PATTERNS OF CLUSTERING
To reduce the calculation burden of historical data processing,
key patterns can be generated by clustering algorithms [38],
and the event-based K-means (EB-K) clustering algorithm is
used to classify all historical events [39]. EB-K clustering
algorithm uses an iterative strategy to divide the clustering
features of ramp events into subsets of different categories.

The main concept of EB-K is to divide the sample event
sets into subsets with different categories by using the iter-
ative strategy, and the mean of each subset is viewed as the
cluster center of the sample subset. The proposed algorithm
aims to optimize the criterion equation for evaluating the
clustering performance so that the clustering results can be
compact and independent [40].
Algorithm 1:
a) Use k to form a sample event matrix by equation (3).
b) Randomly select k objects in all samples to achieve the

initial clustering pattern.

c)Divide the sample events into k clusters using the small-
est distance in equation (5) as the index.∑

ī

min
j̄∈{1,2,...,k}

∥∥∥θī − pj̄

∥∥∥ 2

θī = αfī + (1− α)Rī (5)

where θī is the sample event vector, fī is the ramp amplitude
of the sample event, Rī is the change rate, α is the weight
value of ramp amplitude. When α is close to 0, the matching
degree of event amplitude is ignored. When α is close to 0.5,
the matching degree is still low [41]. Through the training
from historical data and experience, To balance between com-
putation burden and matching degree, α = 0.85 is reasonable
by the training from historical data and experience. pj̄ is the
Centroid, the subscript ī is the sample number, and subscript
j̄ is the cluster center number.
d) Calculate the mean of all events θī for clusters Gī in

equation (6), which is the new cluster center.

θī =
1∣∣Gī∣∣
∑

xī∈Gī
θī (6)

e) Finally, obtain the square error criterion equation in equa-
tion (7) is by using step (c) and step (d).

SSE =
∑k

ī=1

∑
θī∈Gī

∣∣θī − θī∣∣2 (7)

Algorithm 1 is based on the EB-K clustering, which is used
to generate a key pattern of wind capacity ramp events. The
Pearson correlation coefficient of wind capacity events can be
expressed as [42] (8), as shown at the bottom of the next page,
where, ρpq is the Pearson correlation coefficient, defined as
the quotient of the covariance and standard deviation, and
_

N is the size of the rolling window. vre·p(
_

j )and wre·q(
_

j ) are

comparison samples indexed by
_

j , which are the feature
quantity of the keywind capacity event pattern and the feature
quantity of the wind capacity event sequence. fre·p is the ramp
amplitude of the critical wind capacity event pattern, Rre·p is
the change rate of the key wind capacity event pattern, fre·q is
the ramp amplitude of the wind capacity event sequence,Rre·q
is the change rate of the wind capacity event sequence, and
α is weight value, assumed to be 0.85. v̄re·p(

_

j ) and w̄re·q(
_

j )

are the sample averages of vre·p(
_

j ) and wre·q(
_

j ). In (8), ρpq ∈
[−1, 1] and the larger the absolute value of ρpq, the higher
the correlation between the two variables. The evaluation
criteria of the Pearson correlation coefficient are shown
in Table 1 [43].

The key wind capacity event pattern obtained by
K-means clustering iteration via Algorithm 1 should
meet (9) and (10).

d = 1− ρpq (9)

K = argmin
K0∑
k=1

 1
Nk

Nk∑
î=1

dk
î

 (10)
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TABLE 1. Correlation of pearson correlation coefficient.

FIGURE 3. EB-K clustering number and distance.

where dk
î
is the Pearson correlation distance between the î−th

wind capacity event and the cluster center in cluster K, Nk is
the number of wind capacity events in the K-th cluster, and
K0 is the total number of clusters.

In each cluster, the Pearson correlation distance between
each wind capacity event and the unique key wind capacity
event mode is summed and then the average distance is
calculated. Similarly, the average distances of all clusters are
calculated. In another way, the K calculated by the above
equation (10) minimizes the final summation equation, then
K is the most suitable cluster number.

C. CLUSTER NUMBER DETERMINATION
In equation (10), when K is smaller than the number of
the key clusters, the aggregation degree of each cluster will
increase as the cluster number k grows. However, when
K reaches the key number of clusters, the degree of poly-
merization decreases rapidly and tends to be flat as cluster
number k grows. When K is equal to 4 for history data
from the given Hebei wind farm, the result of equation 10 is
relatively smooth. When the cluster number is increased,
the degree of polymerization tends to tiny decrease. That
is, the cluster number 4 is the best cluster number to bal-
ance between computational burden and core parameters,
shown in Fig. 3.

FIGURE 4. Rolling windows for event sets.

IV. EVENT FORECASTING METHOD USING TECI
A. SEARCHING FRAMEWORK IN HISTORY
EVENT SETS
According to the above analysis in Section III, searching
techniques can be used to extract and estimate key patterns
of wind power ramp event sets. Ramp amplitude, ramp rate,
and time interval of ramp events can all be used as the key
characteristic during searching. Pearson correlation coeffi-
cient in (8) is used to measure the similarity between two
ramp events.

The actual ramp events can be identified according to
the wind capacity ramp event definition, and wind capacity
sequence can be obtained from historical wind speed. A wind
capacity forecasting pattern similar to a historical key wind
capacity model (referred to as similar forecast events pattern)
can be expressed according to wind capacity sequence when
ramp event occurs. Considering the wind speed forecasting
interval and the dispatching interval, a 2-hour time window
is used to extract key patterns from the air wind capacity
forecasting data, shown in Fig.4.

In Fig. 4, the rolling window is used to calculate the
similarity between key event modes and wind capacity events
pattern by using TECI. It iteratively searches the errors of
key characteristics, such as ramp amplitude and ramp rate
between history wind capacity event sets and forecast events.
A similar forecast events pattern is obtained by using the
search technique of rolling window event similarity. The
Pearson correlation coefficient of a similar forecast pattern
between the key event model is greater than the threshold.
The threshold is set to 0.8 [44]. The schematic diagram is
shown in Fig. 4, where the blue box is a similar forecast
events pattern identified the Pearson correlation coefficient
of 0.9702.

ρpq =

_
N∑

_
j =1

(
vre·p(

_

j )− v̄re·p(
_

j )
) (

wre·q(
_

j )− w̄re·q(
_

j )
)

√√√√ _
N∑
j=1

(
vre·p(

_

j )− v̄re·p(
_

j )
)2√√√√ _

N∑
j=1

(
wre·q(

_

j )− w̄re·q(
_

j )
)2

vre·p = αfre·p + (1− α)Rre·p, wre·q = αfre·q + (1− α)Rre·q (8)
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Although ramp events can be represented by key character-
istics, there is still no indicator to accurately capture the key
modes of ramp event sets. Here, index equation I in (11) can
be used to represent the correlation between historical ramp
events and forecasting ramp events in event sets sequence.

I (m ≤ x̃ < m+ n) =


1, m ≤ x̃ < m+ n
0, x̃ < m
0, x̃ ≥ m+ n

(11)

where, m is the lower limit of the time interval, and m+ n is
the upper limit of the time interval.

In [44], an optimization model is proposed to select a
suitable window size for power forecasting. According to the
updated weather forecast data period is 2h, so the size of the
rolling time window is 2h and the probability resolution is
0.25h. In (11), m = 0, 0.25, 0.5,. . . , 1.5, 1.75 and n = 0.25
are candidate. When the minimum time interval between the
actual ramp event and forecasting ramp event is less than m
or more than m+ n, the indicator equation is 0, which means
forecasting events is irrelevant to historical ramp events. Oth-
erwise, the indicator equation is 1, which means forecasting
events is relevant to historical ramp events.

B. PROBABILITY FORECASTING OF RAMP EVENTS
This article applies an empirical probability distribution func-
tion (EPDF) based on a non-parametric model to estimate the
uncertainty of the ramp event and reduce the error caused
by the similarity searching algorithm. Through analyzing a
large amount of historical data, the relation between history
actual ramp event sets and forecasting ramp event sets can be
defined as EPre−set·nk .

EPre−set·nk
(
m≤ t̃i<m+n

)
=

1
nk

nk∑
i=1

I
(
m ≤ t̃i < m+ n

)
(12)

where, nk is the k-th sample data sets, and t̃i is an independent
variable, representing the minimum time interval.

Therefore, the occurrence probability of the i-th forecast-
ing ramp event in the k-th cluster based on (12) can be
expressed by equation (13)

pt0re·i=EPre−set·nk
(∣∣t̃i−t0∣∣≤ x̃ti< ∣∣t̃i−t0∣∣+0.25) (13)

where, pt0re·i is the occurrence probability of ramp event set
i, i.e, each ramp event in the rolling window can affect the
occurrence probability of another ramp event at time t0.
The occurrence probability of a ramp event at time t0 can

be expressed by equation (14)

pt0re = 1−
ñ∏
i=1

(
1− pt0re·i

)
(14)

where t0 is the time to analyze the occurrence probability
of ramp event; and n is the total number of forecasted ramp
events within the next 24 hours.

C. AMPLITUDE FORECASTING OF RAMP EVENTS
The forecasting method for ramp amplitude based on EPDF
is proposed in [45] to quantitatively forecast ramp events.
The similar forecasting patterns of wind capacity events are
obtained from the sequence of the events. The j-th similar
forecasting pattern of wind capacity events is in the k-th
cluster. The event amplitude corresponding to the j-th pattern
can be expressed based on the probability estimation method
as

Qjre(p.u.) =

N∑
j=1
ρ
tj
re−set × Qre(p.u.)

N∑
j=1
ρ
tj
re−set

∣∣t̃j − t0∣∣
≤ x̃tj <

∣∣t̃j − t0∣∣+ 0.25 (15)

where, Qre(p.u.) is the ramp event amplitude during the time
interval m < t < m + n, ρ

tj
re−set is Pearson correlation

between the searched wind capacity forecasting pattern and
the key wind capacity event pattern, N is the number of
similar forecast events pattern corresponding to the key mode
of the k-th event cluster.Qjre(p.u.) is the amplitude of the ramp
event in the j-th similar wind capacity event pattern.

Using equation (15), the event amplitude Qt0re(p.u.) (16) at
time t0 in the rolling window can be obtained as

Qt0re(p.u.) =

M∑
j=1
ρ
tj
re−set × Q

j
re(p.u.)

M∑
j=1
ρ
tj
re−set

(16)

where t0 is the estimation time, and M is the total number of
occurring ramp events within the next 2 hours.

D. RAMP EVENT FORECASTING ALGORITHM
The scheme for the forecasting algorithm of wind capacity
ramp events proposed in this article is shown in Fig. 5.
It includes historical data preprocessing, event sequence
definition, the key pattern of clustering, cluster number deter-
mination, similarity search, and empirical probability estima-
tion. The algorithm can forecast ramp events probabilistically
and improve the forecasting accuracy by extracting event
amplitude, ramp rate, and time interval as event characteris-
tics. The specific steps in the flowchart are formed as follows.
Algorithm 2:
a)Wind capacity event sets {Vre−set·p} at the time sequence

are defined by equation (2) and ramp event sets {Wre−set·q} at
the time sequence are detected by equation (3).
b) The cluster number k is decided by equation (9)

and (10). According to Algorithm 1, the key patterns of wind
ramp events are obtained.
c) Through the rolling window, search for the sequence of

ramp events from time t0, and then the similarity and key
patterns of ramp events are estimated in the rolling search
window. Obtain a similar wind capacity event forecasting
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FIGURE 5. Ramp event forecasting scheme.

pattern by equation (8) with a Pearson coefficient bigger than
the threshold 0.8.
d) The correlation EPre−set·nk between historical and fore-

casting ramp events is estimated by using the empirical prob-
ability estimation equation (12).
e) The probability pt0re·iof a ramp event occurring in the i-th

similar wind capacity event forecasting pattern is obtained by
equation (13).
f) Finally, the occurrence probability pt0re of a ramp event

is estimated and ranked by equation (14). A similar forecast
events pattern is extracted by step (c). The event amplitude
Qt0re(p.u.) can be obtained by equations (15) and (16).

V. CASE STUDY
In this article, the wind speed and wind power of a wind
farm (21MW) in Hebei Province, China recorded in 2017-
2018, are used to verify the effectiveness of the proposed
algorithm in Section IV. The data set is divided into a training
set (date in 2017) and a test set (date in 2018). The training
set is used to define ramp events, extract key patterns, and
empirical probability estimates. The test set is used to verify
the effectiveness of TECI and forecasting methods.

A. PROBABILISTIC ANALYSIS OF ACTUAL RAMP EVENTS
Considering the power system dispatching period 1t = 15
minutes in equation (3), the time interval between ramp
events is set as 15 minutes. The threshold vthr is equal to
or bigger than 30% of the maximum wind capacity value
corresponding to the wind farm. vthr(max) is the upper limit
threshold of the ramp event, and vthr(min) is the lower limit
threshold of the ramp event.

Based on the statistical analysis on historical ramp events, a
2-hour rolling window is used to extract key patterns accord-
ing to wind speed from January 1, 2017, to December 31,
2017. The wind speed and ramp events forecasting in Octo-
ber are shown in Fig. 6 (a) and Fig. 6 (b) respectively.

When the cluster number k is 8, the calculation burdenmay
increase in the iterative process with a total calculation time
568.5265s. When the cluster number k is 4, the calculation
time is 182.8045s and the decline rate of the Pearson correla-
tion distance slows down significantly from Fig. 3. When the

FIGURE 6. Wind speed and wind capacity events in October 2017 (a) wind
speed; (b) wind capacity ramp events.

FIGURE 7. Key event pattern: (a) key mode 1;(b) key mode 2;(c) key mode
3;(d) key mode 4.

number of clusters is 50, it is the 12.29 times of the calculation
time with 4 clusters. Thus, the EB-K clustering algorithm for
sampling events can dramatically reduce the calculation bur-
den by using a small cluster number. According to equation
10 and Fig. 3, 4 categories can balance between calculation
burden and forecasting accuracy. Then, each cluster center
is selected as a key pattern by using the similarity search
technology. Thus, four key patterns are generated, as shown
in Fig. 7.

According to the empirical probability estimation equa-
tion (12), the correlation of the occurrence probability in ramp
event set EPre−set·nk between history ramp events and fore-
casting wind capacity events can be estimated. It is then used
to search wind ramp events of 2018. Firstly, the occurrence
probability pt0re·i of the i-th forecasted ramp event set and the
occurrence probability pt0re of a ramp event at time t0 can be
determined by using equations (13) and (14) respectively.
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FIGURE 8. The occurrence probability of ramp events from April 30 to
May 15, 2018.

FIGURE 9. Forecasted ramp events results (2018).

Then, the wind capacity Qjre(p.u.) of the ramp event can be
obtained from equation (15). Finally, wind capacityQt0re(p.u.)
corresponding to the ramp event at t0 can be found by using
equation (16). In Fig. 7, the key mode 1 has a large URE, and
the wind capacity of DRE is relatively low. In key mode 2, the
power does not change after the DRE. In key mode 3, there
are UREs, and in key mode 4, there are more DREs but the
amplitude difference is small.

B. ACCURACY ANALYSIS OF FORECASTED
RAMP EVENTS
According to the proposed TECI in Section?, this article
selects 15-day probability forecasting results for display,
shown in Fig. 8.

In Fig. 8, the blue line indicates the probability of the ramp
event occurrence and the grey shaded part represents the time
effective interval limited to ±20% error.
The ramp amplitude of forecasted wind power ramp events

is shown in Fig. 9. To demonstrate the occurrence probability
of ramp events, the ordinates of Fig. 9 and Fig. 10 use the
ramp amplitude Q (%) at time t0 as an indicator for ramp
events, which is a percentage of the total installed capacity
pc for a wind farm, given in equation (17)

Q(%) =
Qt0re(p.u.)

pc
× 100% (17)

By using TECI, the forecasted ramp events are shown
in Fig. 9. To compare the deviations between actual events
and forecasted events, the actual ramp events from May 4 to
11, 2018 are taken as an example in Fig. 10. The blue line
represents actual ramp events, the red line represents the fore-
casted ramp events obtained from proposed Algorithm 2, and
the green line represents the ramp event using the traditional

FIGURE 10. Comparison of actual and forecasted ramp events from
May 4 to May 11, 2018.

TABLE 2. Forecasted events by using the event-based forecasting method
and point-based forecasting method.

point-based method. As seen, the maximum ramp amplitude
of URE is 12.88MW, reaching 61.36% of the total installed
capacity.

In Fig.10, the forecasting accuracy of the ramp event-based
forecasting method proposed in this article is significantly
higher than that of is point-based forecasting method. The
forecasting amplitude in Fig. 10 is generally lower than
that of real ramp events. The main reason is that the lower
average magnitude values during forecasting can get a bet-
ter expectation value with a low deviation for event-based
or point-based forecasting methods. Compared with the
point-based forecasting method, the event-based forecasting
method can result in the lower deviation values because of
the accumulation effect of the uncertain data within the given
time interval.

In Table 2, the forecasted results of ramp events by tra-
ditional point-based forecasting methods from January 1 to
December 31, 2018, are compared with the forecasted results
obtained by Algorithm 2. In Table 2, the Right times are
defined as the number of events when ramp events occur-
rence time and amplitude are accurately forecasted.When the
forecasted ramp event amplitude does not exceed ±20% the
actual amplitude, it is assumed that the amplitude prediction
is accurate. The False times represent the number of events
that the amplitude prediction is wrong and the actual ramp
event is not forecasted. The Invalid alarm times represent the
number of events that the ramp event has not occurred but is
forecasted wrongly.

To quantitatively evaluate the forecasting error of ramp
events during 2018, this article usesmean absolute percentage
error (MAPE), as shown in Table 3.

From Table 2, 312 ramp events occurred in 2018. The pro-
posed method accurately forecast 253 ramp events, while the
traditional point-based method can only forecast 162 ramp
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TABLE 3. Forecasted amplitude results by using the event-based
forecasting method and point-based forecasting method.

events, leading to 150 forecasting false. In Table 2, the event-
based forecasting method accuracy is 81.08% by using Algo-
rithm 2, but the traditional point-based forecasting method is
only 52%. From Table 3, an amplitude forecasting perspec-
tive, the average MAPE of the proposed event-based fore-
casting method is 9.73% and it is 17.65% for the traditional
point-based forecasting method. Thus, the event-based fore-
casting method is better than the accuracy of the point-based
forecasting method in the forecasting of ramp amplitude.

VI. CONCLUSION
This article proposes a TECI algorithm to forecast the proba-
bility and magnitude of wind capacity ramp events. Through
an extensive case study, the following conclusions can be
drawn:
(i) The proposed event indicators can provide quanti-

tative evaluation and analysis methods for discrete
probability characteristics within the given time inter-
val. Point-based forecasting methods are converted
into event-based forecasting methods by wind capacity
event definition and EB-K clustering algorithm, which
can realize the energy event balance within a time
interval in the future.

(ii) Compared with the conventional scenario analysis
methods, the TECI algorithm uses typical clustering
and event set indicators to decrease the computational
burden. Cluster number and rolling window scale can
be preprocessed in TECI, which makes it possible to
avoid the scenario dimension disaster problem in mul-
tiple scenarios.

In the future, the proposed wind capacity ramp event fore-
casting method can provide theoretical support for power
system predictive control and uncertainty event predictive
control from the point of energy balance.
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