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ABSTRACT We investigate the generalized projective synchronization (GPS) control of fractional-order
extended Hindmarsh-Rose (FOEHR) neuronal models with transcranial magneto-acoustical stimulation
(TMAS) input. This improved neuronalmodel has advantages in describing the complex firing characteristics
of neurons stimulated by alternating current. In this study, a master-slave neuron system consisting of two
FOEHR neuronal models is assumed to be subject to uncertain model parameters and unknown external
disturbances. To quantify the GPS error, we design a new error variable based on the properties of the
fractional-order derivative and construct a related GPS error system. Fuzzy logic systems are introduced to
approximate the unknown nonlinear dynamics of the error system. To ensure the synchronous firing rhythms
of the master-slave neuron system, an adaptive fuzzy control algorithm is proposed under the Lyapunov
approach, in which the adaptive parameters are robust to the estimation errors. By choosing the appropriate
design parameters, the proposed control scheme enables the master-slave neuron system to achieve GPS in a
finite amount of time and to be resilient to uncertain parameters and unknown disturbances. The simulation
results demonstrate that after the designed control inputs are implemented, the states of the slave neuron
synchronize with those of the master neuron in specified proportions, and the corresponding synchronization
error converges towards an arbitrarily small neighborhood of zero.

INDEX TERMS Generalized projective synchronization, fractional-order, extended Hindmarsh-Rose neu-
ronal model, fuzzy logic system.

I. INTRODUCTION
Computational neuroscience plays a crucial role in the under-
standing of processes in the brain, as it is difficult to identify
the actual interactions among neurons in a living brain. The
firing characteristics and synchronization behaviors of neu-
rons are closely related to pattern recognition and impulse
transmission. Therefore, the modeling and implementation
of the synchronization of neurons have received extensive
attention from researchers [1].

With the development of computational neuroscience,
various neuronal models that represent the biological
characteristics of neurons have been proposed, such as the
Hodgin-Huxley (HH) [2], FitzHugh-Nagumo (FHN) [3],
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Hindmarsh-Rose (HR) [4] and Ermentrout [5] neuronal mod-
els. The HR neuronal model is commonly used for dynamic
analysis and synchronization control of neuronal models. It is
a simplified form of the realistic HH model and is expressed
by simple polynomials, which facilitates the quantitative cal-
culation of the complex behaviors of neurons. The classical
HR neuronal model consists of three variables that represent
the membrane potential, the spiking or recovery behavior,
and the adaptation current passing through the slow channel,
respectively [6], [7]. As research on the biological charac-
teristics of neurons develops, some modified HR neuronal
models have been introduced. For example, Lv et al. consid-
ered the effect of electromagnetic induction and introduced a
variable into theHR neuronalmodel to represent themagnetic
flux [8], [9]. Vepa et al. proposed an extended HR neuron
model consisting of four variables, in which the introduced
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variable represents the intracellular interchange of calcium
ions between the cytoplasm and its store [10]. The dynamic
characteristics of this extended HR neuronal model have been
verified to be consistent with the biological characteristics
of neurons [11], [12]. Therefore, this improved HR neuronal
model is appropriate for the theoretical and computational
study of the firing properties and synchronization behaviors
of neurons [13], [14].

The classical neuronal models are all expressed by
integer-order differential expressions. However, in neuro-
science, researchers have found that fractional-order differ-
entiation is more consistent with the firing characteristics
of multiple time-scale adaptations for single rat neocorti-
cal pyramidal neurons than integer-order adaptations [15].
In addition, the electrophysiological characteristics of brain-
stem vestibule oculomotor neurons are found to accord better
with the fractional-order dynamical properties [16]. In other
words, fractional-order neuron models have advantages over
integer-order models in terms of their description of neu-
ral dynamic behaviors. Therefore, fractional-order neuronal
models have been considered in recent research on the fir-
ing characteristics and synchronization behaviors of neurons.
For example, Yong et al. investigated the effect of the frac-
tional order on the firing modes by numerical and simula-
tion analyses and generalized the chaotic characteristics of
the fractional-order HR neuronal model [17]. Giresse et al.
designed a control scheme for the synchronization of FOEHR
neuronal models [14]. It is worth noting that these studies
consider only direct currents as the external inputs. However,
in the treatment of neurological diseases, many noninvasive
brain stimulation therapies, such as transcranial magnetic
stimulation (TMS) [18], transcranial focused ultrasound stim-
ulation (TFUS) [19] and TMAS [20], generate alternating
current as an external input of neurons to change their dis-
charging properties.

In addition to the resting potential, neurons can exhibit
periodic spiking, bursting, and chaotic discharge modes with
variations in the external forcing current [21]. As the alternat-
ing current is determined by the variables of amplitude, fre-
quency and initial phase, the neuronal model with alternating
current input has complex dynamic characteristics. TMAS is
a relatively new method that utilizes ultrasound waves in a
static magnetic field to produce an alternating current as the
external stimulation input for neurons [22], [23]. Compared
with TMS and TFUS, TMAS has advantages in terms of
spatial resolution and penetration depth and has become a
potential treatment for neurological diseases [24]. Neurons
exposed to TMAS show more complex firing rhythms with
different magnetic flux densities, ultrasonic intensities, and
fundamental ultrasonic frequencies [24]. Liu et al. analyzed
the prescribed performance synchronization behaviors of HH
neurons under TMAS [25].

According to the biological characteristics of neurons,
the types of synchronization for neuron systems include
GPS [26], [27], complete synchronization (CS) [25], [28],
lag synchronization (LS) [29], anti-phase synchronization

(APS) [30], and generalized function projective synchroniza-
tion (GFPS) [31]. For the nonlinear and chaotic characteris-
tics of neuronal models, various control methods have been
applied in the synchronization of neurons, such as feed-
back control, neural network control, adaptive control, and
slide mode control, by using the linear matrix inequality and
Lyapunov theory [25], [28], [29], [32]–[34]. For example,
Liu et al. designed an adaptive neural controller for HH
neurons under TMAS to achieve the prescribed performance
synchronization [25]. A slide model control scheme with
additional conditions was presented for unidirectional com-
plete synchronization of HR neurons in [34]. In [28], some
sufficient conditions for the feedback strength and impul-
sive interval were obtained for the synchronization of two
chaotic HR neuron systems. For HR neuron systems subject
to asymmetrical time delays, Fan et al. discussed how the time
delays and coupling strengths affected the lag synchroniza-
tion and transmission of firing modes between neurons [29].
Vajiheh et al. introduced a sliding mode technique for GPS in
fractional-order systems and implemented it in classical HR
neuronal models [31]. In [13], a feedback synchronization
controller was designed for the fractional-order HR neuronal
model, whose gain is limited by certain parameter condi-
tions. Later, the authors of [14] designed controllers for the
synchronized behavior of coupled fractional-order extended
HR neurons. However, these controllers rely on all of the
model parameters, this is too strict a requirement for the HR
neuronal model, which has uncertain parameters. In addition,
unknown external disturbances should also be considered
because of their obvious influences on the firing rhythms of
neurons.

Based on the above discussion, we explore GPS for
FOEHR neuronal models, in which the modeled TMAS alter-
nating current is applied as the external input for computa-
tional analysis. To accomplish this goal, an adaptive fuzzy
control method is proposed for amaster-slave FOEHRneuron
system. Under the proposed algorithm, the GPS of the neuron
system can be achieved and the neuron system is resilient
to model nonlinearity, uncertain parameters, and unknown
external disturbances. The contributions of this article are
summarized as follows:

1) Compared with previous work [25], [28], [29], [32]–
[34], the FOEHR neuronal model considered in this article
has advantages in modeling the complex dynamic character-
istics of neurons. In addition, an alternating stimulus current
is applied in this improved neuronal model, which contributes
to the understanding of the mechanism of noninvasive brain
stimulation techniques, such as TMAS, which generate alter-
nating currents.

2) A novel fractional-order adaptive controller based
on fuzzy logic systems is proposed for the GPS of
the two FOEHR neuronal models that are connected in
a master-slave configuration. Without loss of generality,
these two neuronal models are assumed to have differ-
ent fractional orders. To the best of our knowledge, GPS
control for a master-slave neuron system of heterogeneous
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FOEHR neuronal models has not been considered in the
literature.

3) The neuron system is assumed to be subject to uncertain
model parameters and unknown external disturbances. With
the proposed method, the neuronal models can achieve GPS
in a finite amount of time and are resilient to uncertain param-
eters and external disturbances, which are not considered
in [14], [32].

The outline of this article is as follows: In Section II,
we describe the improved FOEHR neuronal model with
TMAS input and introduce fuzzy logic systems to approx-
imate the uncertain sections of the neuron system.
In Section III, the GPS problem of the master-slave neuron
system of two different FOEHR neuronal models under
TMAS is formulated. Then, we propose an adaptive fuzzy
control algorithm for the GPS of the neuron system and
verify its stability with Lyapunov analysis. The simulations
in Section IV guarantee the effectiveness and feasibility
of the control scheme. The conclusions are summarized in
Section V.

II. MODEL DESCRIPTION AND PRELIMINARIES
A. FRACTIONAL-ORDER DEFINITION AND PROPERTIES
There are various definitions of fractional differentiation,
such as the Grunwald-Letnikov definition, the Riemann-
Liouville (R-L) definition, and the Caputo defini-
tion [35]–[37]. Because the Caputo definition reveals the
relationship between the initial condition and the fractional
derivative, it will be adopted in this article. The Caputo
fractional derivative of a function x (t) is defined as [37]

c
0D

q
t x (t) = Jn−qt

[
dn

dtn
x (t)

]
=

1
0 (n− q)

∫ t

0
(t − τ)−q+n−1 x(n) (τ ) dτ (1)

where t ≥ 0, n is the least integer such that n − 1 < q < n,
and 0 (·) is the Gamma function.

To simplify the expression, we substitute c
0D

q
t x (t) with

Dqt x (t) for the Caputo operators in the subsequent statements.
The following properties of Caputo’s fractional derivative
will be utilized in the later parts of the paper [37]–[39]:
Property 1: Let q1 > 0, q2 > 0, and q1 + q2 < 1; then,

Dq1t
(
Dq2t x (t)

)
= Dq2t

(
Dq1t x (t)

)
= Dq1+q2t x (t) (2)

In particular,

D1−q
t

(
Dqt x (t)

)
= Dx (t) =

d
dt
x (t) (3)

where 0 < q < 1.
Property 2: The Caputo fractional differential operator

satisfies the property of linearity, as follows:

Dqt (µx (t)+ υy (t)) = µD
q
t x (t)+ υD

q
t y (t) (4)

where µ and υ are real constants. In particular,

Dqt x (t) = Dqt (x (t)+ 0) = Dqt x (t)+ D
q
t 0 (5)

Thus, we have Dqt 0 = 0.

TABLE 1. Value ranges of the magneto-acoustic variables.

Property 3: Let q1 > 0, q2 > 0; then,

Dq1t
(
D−q2t x (t)

)
= Dq1−q2t x (t) (6)

In particular,

Dqt
(
D−qt x (t)

)
= x (t) (7)

where q > 0.

B. MODELED ALTERNATING CURRENT OF TMAS
TMAS is a combination of a static magnetic field and ultra-
sonic waves acting on neurons. Charged ions in the brain
tissue fluid move with the ultrasonic waves when stimulated
by TMAS, and are subject to the Lorentz force generated by
the magnetic field. The Lorentz force makes charged ions
move in the opposite direction, generating an alternating cur-
rent that has the same frequency as the ultrasonic waves [24].
In addition, the original sinusoidal ultrasound is found to be
invalid in generating the sodium current and potential [20].
Therefore, we use a sinusoidal ultrasound wave with an offset
as the driving force in this study. The influence of TMAS can
be represented by the equivalent current in the neuron system,
which can be modeled by

Iext = σBx

√
20u
ρc0

(sin (2π fut)+ 1) (8)

whereBx is themagnetic flux density; σ and ρ are the conduc-
tivity and density of brain tissue, respectively; and 0u, fu, and
c0 represent the ultrasonic intensity, ultrasonic frequency, and
ultrasonic speed, respectively. In the research on TMAS, the
parameters of σ , ρ and c0 are usually preset to fixed values,
and the magneto-acoustic parameters are adjustable variables
that should be chosen properly according to the neuromodu-
lation purposes. Based on the theoretical and experimental
study of TMAS, the fixed parameters and adjustable ranges
of the TMAS parameters are as listed in Table 1 [20]. Since
this article focuses on the numerical analysis of the effect
of TMAS, the units of the parameters are omitted in the
following analysis.

C. THE EXTENDED HINDMARSH-ROSE NEURONAL
MODEL WITH THE MODELED TMAS INPUT
The classical HR neuronal model has been widely considered
because of its superior computational speed. It has three state
variables and can be expressed as follows:

·
x1 = x2 − ax31 + bx

2
1 − x3 + Iext

·
x2 = c− dx21 − x2
·
x3 = r (S (x1 − x0)− x3) (9)
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where x1 is the membrane potential variable, x2 is the spiking
or recovery variable, and x3 represents the adaptation current
passing through the slow channel. In addition, the small
parameter r is introduced to control the rate of change of
the slow channel, S is an adjustable parameter, x0 represents
the resting potential, and Iext represents the external stimulus
current [4].

With the development of neuronal model research, the clas-
sical three-variable HR neuronal model was found to have
limits in describing the complex nonlinearity of neurons. For
this reason, an improved extended HR neuronal model was
proposed in [10], in which a new variable x4 was introduced
to represent the slow intracellular exchange of calcium ions
between the cytoplasm and its store. In addition, since the
fractional-order differential model has advantages in repre-
senting the neuronal dynamic characteristics, as mentioned
in the introduction, the extended HR neuronal model with a
fractional derivative deserves further research. The FOEHR
neuronal model can be represented by [21]

Dqt x1 = x2 − ax31 + bx
2
1 − x3 + Iext

Dqt x2 = c− dx21 − x2 − wx4
Dqt x3 = r (S (x1 − x0)− x3)

Dqt x4 = h (−px4 + f (x2 + g)) (10)

where the operator Dqt represents the Caputo fractional
derivative. Note that the state variables and model parameters
have the same physical meaning as the integer-order HR
neuronal model. In this study, the fixed parameters of the
FOEHR neuronal model are chosen as follows: a = 1, b = 3,
c = 1.01, d = 5.0128, w = 0.0278, r = 0.00215,
S = 3.966, h = 0.0009, p = 0.9573, f = 3, g = 1.619
and x0 = −1.605.
For the external input Iext , a direct current has been widely

considered in the literature [13], [14], [17], [21]. However,
in neuroscience, many noninvasive transcranial stimulation
methods, such as TMS, TFUS, and TMAS, generate alternat-
ing currents to stimulate neurons. In this article, the dynamic
characteristics of neurons stimulated by an alternating cur-
rent are studied by taking the modeled TMAS current as an
external input. When the magneto-acoustic parameters are
chosen as Bx = 0.5, 0u = 1.0, and fu = 350.0 and
the fractional order is assumed to be q = 0.98, the time
evolution of the FOEHR neuronal model with TMAS input
is as shown in Figure 1. In this neuronal model, x1 and x2 are
called fast variables, and the slowly varying parameters can
be represented by the variables x3 and x4. Similar to the time
evolution of variable x3, when the excitatory cell is inactive
and the inhibitory current is absent, the variable x4 decays
slowly to a small value until the neuron system is activated
again.

Based on the expression of the TMAS input, both the
magnetic flux density and ultrasonic intensity influence the
amplitude of the alternating current, and the frequency of
the alternating current is consistent with the ultrasonic fre-
quency. Figure 2 shows the interspike intervals (ISIs) of the

FIGURE 1. Time evolutions of the state variables of the FOEHR neuronal
model under TMAS.

membrane potentials of the FOEHR neuronal model with dif-
ferent magneto-acoustic parameters. It is obvious that when
different magnetic flux densities and ultrasonic intensities are
selected, the FOEHR neuronal model exhibits various firing
behaviors, such as quiescence, spiking, bursting and chaotic
oscillations, but the variable of the ultrasound frequency fu
has little effect on the firing patterns, although it can influence
the firing rhythm to a small extent. From these results, we can
conclude that the FOEHR neuronal model under alternating
stimulus current has more bifurcation parameters and more
complex dynamic behaviors than under the direct current that
has been studied in the recent literature.

D. FUZZY LOGIC SYSTEM APPROXIMATION
To overcome the model uncertainty, fuzzy logic systems were
introduced to approximate the unknown parts of the neuron
system. A fuzzy logic system consists of a fuzzifier, a fuzzy
base, an inference engine, and a defuzzifier [27], [40], [41].
The fuzzifier converts the exact inputs to fuzzy values. The
inference engine is considered an important component in
the reasoning process, in which the fuzzy values are pro-
cessed with fuzzy rules. Then, the results are sent to the
defuzzifier and converted to crisp values. The fuzzy rules
consist of a set of IF-THEN rules that can be expressed as
follows:

<
(j): IF x1 is A

j
1 and . . . and xn is Ajn, THEN f̂ (x̄) is f j,

(11)
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FIGURE 2. ISI diagrams of the membrane potentials of the FOEHR
neuronal model with different Bx , 0u and fu.

where x1, . . ., xn are the input variables, Aj1, . . ., A
j
n are the

fuzzy sets, and f j is a fuzzy singleton for the output of the jth
rule.

A singleton fuzzifier, product inference, and center-
average defuzzification method are utilized in this study. The
output of the fuzzy logic system can be expressed by

f̂ (x̄) =

∑l
j=1 f

j
(∏n

i=1 µAji
(xi)

)
∑l

j=1

(∏n
i=1 µAji

(xi)
) = θTψ (x̄) (12)

where x̄ = [x1, x2, . . . , xn] ∈ �x ⊂ Rn, µAji
(xi) is the mem-

bership function of the variable xi, θ =
[
f 1, f 2, . . . , f l

]
∈

Rl×n and ψ (x̄) =
[
ψ1 (x̄) , ψ2 (x̄) , . . . , ψ l (x̄)

]T
∈ Rl×1

are the approximation parameter vector and the fuzzy basis
function, respectively. The function ψ j (x̄) , j = 1, . . . , l can
be defined as follows:

ψ j (x̄) =

(∏n
i=1 µAji

(xi)
)

∑l
j=1

(∏n
i=1 µAji

(xi)
) (13)

Based on the fuzzy approximation theorem, the optimal
approximation parameter vector θ∗ is defined on a compact

set�θ such that the fuzzy logic system θ∗Tψ (x̄) can approx-
imate any nonlinear function f (x̄) with arbitrary precision.
The minimal approximation error ε (x̄) satisfies

f (x̄) = θ∗Tψ (x̄)+ ε (x̄) (14)

and |ε (x̄)| < ε̄, where ε̄ is the upper bound of the unknown
approximation error. The optimal approximation parameter
vector θ∗ can be defined by

θ∗ = arg min
θ⊂�θ

{
sup
x̄∈�x̄

∣∣∣θTψ (x̄)− f (x̄)∣∣∣} (15)

The optimal weight θ∗ must be estimated with θ in the con-
trol scheme, and the weight estimation error can be defined
as θ̃ = θ − θ∗.

III. GPS FOR A MASTER-SLAVE NEURAL SYSTEM OF
FOEHR NEURONAL MODELS
A. PROBLEM DESCRIPTION
In this study, we consider the GPS problem of two FOEHR
neuronal models with TMAS input. The neuron system is
constructed in a master-slave configuration, in which the
master FOEHR neuronal model is represented by

Dq1t xm,1 = xm,2 − ax3m,1 − bx
2
m,1 − xm,3 + Iext

Dq1t xm,2 = c− dx2m,1 − xm,2 − wxm,4
Dq1t xm,3 = r

(
S
(
xm,1 − x0

)
− xm,3

)
Dq1t xm,4 = h

(
−pxm,4 + f

(
xm,2 + g

))
(16)

and the slave FOEHR neuronal model, subject to external
disturbances and control inputs, is denoted by

Dq2t xs,1 = xs,2 − ax3s,1 − bx
2
s,1 − xs,3 + Iext + d1 + u1

Dq2t xs,2 = c− dx2s,1 − xs,2 − wxs,4 + d2 + u2
Dq2t xs,3 = r

(
S
(
xs,1 − x0

)
− xs,3

)
+ d3 + u3

Dq2t xs,4 = h
(
−pxs,4 + f

(
xs,2 + g

))
+ d4 + u4 (17)

where xm,i and xs,i, i = 1, 2, 3, 4, are the state variables of
the master and the slave neuronal models, respectively. di,
i = 1, 2, 3, 4, are the unknown external disturbances, which
are assumed to have uncertain upper limits d i, |di| ≤ d i, i =
1, 2, 3, 4, and ui, i = 1, 2, 3, 4, represent the designed control
inputs. In particular, without loss of generality, we assume
that the master and slave neuronal models have different
fractional orders, q1 and q2. Based on the principle of TMAS,
there exists an upper bound of the stimulus current Iext .

B. THE ADAPTIVE FUZZY CONTROL SCHEME
Based on the uncertainty of the neuronal model, the master-
slave neuron system can be represented by

Dq1t xm,i = fm,i (xm)

Dq2t xs,i = fs,i (xs)+ di + ui (18)

where xm,i and xs,i, i = 1, 2, 3, 4, represent the state
variables of the master and slave neuronal model, respec-
tively, and xm =

[
xm,1, xm,2, xm,3, xm,4

]T
∈ Rn and
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xs =
[
xs,1, xs,2, xs,3, xs,4

]T
∈ Rn are their state vectors. The

unknown nonlinear parts of the FOEHR neuronal models are
represented by fm,i and fs,i, i = 1, 2, 3, 4. Our goal is to
design GPS control laws ui that drive the slave variables xs,i
to track the time-varying traces of the master state variables in
specified proportions, even when they are subject to unknown
external disturbances and uncertain model parameters.

To qualify the GPS performance, nonzero scaling factors
λi, i = 1, 2, 3, 4, are introduced and the GPS errors can be
defined as ei = xs,i − λixm,i.
Remark 1: GPS is a generalized definition of synchro-

nization. When λ1 = λ2 = λ3 = λ4 = λ, the GPS
problem becomes a projective synchronization (PS) problem.
In particular, complete synchronization (CS) and anti-phase
synchronization (APS) are represented as λ = +1 and λ =
−1 [42].

To simplify the controller design and stability analysis, new
error variables si, i = 1, 2, 3, 4, are introduced by

D1−q2
t si = ei (19)

According to Property 1 and Property 3, the time derivative
of the new error variables can be expressed by

ṡi = Dq2t
(
D1−q2
t si

)
= Dq2t ei (20)

Substituting (16) into (18), we obtain

ṡi = fs,i (xs)+ di + ui − λiD
q2
t xm,i (21)

The GPS error system can be represented by

ṡi = ϕi (xs, xm, di)+ ui (22)

where ϕi (xs, xm, di) = fs,i (xs)−λiD
q2
t xm,i+di, i = 1, 2, 3, 4.

Assumption 1: There exists an uncertain continuous posi-
tive function vector ϕ̄i (x) such that

|ϕi (xs, xm, di)| ≤ ϕ̄i (x) (23)

where x = [xs, xm]T , i = 1, 2, 3, 4.
Remark 2: According to the biological properties of neu-

rons, the state vectors xs and xm evolve in a compact set.
The unknown external disturbances di are assumed to have
uncertain upper limits d̄i, and there exists an upper bound of
the TMAS current Iext . Thus, Assumption 1 is not restrictive
and is consistent with the firing characteristics of neurons.

To overcome the uncertainty of the GPS error sys-
tem, fuzzy logic systems are introduced to approximate
the unavailable nonlinear terms ϕ̄i (x) with the following
equation:

ϕ̄i (x) = θ∗Ti ψi (x)+ εi (x)

= θTi ψi (x)− θ̃
T
i ψi (x)+ εi (x) (24)

where εi (x), i = 1, 2, 3, 4, denote the approximation errors
of the fuzzy logic systems and they satisfy |εi (x)| ≤ ε̄i, where
ε̄i represent the unknown upper bounds of the approximation
errors.

Next, adaptive parameters ki, i = 1, 2, 3, 4, are introduced
to estimate ε̄i. Then, the estimation errors are k̃i = ki − k∗i ,

i = 1, 2, 3, 4, where k∗i are the ideal parameters that satisfy
k∗i = ε̄i.
Assumption 2: There are unknown upper bounds θ̄i of the

optimal approximation parameters θ∗i such that
∥∥θ∗i ∥∥ ≤ θ̄i,

i = 1, 2, 3, 4.
Remark 3: Assumption 2 is not restrictive, as the upper

bounds θ̄i are assumed to be unknown and the state vector
x = [xs, xm]T of the unavailable nonlinear terms ϕ̄i (x) is
bounded.

According to the biological properties of neurons, the state
vectors xs and xm evolve in a compact set. The unknown exter-
nal disturbances di are assumed to have uncertain upper limits
d̄i, and there exists an upper bound of the TMAS current Iext .
Thus, Assumption 1 is not restrictive and is consistent with
the firing characteristics of neurons.

For the GPS of the fractional-order master-slave neuron
system (16), we design robust adaptive fuzzy control inputs,
as follows:

ui = −θTi ψi (x)− ki −
(
ζi +

∥∥∥θTi ψi (x)+ ki∥∥∥) sat (si/h0)
(25)

where ζi > 0, i = 1, 2, 3, 4 are the design constants, and
sat (si/h0) is a piecewise function expressed by

sat (si/h0) =

{
sign (si) , |si| > h0
si/h0, |si| ≤ h0

(26)

where h0 is a small positive constant that implies a good
approximation. Using the control inputs (23) and the fuzzy
approximation systems (22), the time derivative of the new
error variables can be rewritten as

ṡ = −θ̃Ti ψi (x)− k̃i −
(
ζi +

∥∥∥θTi ψi (x)+ ki∥∥∥) sat (si/h0)
(27)

The adaptive update laws associated with the control inputs
can be designed as

θ̇i = γθ i (siψi (x)− σθ i |si| θi) (28)

k̇i = γki (si − σki |si| ki) (29)

where γθ i, σθ i, γki, and σki, i = 1, 2, 3, 4, are strictly positive
design constants and the initial values of θi and ki satisfy
θi (0) > 0 and ki (0) > 0, respectively. When the designed
control inputs ui, the adaptive laws θ̇i and k̇i are all applied in
the FOEHR neuron system, we can obtain the following main
result.
Theorem 1: Consider the master-slave FOEHR neuron

system (16) with uncertain model parameters and unknown
external disturbances, if Assumption 1 and 2 are satisfied,
when the fuzzy control inputs (23) with the adaptive laws (26)
and (27) are implemented, all the signals in the closed-loop
system are uniformly ultimately bounded, and the synchro-
nization errors ei can be kept arbitrarily small by selecting
the appropriate controller parameters.
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Proof: Define the following Lyapunov function
candidate:

V =
∑4

i=1

1
2
s2i +

∑4

i=1

1
2γθ i

∥∥∥θ̃i∥∥∥2 +∑4

i=1

1
2γki

k̃2i (30)

Differentiating (28) with respect to time, we obtain

V̇ =
∑4

i=1
siṡi +

∑4

i=1

1
γθ i
θ̃Ti θ̇i +

∑4

i=1

1
γki
k̃ik̇i (31)

When |si| > h0, substituting (24) and (25) into (29) yields

V̇ ≤
∑4

i=1
si
(
−θ̃Ti ψi (x)− k̃i

)
−

∑4

i=1
ζi |si|

+

∑4

i=1

1
γθ i
θ̃Ti θ̇i +

∑4

i=1

1
γki
k̃ik̇i

Then, noting the adaptive update laws (26) and (27), we have

V̇ ≤ −
∑4

i=1
|si|

(
ζi + σθ iθ̃

T
i θi + σkik̃iki

)
(32)

According to Assumption 2 and the definition of adaptive
variables ki, one obtains

−σθ iθ̃
T
i θi ≤ −

σθ i

2

∥∥∥θ̃i∥∥∥2 + σθ i2 ∥∥θ∗i ∥∥2
≤ −

σθ i

2

∥∥∥θ̃i∥∥∥2 + σθ i2 ∥∥θ̄i∥∥2 (33)

−σkik̃iki ≤ −
σki

2
k̃2i +

σki

2
k∗2i

= −
σki

2
k̃2i +

σki

2
ε̄2i (34)

Thus, substituting (31) and (32) into (30) results in

V̇ ≤ −
∑4

i=1
|si|

(
σθ i

2

∥∥∥θ̃i∥∥∥2 + σki2 k̃2i

+ ζi −
σθ i

2

∥∥θ̄i∥∥2 − σki2 ε̄2i ) (35)

Then if the control parameters ζi satisfy the condition that

ζi >
σθ i

2

∥∥θ̄i∥∥2 + σki2 ε̄2i (36)

we can conclude that V̇ < 0, which implies that when |si| >
h0, |si| converges to the set |si| ≤ h0 within a finite amount
of time and thereafter stays in this set. This set is defined as
the boundary layer, in which the derivative of the Lyapunov
function V can be expressed by

V̇ ≤ −
∑4

i=1

ζi

h0
s2i −

∑4

i=1
σθ i |si| θ̃Ti θi

−

∑4

i=1
σki |si| k̃iki (37)

Based on Assumption 2 and the definition of the adaptive
variable ki, we also have

−θ̃Ti θi ≤ −

∥∥∥θ̃i∥∥∥2 + ∥∥∥θ̃i∥∥∥ ∥∥θ∗i ∥∥ (38)

≤ −

∥∥∥θ̃i∥∥∥2 + ∥∥∥θ̃i∥∥∥ θ̄i (39)

−k̃iki ≤ −k̃2i + k̃ik
∗
i (40)

≤ −k̃2i + k̃iε̄i (41)

Applying these two inequalities to (35), we have

V̇ ≤ −
∑4

i=1
|si|

[
ζi

h0
|si| +

+ σθ i

(∥∥∥θ̃i∥∥∥2 − ∥∥∥θ̃i∥∥∥ θ̄i)+ σki (k̃2i − k̃iε̄i)]
= −

∑4

i=1
|si|

[
σθ i

(∥∥∥θ̃i∥∥∥− θ̄i2
)2

+ σki

(
k̃i −

ε̄i

2

)2

−
σθ i

4
θ̄2i −

σki

4
ε̄2i +

ζi

h0
|si|

]
(42)

It is clear that V̇ < 0 holds as long as

|si| >
ζi

h0

(σθ i
4
θ̄2i +

σki

4
ε̄2i

)
(43)

or ∥∥∥θ̃i∥∥∥ > θ̄i

2
+

√(σθ i
4
θ̄2i +

σki

4
ε̄2i

)
/σθ i (44)

or

k̃i >
ε̄i

2
+

√(σθ
4
θ̄2i +

σki

4
ε̄2i

)
/σki (45)

Thus, V̇ is negative as long as the controller parameters
are defined outside a compact set, which implies that all
the signals of the derived error system are bounded. It is
demonstrated that the newly defined error variables si, fuzzy
approximation errors θ̃i, and adaptive estimation errors k̃i, all
converge to an adjustable small residual set of zero. Since the
residual set depends on the design parameters, the ultimate
limit of the signals si can be restricted to an arbitrarily small
set by choosing appropriate control parameters.
Remark 4: According to the definition of the new error

variable si and the properties of the fractional-order deriva-
tive, there exists positive constants κi, i = 1, 2, 3, 4, such that
|ei| ≤ κi |si|, which means that the boundedness of |ei| can
be deduced from the boundedness of |si|. In particular, si = 0
implies ei = 0 [42].
From Remark 4 and the demonstration of Theorem 1,

we can conclude that the GPS errors ei can be controlled to
converge to an adjustable residual set of zero by applying the
proposed control inputs and adaptive laws with the appropri-
ate design parameters, which implies that the firing rhythms
of the FOEHR neuronal models achieve GPS.

IV. SIMULATION RESULTS
In this section, some simulations are conducted on themaster-
slave FOEHR neuron system (16) to verify the availability
of the designed control scheme. The fixed parameters of
the FOEHR neuronal model are chosen as the parameters in
Section II. For the stimulus input Iext , the fixed parameters
for tissue fluid and ultrasonic speed are chosen according to
Table 1, and the adjustable magneto-acoustic parameters are
fixed at Bx = 0.5, 0u = 1.0 and fu = 350; then, the exact
current can be obtained by equation (9). The initial state
vectors of the master and slave neuron system are xm (0) =
[0.1, 0.2, 0,−0.1]T and xs (0) = [0,−0.1, 0.2,−0.6]T . The
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Adam-Bashforth-Moulton method is applied for the approxi-
mate solutions of the fractional-order differentiations and the
fractional orders of the master and the slave neuronal models
are set to q1 = 0.98 and q2 = 0.95, respectively. The slave
neuron is subject to the external dynamic disturbances as
follows: d1 = 0.8 sin (t), d2 = 0.5 sin (t), d3 = 0.05 cos (t),
and d4 = 0.01.
According to the configuration of the FOEHR neu-

ronal model, four fuzzy logic systems are constructed to
approximate the uncertain functions. The membership func-
tions of the fuzzy base are selected as follows: µAj =
exp

(
− (x − 4+ j)2

)
, j = 1, 2, . . . , 7. The initial values of

the adaptive parameters of the fuzzy systems and approxi-
mation errors are θij (0) = 0.1 and ki (0) = 0.1, respec-
tively. The adaptive vectors θi are adjusted by adaptive update
laws (26) with γθ i = 50 and σθ i = 0.01, and the adap-
tive approximation errors ki are updated by adaptive update
laws (27) with γki = 10 and σki = 0.01. Based on
the definition of sat (si/h0) and the demonstration of the
designed control scheme, the parameter h0 is related to the
coverage speed of the derived GPS error si and is chosen
as h0 = 0.01. According to Theorem 1, ζi = 20 are
selected as the proper control parameters to make the control
algorithm able to perform GPS for the master-slave neuron
system.

In the simulation experiments, CS, APS, and PS are
selected as the goals of control. The control inputs are applied
to the slave neuron at t = 1000 ms, and the time evolutions
of the state variables and the synchronization errors of the
master and slave neuron system are exhibited to show the
synchronization effect. In the state strategies curves, the solid
lines represent the time evolution curves of the state variables
of the slave neuron, while the dashed lines represent the time
evolution curves of the synchronization target, which can be
denoted as the product of the state variables of the master
neuron xm,i and the synchronization scaling factors λi.

(a) Case 1: Complete synchronization (CS)
When λ1 = 1, λ2 = 1, λ3 = 1, and λ4 = 1, the states of the

slave neuron are expected to completely synchronize with the
states of the master neuron. Fig. 5 shows the time responses
of the state variables of the master and slave neurons. Before
the control inputs are implemented, the master and slave
neuron have completely different firing rhythms, and the state
trajectories of the slave neuron are distorted and irregular,
as it is subjected to unknown external disturbances. However,
after the controller is applied, the states of the slave neuron
immediately track the states of the master neuron. Then, these
two coupled neurons have the same state trajectories until
the end of the simulation. Fig. 6 shows the time evolutions
of the CS errors of the master and slave neuron system. The
CS errors of the state variables converge to a small residual
set of zero after the control inputs are implemented. Conse-
quently, the proposed adaptive fuzzy controller is robust and
can make the master-slave FOEHR neuron system achieve a
CS configuration, even in the presence of unknown external
disturbances and uncertain dynamics.

FIGURE 3. Responses of the state variables of the master and slave
neuron (CS).

FIGURE 4. Responses of the CS errors of the master-slave neuron system.

(b) Case 2: Anti-phase projective synchronization (APS)
When λ1 = −0.5, λ2 = −0.5, λ3 = −0.5, and λ4 = −0.5,

the master and slave neurons are expected to have anti-phase
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FIGURE 5. Responses of the state variables of the master and slave
neuron (APS).

FIGURE 6. Responses of the APS errors of the master-slave neuron
system.

state trajectories. The time responses of the states of the mas-
ter and slave neuron are illustrated in Fig. 7. The slave neuron

FIGURE 7. Responses of the state variables of the master and slave
neuron (GPS).

exhibits distorted and irregular state trajectories without the
control inputs. After the control scheme is applied, the slave
neuron overcomes the external disturbances immediately and
enters a regular state in which the slave neuron has anti-phase
states compared with the master neuron, and the amplitudes
are reduced in specified proportions. Then, the state trajec-
tories of the master-slave neuron system achieve APS. The
time evolutions of the APS errors are depicted in Fig. 8, which
shows the desired APS behavior of the two coupled neurons.
Thus, the APS of the master-slave neuron system with uncer-
tain dynamics is achieved under the proposed control scheme.
Moreover, the adaptive fuzzy control algorithm suppresses
the unknown disturbances and causes them to have little
influence on the stable synchronization of the coupled neuron
system.

(c) Case 3: Projective synchronization (PS)
When λ1 = 0.6, λ2 = 0.6, λ3 = 0.6, and λ4 = 0.6,

the slave neuron is expected to synchronize with the master
neuron in specified proportions. The time responses of the
states of the master and slave neuron are depicted in Fig. 9,
in which the PS of the neuron system can be observed.
Whenwe apply the control scheme, the original irregular state
trajectories become ordered states, in which the slave neuron
overcomes the external disturbances and its state trajectories
track the oscillation trajectories of the state variables of the
master neuron proportionally. Then, themaster and slave neu-
rons achieve PS. The time evolutions of the PS errors shown
in Fig. 10 also verify the PS of these two neurons. It follows
that the proposed adaptive fuzzy control scheme is effective
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FIGURE 8. Responses of the GPS errors of the master-slave neuron
system.

for achieving PS in a master-slave FOEHR neuron system
subjected to uncertain dynamics and unknown disturbances.

V. CONCLUSION
In this article, an adaptive fuzzy control algorithm is designed
for the GPS problem of a master-slave neuron system that
consists of two FOEHR neuronal models with TMAS inputs.
The complex firing behaviors and uncertain parameters of
the improved neuronal model are considered, and the slave
neuron is assumed to be subjected to unknown disturbances.
To achieve synchronous behaviors, four new synchronization
error variables were introduced to construct a GPS error
system. The uncertain nonlinear dynamics of the error sys-
tem are approximated by fuzzy logic systems, and adaptive
variables that are tuned online are utilized to optimize the
approximation errors and the approximation weights. When
the controller is implemented, the slave neuron is driven to
synchronize with the master neuron in specified proportions,
and the synchronization errors coverage to zero in a finite
amount of time. In the simulation, CS, APS and PS are
illustrated to demonstrate the effectiveness of the proposed
control method. Our future work will focus on the finite-time
lag synchronization problem of fractional-order HR neuronal
models.
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