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ABSTRACT When a radar signal generated by another vehicle arrives at an ego-vehicle, mutual interference
occurs, which can seriously degrade the detection performance of the radar. To mitigate mutual interference,
the type of radar modulation used in the interference vehicle must be identified because the types of
radar systems installed in each vehicle are different. Therefore, in this paper, we propose a method for
classifying the modulation types of interference signals in automotive fast chirp frequency modulated
continuous waveform (FMCW) radar systems. We build a mathematical model of the received signal when
the radar signal transmitted by the ego-vehicle interferes with various types of interference signals, such as
unmodulated continuous wave (CW), slow chirp FMCW, fast chirp FMCW, pulsed CW, and frequency-shift
keying signals. In the fast chirp FMCW radar systems, the received signal is converted into range-Doppler
response using two-dimensional Fourier transform. Based on range-Doppler responses of the interference
signals, we design a classifier to identify the modulation type of interference signals using a convolutional
neural network (CNN). Through our proposed CNN, we can classify five different types of interference
signals with an accuracy of over 96%. In addition, compared to conventional feature-based machine learning
techniques such as support vector machines, the proposed method can effectively identify the interference
signal with fewer input signals in shorter time.

INDEX TERMS Automotive radar, modulation type classification, mutual interference, convolutional neural
network (CNN).

I. INTRODUCTION
As interest in autonomous driving has recently increased,
the use of radar sensors in vehicles has becomemandatory [1]
because the radar sensor is resistant to environmental changes
and has a long detectable range compared to other automotive
sensors, such as camera and sonar sensors [2]. If two or
more radars share the same frequency band, mutual interfer-
ence between these sensors can occur. Furthermore, as the
number of vehicles equipped with radar sensors increases,
the mutual interference can seriously degrade the detection
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performance of the radar [3]. Thus, to ensure a stable detec-
tion performance, it is essential to identify in advance what
type of interference occurred and to apply an appropriate
interference suppression technique. Several studies have pro-
posed to mitigate interference signals generated between
specific radar systems [4]–[6]. The authors in [4] proposed
interference mitigation scheme which dealt with interfer-
ence signal caused by two frequency modulated continuous
waveform (FMCW) radars. They reconstructed interference
signals using the wavelet denoising method and subtracted
it from the low-pass filtered output signal. In [5], a method
was proposed to mitigate the interference signal generated
between fast chirp FMCW radars. The Kalman filter was used
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to restore signals in the interference region by using signals
from the non-interference region. The authors in [6] consid-
ered the case where FMCW radar signals interfered with
continuous wave (CW) radar signals. With morphological
component analysis, they separated interference signals into
interference component and received beat signals. Therefore,
if we identify the modulation type of interference, we can
choose the appropriate interference mitigation method.
However, since different manufacturers use different mod-
ulation schemes, it is very difficult to predict the interference
pattern. Therefore, we need an effective method to identify
the type of interference.

Several studies focusing on interference recognition have
been conducted [7]–[9]. In [7], the authors proposed amethod
for classifying interference signals using Gini’s coefficient.
However, they only classified the modulation type of radar
signals transmitted from other vehicles and did not con-
sider the signals transmitted from the ego-radar system. The
authors in [8] considered the case where a signal of the
ego-radar system was received together with a signal of
another radar. They suggested a classification model using
a support vector machine (SVM). The frequency responses
of received signals were used as input data for the model.
However, they did not classify the frequency responses by
extracting features from them; they instead used the mag-
nitude of each frequency bin as input features. Therefore,
it seems that this classification process requires considerable
computation. The authors in [9] extracted features based on
the statistical characteristics of the radar signal and used SVM
to determine themodulation type of signal that interferedwith
the received signal. However, this model required full chirp
data for feature extraction resulting in a time delay in the
classification.

In this study, we propose an effective method for classify-
ing the modulation type of interference signal in automotive
radar systems. First, we formulate a mathematical model of
the received signal when the fast chirp FMCW signal from
the ego-vehicle’s radar system is interfered with a signal from
another interference vehicle’s radar system. Five different
modulation types of interference signals were considered in
our work: unmodulated CW, slow chirp FMCW, fast chirp
FMCW, pulsed CW, and frequency-shift keying (FSK) sig-
nals. In the fast chirp FMCW radar system, mutual interfer-
ence can be effectively analyzed in two axes of slow-time
and fast-time, which can be regarded as two-dimensional
(2D) data. These 2D data, radar signals with interference,
were transformed into a range-Doppler response by utilizing
2D Fourier transform. Thus, we propose a model using a
convolutional neural network (CNN) which is effective for
the 2D radar data. Recently, CNN’s have been actively used
in combinations with radar sensor data to classify target
types [10]–[12] or specific actions [10], [13]. In this study,
we proposed a CNNmodel composed of convolutional layers,
fully connected layers, and an output layer, considering batch
normalization and max pooling for better performance.

In simulation results, the proposed CNN-based method
can classify five different interference signals with an accu-
racy of over 96% and it shows better classification accuracy
than SVM’s used in [8], [9]. Unlike feature-based machine
learning techniques, our proposed method does not require
hand-crafted features based on domain knowledge. In addi-
tion, whereas the conventional method requires the entire
chirp data for classification, the proposed method allows
classification using only a few chirps. This is to make faster
decisions by lowering the amount of computation in generat-
ing input data of the CNN model. We took chirp data from
the first column and transformed it into 2D range-Doppler
response. The proposed algorithm showed 96.5% accuracy
even when only 1% of the total chirps were used. We verified
that the accuracy increased as the number of chirps used
increased. We also compared the classification performance
with the methods proposed in [8], [9].

The remainder of this paper is organized as follows. First,
we describe the mathematical model of the received sig-
nal with interference signals in Section II. In Section III,
the proposed CNN-based classification method is presented,
including the input type and the framework for the CNN.
Then, the classification results using the CNN are given in
Section IV.Additionally, we also compare the performance of
the proposed method to other classification methods. Finally,
we conclude this paper in Section V.

II. RANGE-DOPPLER RESPONSE OF INTERFERENCE
SIGNALS IN AUTOMOTIVE RADAR SYSTEMS
In automotive radar systems, if two or more radar-equipped
vehicles share the same frequency band, mutual interference
signals are generated. These signals contain frequency infor-
mation about both the target and the interference sources.
Therefore, by using the frequency information about the
interference source, we can estimate its modulation type. In
this section, mathematical models for the modulation types of
the received interference signals are derived in range-Doppler
response forms using 2D Fourier transforms.

A. FAST CHIRP FMCW RADAR SYSTEMS
We assume that the ego-vehicle transmits fast chirp FMCW
radar signals for target detection. The fast chirp FMCW
radar has an advantage over the conventional FMCW radar
in terms of efficiency of target estimation. In the case of
conventional systems, a target pairing process is necessary
for target estimation. In multi-target situations, the pairing
process can be a time-consuming task. In contrast, in the
fast chirp FMCW radar system, the target estimation can be
done without the target pairing process because the peaks
corresponding to the targets appear in the 2D range-Doppler
response [14]. For this reason, the fast chirp FMCW is the
most widely used automotive radar system for autonomous
driving. Fig. 1 shows this system, in which a transmitting
antenna transmits a chirp signal whose frequency increases
linearly with time. The transmitter repeatedly sendsM chirps
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FIGURE 1. Radar signal processing in fast chirp FMCW radar systems.

and the corresponding transmitted signal can be expressed as

STX (t, m) = AT exp
(
j2π

((
fc −

BW
2

)
t +

BW
21T

t2
)

+ jφT

)
(0 ≤ t < 1T , 0 ≤ m < M ), (1)

where AT is the amplitude of the transmitted signal, fc is the
carrier frequency of the radar, BW is the bandwidth, 1T is
the sweep time of a chirp, t is the time value in the fast-time
axis, m is the chirp index, and φT is the initial phase of the
transmitted signal. A receiver receives theseM chirps signals
that are reflected from a target. The corresponding phase of
the received signal can be expressed as

φRX (t, m) =
(
fc −

BW
2
+ fD

)
(t − td )+

BW
21T

(t − td )2

(td ≤ t < 1T , 0 ≤ m < M ). (2)

Compared to (1), there are phase differences in (2), which are
caused by the target motion. The first one is from the Doppler
shift fD, which can be expressed as 2fcv

c . This is caused
by the relative velocity v between the radar and the target.
The second one is from the round-trip delay td =

2R(m)
c ,

where td is the time delay for the transmitted signal to reach
the target and return to the receiver and R(m) is the distance
between the radar and the target. Here, R(m) is the distance
for themth chirp which can be expressed as R+mv1T , where
R is the initial range. This is because the radar and the target
move with relative velocity v, which causes the range offset
from the initial range R.

The received signals are then multiplied with the transmit-
ted signal in a mixer to obtain a signal at the intermediate
frequency. Higher frequency components are filtered with the
low-pass filter. The corresponding phase of the mixer output
signal can be expressed as

φMX (t, m) = −fDt + fctd −
BW
2
td + fDtd

+
BW
1T

ttd −
BW
21T

td 2

(td ≤ t < 1T , 0 ≤ m < M ). (3)

The first, third, fourth, and last terms, which are expressed as
fDt , BW2 td , fDtd , and BW

21T td
2, respectively, can be neglected

because they are relatively smaller than the other terms. Con-
sidering that fD =

2fcv
c and td =

2(R+mv1T )
c , φMX (t, m) can

be approximated as

φMX (t, m) ≈
2fcR
c
+

2fcv1T
c

m+
2BWR
1Tc

t

+
2BWvm

c
t

(td ≤ t < 1T , 0 ≤ m < M ). (4)

Again, the last term 2BWvm
c t can be neglected because it is

relatively smaller than the other terms. Finally, φMX (t, m) can
be approximated as

φMX (t, m) ≈
2fcR
c
+

2fcv1T
c

m+
2BWR
1Tc

t

(td ≤ t < 1T , 0 ≤ m < M ). (5)

Each chirp signal is sampled by an analog-to-digital con-
verter (ADC) and N is the number of samples in a single
chirp. Thus, the mixer output is defined in a N × M matrix
form as

S = [sc(1), sc(2), · · · , sc(M )] , (6)

where sc(m) = [s(1, m), · · · , s(N , m)]T and s(n, m) is
defined as

s(n, m) = AM exp
(
j2π

(
2fcR
c
+

2fcv
c
1Tm

+
2BWR
1Tc

1T
N

n
)
+ jφs

)
. (7)

In (7), AM is the amplitude of the mixer output signal and φs
is the phase offset.

When applying 2D Fourier transform on S in (6), we can
estimate the target’s velocity and range simultaneously. The
resulting frequency response is called the range-Doppler
response. The 2D Fourier transform can be performed step
by step; for example, a column-wise Fourier transform can
be performed first, followed by a row-wise Fourier transform.
When column-wise Fourier transform is applied on the signal
matrix S, a peak appears at a specific frequency which corre-
sponds to the last term in (7), 2BWR

1Tc . Therefore, this frequency
implies the distance between the radar and the target. The
corresponding frequency responses can be expressed in a
Nc × M matrix form, where Nc is the number of points in
the column-wise Fourier transform, as

Xc = [xc(1), xc(2), · · · , xc(M )] , (8)

here xc(m) = [x(1,m), · · · , x(Nc,m)]T and x(nc,m) is
defined as

x(nc,m) =
N∑
n=1

s(n,m) exp
(
−j

2πn
Nc

nc

)
. (9)

Here, xc(m) is the frequency response of sc(m) and Xc is
the frequency response following the column-wise Fourier
transform.
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Next, in (8), we apply Fourier transform on each row
vector xcr (nc) in Xc, where xcr (nc) is defined as xcr (nc) =
[x(nc, 1), · · · , x(nc,M )]. The range-Doppler response can be
expressed in a Nc × Nr matrix form, where Nr is the number
of points in the row-wise Fourier transform, as

Xrv =


xrv(1)
xrv(2)
...

xrv(Nc)

 , (10)

where xrv(nc) = [xrv(nc, 1), · · · , xrv(nc,Nr )] is the frequency
response of xcr (nc) and xrv(nc, nr ) is defined as

xrv(nc, nr ) =
M∑
m=1

x(nc,m) exp
(
−j

2πm
Nr

nr

)
. (11)

Fig. 2(a) shows the result of the column-wise Fourier
transform when a single target moves at a speed of 20 m/s at a
distance of 15 m. As shown in the figure, peaks are generated
at 15 m in every column. In addition, a relative velocity
between radar and target can be obtained when applying
Fourier transforms on each row of S. As shown in Fig. 2(b),
peaks appear at the frequency of 2fcv

c , which is the second
term in (7). Therefore, we can estimate that the target moves
at a speed of 15 m/s.

FIGURE 2. Frequency responses of fast chirp FMCW radar system (a) after
column-wise Fourier transform (b) after row-wise Fourier transform.

Fig. 3 shows a range-Doppler response of the signal
received from the target we set above. As shown in the figure,

FIGURE 3. Range-Doppler response of fast chirp FMCW radar system: a
peak corresponding to target appears at (R, v ) = (20 m, 15 m/s).

peaks appear at certain values on the range and velocity axis,
enabling the estimation of the target information as R =
20 m and v = 15 m/s. Furthermore, if two or more targets
exist, the corresponding peaks appear at the range-Doppler
response. Therefore, we can simultaneously estimate both the
range and velocity of each target.

B. RANGE-DOPPLER RESPONSE OF THE INTERFERENCE
SIGNAL
When some objects other than targets are nearby, their cor-
responding frequency responses appear at the range-Doppler
response. Particularly, if there is an interference vehicle that
also transmits radar signals for target detection, it acts as
a new signal source, making frequency responses different
from the target’s frequency response. In this study, the simu-
lation setup was based on three vehicles driving on a road as
shown in Fig. 4. The blue car is an ego-vehicle equipped with
a radar sensor and is capable of detecting other cars, the green
car is a target vehicle driving in front of the detection vehicle,
and the orange car is an interference vehicle that also emits
radar signal for target detection and interferes with the ego-
vehicle. The two radar-equipped vehicles share frequency
bands; therefore, interference occurs.

FIGURE 4. Driving environment.

We set five different modulations for the interference sig-
nal: the unmodulated CW, slow chirp FMCW, fast chirp
FMCW, pulsed CW, and FSK signals. In [9], the mathemati-
cal expressions of the interference signals are presented when
a fast chirp FMCW radar is used for target detection. The
expressions are shown in Table 1.

All signals listed in Table 1 are the outputs of the mixer. As
these signals are given in the form of a vector with a single
time index, they must be converted into a matrix form of size
N×M to check the range-Doppler responses, as shown in (6).
The NM data samples sampled in the ADC are converted to
the matrix form of (6), and then the range-Doppler response
is obtained through the processes of (8)-(11). Analyzing the
magnitude of range-Doppler responses, as presented in Fig. 5,
we observe that different patterns are generated according
to the modulation types. Fig. 5(a) and Fig. 5(b)-(f) show
the magnitude of range-Doppler responses when only the
target exists and when five different types of interference sig-
nals are received together, respectively. From the expressions
in Table 1, different frequency components of the interference
signals create specific patterns in range-Doppler responses.
Therefore, we can expect that a deep learning model trained
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TABLE 1. Modulation types of interference signals and mixer output signals.

FIGURE 5. Range-Doppler responses of recevied signals when (a) only target signal, (b) unmodulated CW signal, (c) slow
chirp FMCW signal, (d) fast chirp FMCW signal, (e) pulsed CW signal, and (f) FSK signal received.

with the magnitude of these frequency responses can ensure
the identification of the interference signals.

III. PROPOSED METHOD
A. INPUT FORMAT
To classify the modulation types of interference signals,
we consider a CNN model. Compared to an artificial

neural network, the CNN employed convolution operations
for learning, resulting a reduction in the number of training
parameters and effective extraction of the local characteristics
of the input image [15].

For the classification task, we use the magnitudes of
range-Doppler responses Xrv. First, these magnitudes are
normalized to values from 0 to 1. When the maximum and
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minimum values of xrv(nc, nr ) in all data set are xmaxrv and
xminrv , respectively, the normalized value xnormrv (nc, nr ) can be
expressed as

xnormrv (nc, nr ) =
xrv(nc, nr )− xminrv

xmaxrv − xminrv
. (17)

Thus, the normalized range-Doppler magnitude responses
are defined in a matrix form as Xin

k , where k is the index for
the modulations of interference signals and the size of Xin

k is
Nc × Nr . We use Xin

k as the input of the CNN model for the
interference classification. In this study, we set the number
of points in the Fourier transforms equal to the number of
time-domain data. Therefore, the size of the received signal
matrix in the time-domain remains the same after 2D Fourier
transform.

B. CNN MODEL
Fig. 6 shows the structure of our CNN model, which consists
of a combination of convolutional layers, batch normalization
layers, rectified linear unit (ReLU) activation layers, max
pooling layers, fully connected layers, dropout layers, and an
output layer. The detailed description of each layer is listed
in Table 2. Each convolutional layer performs 5 × 5 convo-
lution operations, and the number of filters increases as the
layer becomes deeper. Both the stride and padding size are set
to 2 in each convolutional layer. After convolution, the batch
normalization is used to normalize the intermediate results of
the model. With the batch normalization, the training speed
can be improved because a gradient vanishing or gradient
exploding can be prevented [16]. Then, we use the ReLU
activation function [17], which is defined as

f (zl) = max{0, zl} =

{
zl, zl ≥ 0
0, else

(18)

where zl is an element of outputs in lth convolutional layer.
The max pooling layer is used to decrease the spatial size
of features and parameters of the network [18]. The units in
the final max pooling layer are flattened into a single vector.

FIGURE 6. The structure of the proposed CNN model.

TABLE 2. The detailed description of CNN model.

This final max pooling layer is followed by fully connected
layers. Dropout layers are used after each fully connected
layer to prevent overfitting [19]. At the output layer, the out-
put for K classes is obtained using a softmax activation
function, as follows:

z = [z1, · · · , zK ]T = σ (h), (19)

where zk is the predicted interference representing the kth
category in the K classes, h = [h1, · · · , hK ]T is the output
of the last fully connected layer, and σ (h) is the softmax
function, which is defined as

zk = [σ (h)]k =
ehk∑K
i=1 e

hi
. (20)

The mini batch size is set to 256, the learning rate is set to
10−4, and the epoch is set to 10 for training.

C. NETWORK OPTIMIZATION
The parameters for the CNNmodel are learned through train-
ing dataset T to minimize the loss function. Based on the
cross-entropy, the loss function for the jth training sample is
calculated as

Loss(z(j)) = −
K∑
k=1

t (j)k log(z(j)k ), (21)

where t (j)k = 1 when k is the index for the ground truth of the
jth training sample and t (j)k = 0 otherwise. The total loss for
the training set is calculated as

J (2) =
1
|T |

∑
j∈T

Loss(z(j)), (22)

where 2 represents all learnable parameters for the CNN
model and | · | is the number of elements in a set.
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To minimize the loss function, several variants of the
gradient-descent method have been studied in the literature,
such as AdaGrad, AdaDelta, Adam, and momentum [20].
These optimizers adaptively change the learning rate to prop-
erlyminimize the loss function. Here, we used themomentum
optimizer in our experiments.

IV. CLASSIFICATION OF INTERFERENCE SIGNAL
A. SIMULATION ENVIRONMENT
We evaluated the performance of the proposed method
through simulation. As mentioned in Section II-B, the ego-
vehicle transmits radar signals to detect the target vehicle in
front. The interference vehicle drives in the opposite lane and
transmits the interference signals. The distance between the
detection and target vehicles varied from 10 m to 70 m. The
distance between the detection and interference vehicles was
also set to vary from 10 m to 70 m. The range of the relative
velocity between the detection and target vehicles was set to
vary from -30 m/s to 30 m/s. In the case of relative velocity
between the detection and interference vehicles, the velocity
was set from -60 m/s to 0 m/s.

The parameters of the detection and interference vehicles
are presented in Table 3. These system parameters are deter-
mined to meet the radar specifications that vary depending
on the environment in which the radar is used. For example,
the maximum detectable range is expressed as cN

4BW and the
velocity resolution is expressed as c

2fcM1T
. The values of N

and M are usually determined as a power of 2 with a value
ranging from 128 to 512, which are set to 256 in this paper.

TABLE 3. Parameters setting of simulation.

We set K = 6 classes for classification: one class for
the case when only the target signal was received and five
classes for the five different modulations. For convenience,
we set each class name as follows: ‘‘TS’’ for target signal,
‘‘UC’’ for unmodulated CW radar signal, ‘‘SC’’ for slow
chirp FMCW radar signal, ‘‘FC’’ for fast chirp FMCW radar
signal, ‘‘PC’’ for pulsed CW radar signal, and ‘‘FSK’’ for

FSK radar signal. We generated 10,000 received signals per
class and transformed them intoXin

k . 70% of the data was used
for training, 15% was used for validation, and 15% was used
for test. There are several causes of noise in the radar systems,
but the most dominant noise is the thermal noise generated by
the radar antenna [19]. Thus, to model the noise of the signal,
we assumed the noise to be additive white Gaussian noise
(awgn) and set signal-to-noise ratio to 10 dB.

In addition, as all signal post-processing should be per-
formed within a signal period of several tens of millisec-
onds, an efficient and fast signal processing algorithm is
required [23]. Therefore, we also trained the CNN model
using a small amount of data to reduce the amount of
computation. The conceptual diagram is shown in Fig. 7.
We selected chirps to be used from the first column of the
time-domain signal matrix S. At this time, if the chirp is
taken less, the computational operations in the conversion
to 2D range-Doppler response get reduced. We analyzed the
accuracy of the model by reducing the number of chirps used
and attached the corresponding results.

FIGURE 7. Concept diagram showing the use of a small number of chirps.

B. CLASSIFICATION RESULT
We first verified the performance of the CNN model by
varying the number of chirps used. The horizontal axis of
Fig. 8 represents the number of chirps used for classification.
With the proposed method, we can classify the modulation
of interference signal with an accuracy over 96%. The use
of only 1% of data for the algorithm enables the classifi-
cation by the CNN model with an accuracy of 96.8%. This
is because even if the number of chirps used is reduced,
the characteristics of the signal can be seen in the frequency-
domain. Therefore, considering a saving of data storage and
fast decision, the task can be performed with considerably
less chirps. However, for the selection of the number of chirps
used, there is a trade-off between the computational cost and
the classification accuracy. Using less chirps results in poor
performance because the characteristics in frequency-domain
get lost. As the number of chirps used increases, the frequency
characteristics become more obvious, so the performance
increases. When using 8% of the total data (20 chirps),
the performance converges to 100%, which can be interpreted
as sufficient to represent the frequency characteristics of the
interference signal. Therefore, we can conclude that it is
better to use at least 8% of the data to ensure classification
performance. Less chirps may be used depending on the
purpose.

A training progress when using 20 chirps is shown in Fig. 9.
The training accuracy, validation accuracy, training loss and

VOLUME 8, 2020 176723



J. Kim et al.: Classification of Interference Signal for Automotive Radar Systems With Convolutional Neural Network

FIGURE 8. Classification accuracy.

FIGURE 9. Training and validation accuracy and loss when using 20 chirps.

validation loss over epoch number are plotted. As the learning
progressed, the accuracy increased and the loss decreased.
Finally, the training accuracy and the validation accuracy
converged to 100%. Also, because the training loss and the
validation loss showed similar tendency, we can say that the
model was prevented from over-fitting. Therefore, the model
was well trained to classify the interference signals.

Furthermore, we compared the performance of the model
with the methods suggested in [8], [9], which used an SVM
for classification. The results are shown in Table 4. For
comparison, we selected the percentage of chirp used as
8% (20 chirps), which provided a classification performance
of 100% for the first time. Compared to two conventional
interference classificationmethods, our proposedmethod had
a better performance. Summarizing the results of Fig. 8 and
Table 4, our model is more suitable for interference classifi-
cation than the conventional methods even when the number
of chirps used is small.

We also compared the computational complexities of the
three methods in quantitative way. Because the three methods
used different classification model, it is hard to strictly com-
pare the complexity. We analyzed the relative complexities
through the execution times of them. These times are mea-
sured with aMATLAB 2019a program on a computer with an

TABLE 4. Performance comparison when 20 chirps used.

AMD Ryzen Threadripper 2990WX 32-Core Processor run-
ning at 3.0 GHz. As shown in Table 4, our proposed method
took longer time to train than the SVM method in [8] using
a linear kernel. However, the training was completed in less
time than the method of [9] using a quadratic kernel. When
comparing the test time, the results of the three methods are
similar in tens of milliseconds.

In addition, we verified the performance of the proposed
model using 3% of entire chirps (7 chirps), and the result is
shown in Fig. 10. As shown in the figure, most of the test
samples were well classified, but some data in classes ‘‘TS’’
and ‘‘SC’’ were misclassified. As shown in Fig. 5, the data in
class ‘‘SC’’ do not have dominant patterns of vertical stripes
unlike other interference signals. We observed that when the
number of chirps used is small, part of the samples in class
‘‘SC’’ is similar to those of class ‘‘TS’’ with noise. We also
found that this tendency gradually disappeared as the number
of chirps used for classification increased.

FIGURE 10. Confusion matrix when 7 chirps used.

Fig. 11 represents data visualization using t-stochastic
neighbor embedding (t-SNE), which uses stochastic prob-
ability to achieve dimensionality reduction. The algorithm
preserves the characteristics of the original data even after
the dimension of data is reduced to two or three [24].
Figs. 11(a) and (b) show the results of the input and the feature
vector, respectively. As shown in Fig. 11(a), some data of each
class are located close to each other, but many are mixed and
distributed. When the features extracted through the CNN
model are used as inputs to the t-SNE algorithm, as shown
in the Fig. 11(b), the data of each class are distributed in
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FIGURE 11. Scatter plots of t-SNE algorithm (a) with input data (b) with
feature vector.

clusters. Therefore, it is evident that the proposed CNNmodel
appropriately changed the phenotype of the input image for
classification.

V. CONCLUSION
In this study, we classified five different modulation types
of radar interference signals for automotive radar systems.
First, we formulated a mathematical signal model in which
the target and the interference signals were received together.
Then, using the 2D Fourier transform, these received signals
were converted to range-Doppler responses and stored as a
set of image data. Finally, we proposed the interference signal
classifier using the CNNmodel based on the generated image
data set. We verified that the model identified the modulation
type of interference signal with an accuracy of over 96%.
In addition, the classification performance of the proposed
methodwas also evaluated using a small number of chirps and
it showed more than 5.6%p better performance than the con-
ventional SVM’s. Through the proposed method, the modu-
lation types of interference signals from various automotive
radar sensors are accurately identified in a short time, so it
can be effectively applied to the interference mitigation or
interference avoidance. If different mitigation techniques are
applied depending on the types of the interference signals,
the target detection performance will be greatly increased.

APPENDIX
DERIVATIONS OF MIXER OUTPUT SIGNALS OF
INTERFERENCE SIGNALS
In this section, we derived the mixer output signals of five dif-
ferent modulations of interference signals. All the mixer out-
put signals are expressed in one-dimensional time-domain.
First, we will express the transmitted signal of the ego-vehicle
which uses the fast chirp FMCW radar. Then, signals trans-
mitted from the interference vehicles of fivemodulation types
will be expressed in each subsections. Finally, the transmitted
signals from the ego-vehicle and the interference vehicle are
mixed considering the round-trip delay td and the Doppler
shift fD.

The frequency of the fast chirp FMCW radar system can
be expressed as

fFC (t) = fc −
BW
2
−
BW
1T

(t − m1T ) , (23)

wherem is the index of chirps. The corresponding transmitted
signal can be expressed as

ST (t) = AT exp
(
j2π

((
fc −

BW
2
−mBW

)
t

+
BW
21T

t2
)
+ jφT

)
, (24)

where φT is the initial phase of the signal. This transmit-
ted signal will be multiplied with the transmitted signals of
interference vehicles.

A. UNMODULATED CW
The unmodulated CW radar transmits signals with constant
frequency. The frequency of this radar can be expressed as

fUC (t) = fcI , (25)

where fcI is the center frequency of the interference signal.
The corresponding transmitted signal can be expressed as

ST (t) = AT exp (j2π fcI t + jφT ) . (26)

Then, the received interference signal can be expressed as

SR(t) = AR exp (j2π (fcI + fD) (t − td )+ jφR) , (27)

where φR is the initial phase of the received signal. The
mixer output signal is obtained by mixing (24) and (27). The
corresponding signal can be expressed as Eq. (12).

B. SLOW CHIRP FMCW
The frequency of the slow chirp FMCW radar linearly
increases and decreases with time. The frequency of this radar
system can be expressed as

fSC (t) = fcI − (−1)nS
BWI

2

+ (−1)nS
BWI

1TI
(t−nS1TI ) , (28)

where nS is the index of the chirps, BWI is the bandwidth of
the interference signal, and1TI is the sweep time of a chirp of
the interference signal. The corresponding transmitted inter-
ference signal can be expressed as

ST (t) = AT exp
(
j2π

((
fcI − (−1)nS

BWI

2

− (−1)nSnSBWI

)
t

+
1
2
(−1)nS

BWI

1TI
(t − td )2

)
+ jφT

)
. (29)

Then, the received interference signal can be expressed as

SR(t) = AR exp
(
j2π

((
fcI − (−1)nS

BWI

2

− (−1)nSnSBWI + fD

)
(t − td )

+
1
2
(−1)nS

BWI

1TI
(t − td )2

)
+ jφR

)
. (30)

The mixer output signal is obtained by mixing (24) and (30).
The corresponding signal can be expressed as Eq. (13).
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C. FAST CHIRP FMCW
The transmitted signal of the fast chirp FMCW radar is
shown in (24). Then, the received interference signal can be
expressed as

SR(t) = AR exp
(
j2π

((
fcI −

BWI

2
− mIBWI

+ fD

)
(t − td )+

BW
21T

(t − td )2
)
+ jφR

)
. (31)

The mixer output signal is obtained by mixing (24) and (31).
The corresponding signal can be expressed as Eq. (14).

D. PULSED CW
In the pulsed CW radar system, the antenna transmits a series
of pulses. The frequency of the pulsed CW radar can be
expressed as

fPC (t) =
NP−1∑
nP=0

fcI rect
(
t − nPTPRI

TP

)
, (32)

where nP is the index of pulses, NP is the number of total
pulses, rect(·) is a rectangular function, TPRI is the pulse
repetition time, and TP is the pulse duration time. The cor-
responding transmitted signal can be expressed as

ST (t)=AT exp

j2π NP−1∑
nP=0

fcI rect
(
t−nPTPRI

TP

)
t+jφT

 .
(33)

Then, the received interference signal can be expressed as

SR(t) = AR exp

j2π
NP−1∑
nP=0

fcI rect
(
t − nPTPRI

TP

)

+ fD

)
(t − td )+ jφR

)
. (34)

The mixer output signal is obtained by mixing (24) and (34).
The corresponding signal can be expressed as Eq. (15).

E. FREQUENCY-SHIFT KEYING
The frequency of this type of modulation varies with discrete
values. The frequency of the FSK radar can be expressed as

fFSK (t) = fcI − fstep
Nstep − 1− 2(nF modNstep)

2
, (35)

where fstep is the frequency difference between two adjacent
frequency steps, Nstep is the number of total frequency steps,
and nF is the index of the step. The corresponding transmitted
signal can be expressed as

ST (t) = AT exp
(
j2π

(
fcI

− fstep
Nstep − 1− 2(nF modNstep)

2

)
t + jφT

)
. (36)

Then, the received interference signal can be expressed as

SR(t) = AT exp
(
j2π

(
fcI−fstep

Nstep−1−2(nF modNstep)
2

+ fD

)
(t − td )+ jφR

)
. (37)

The mixer output signal is obtained by mixing (24) and (37).
The corresponding signal can be expressed as Eq. (16).
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