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ABSTRACT The article firstly proves that the constant quality factor (Q) contours for passive circuits,
while represented on a 2D Smith chart, form circle arcs on a coaxal circle family. Furthermore, these
circle arcs represent semi-circles families in the north hemisphere while represented on a 3D Smith chart.
On the contrary, it then shows that, the constant Q contours for active circuits with negative resistance form
complementary circle arcs on the same family of coaxal circles in the exterior of the 2D Smith chart.
Moreover, we reveal that these constant Q contours represent complementary semi-circles in the south
hemisphere while represented on the 3D Smith chart for negative resistance circuits. The constant Q semi-
circles implementation in the 3D Smith chart computer aided design (CAD) tool is then successfully used
to evaluate the quality factor variations of newly fabricated Vanadium dioxide inductors, directly from their
reflection coefficient, as the temperature is increased from room temperature to 50 degrees Celsius (◦C).
Thus, a direct multi-parameter frequency dependent analysis is proposed including Q, inductance and
reflection coefficient for inductors. Then, quality factor direct evaluation is used for two tunnel diode small
signal equivalent circuits analysis, allowing for the first time the direct analysis of theQ and input impedance
on a 3D Smith chart representation of a circuit, while including negative resistance.

INDEX TERMS Quality factor, Smith chart, microwave circuits, negative resistance, contour plots, CAD,
phase change materials.

I. INTRODUCTION
The Smith chart [1], [2], which, was invented by Philip Hagar
Smith in 1939, has survived the passing of years, becoming
an icon of microwave engineering [3]. It is still being used
in the design and measurement stage of various radio fre-
quency or microwave range devices [4]–[7], for plotting a
variety of frequency dependent parameters.

Constant quality factor (Q) representations on the Smith
chart are a visual way to determine the quality factor of
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various passive microwave circuits, being mostly known
in the microwave frequency range community [8]–[17].
These constant Q shapes are often denoted as contours or
curves, [8]–[12] but rarely as circles [11].

In this work we first prove that the constant Q curves rep-
resent circle arcs mapped on coaxal circle families [18] while
providing for the first time (to the best of our knowledge) their
equations, i.e. centre-radius-Q dependency.
We go on to prove that these circle arcs represent simple

semi-circles on the North hemisphere for all passive circuits,
when analysed on the 3D Smith chart computer aided design
(CAD) tool [19]–[21]. After displaying the constant Q-arcs
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for negative resistance circuits, we prove that these represent
semi-circles in the South hemisphere.

In order to prove the utility of our CAD implementa-
tion, we show that, while grounding the second port of
newly fabricated Vanadium dioxide 2-port inductors [22],
one may get the Q-frequency dependency directly from the
S11-reflection coefficient parameter, thus avoiding classi-
cal 2D Q-frequency plots previously employed by us [22],
[23] or other authors [24], [25], in these type of evalua-
tions. The proposed visualization on the 3D Smith chart
proves its effectiveness for passive circuits, especially when
Qs do not exceed big values [22]–[25], being particularly
useful for Vanadium dioxide temperature variations stud-
ies on Q - where Q degrades as temperature increases, but
potentially applicable in all inductors’ frequency dependent
Q evaluations. Here we test the temperature dependence of Q
for fabricated inductors with VO2 by sweeping it from 25

◦

C
to 50◦C - directly from the vector network analyser with the
newly developed technique. Further we show the utility of the
new CAD implementation for negative resistance circuits and
we analyse the quality factor of various tunnel diodes, when
negative resistance occurs, and the 2D Smith chart cannot be
used anymore.

II. CONSTANT Q SEMI-CIRCLES REPRESENTATION
AND APPLICATIONS
A. CONSTANT Q CIRCLE ARCS ON THE 2D
SMITH CHART-EQUATIONS
The quality factor of an impedance Z or admittance Y can be
defined as (1) [12]–[17], (this is denoted also as nodal quality
factor in [15]–[17]) where X represents its reactance, B its
susceptance, R resistance andG conductance as defined in (1)
where Z and Y can be related through (2). Other authors skip
the absolute value sign in (1) [8]–[11], however this doesn’t
change anything in respect to their geometry, only to the sign
labelling convention. Using the sign conventions [12]–[17]
(as for example at p.102 in [13]), we do not allow negative Q
values for passive circuits with positive resistances.

Q =
|X |
R
=
|B|
G
; (1)

Z =
1
Y
= R+ jX =

1
G+ jB

(2)

On the other hand, the reflection coefficient of 1- port network
(where R1 is the port resistance, usually 50�) can be defined
as:

S11 (z) =
Z − R1
Z + R1

=
R+ jX − R1
R+ jX + R1

=
r + jx − 1
r + jx + 1

=
z− 1
z+ 1

= ρr + jρi (3)

where r and x denote the normalized resistance, respectively
reactance:

r =
R
R1
, x =

X
R1
, z = r + jx (4)

and ρr and ρi denote the real and the imaginary part of the
reflection coefficient.

FIGURE 1. Constant Q lines in the z plane a) |Q| = 3 radial lines. As r and
x are swept from −∞ to∞, the constant Q lines passing through 0 and
infinity b) Various constant Q lines for −3 ≤ Q ≤ 3.

Based on (1) and (4) one can easily obtain Q as (5).

Q =
|x|
r

(5)

If Q 6= 0 is constant, we observe that the expression (5)
represents radial lines in the normalized impedance (z plane).
Fig. 1 (a) shows that for |Q| = 3 half-line obtained by
the correlation (5) between r and x for this fixed Q while
sweeping them. Fig. 1 (b) shows the family of the radial lines
obtained for various values of Q 6= 0.

Imposing now Q constant and positive in (3) one gets the
contours obtained in [8]–[17] irrespective of the presence
of the absolute value in (1). However, by using inversive
geometry [18], it can be proven that imposing (5) in (3),
the set of radial constant Q lines is proven to generate a family
of coaxal circles as r and x are swept from −∞ to +∞.

Proof:We know from [18], [19] that any transformation
of form (6) represents an inversive transformation mapping
always generalized circles (circles or infinite lines) into gen-
eralized circles.

A (z) =
az+ b
cz+ d

; (6a)

B (z) =
az̄+ b
cz̄+ d

(6b)
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TABLE 1. Distance between consecutive constant Q circles (Q, Q+1) and
reactance axes crossings for Q ≥ 0.

Since (3) is a particular case of (6) (Mobius transformation)
then, when imposing (5) in (3), the radial lines become gen-
eralized circles that passes through the points S11 (z = 0) =
(−1, 0), S11 (z = ∞) = (1, 0).

By matching the real part of (3) to zero, we assert that the
image of the points z = 1

√
1+Q2 ±

Q
√
1+Q2 j determine the

cutting points with the ρi axes, i.e.

S11(z =
1

√
1+ Q2 ±

Q
√
1+ Q2 j) = (0,

±Q2

√
Q2
+ Q
√
1+ Q2 )

(7)

Then, we obtain a coaxal family of circles that pass through
(−1, 0) and (1, 0), and their centers lie on the ρi axes with
radical axis ρr ( [26], [27]).

By using the bipolar coordinates ( [28]), we obtain that the
centre (C) and radius (rad) of this family of circles are:

C =
(
0,−

sgn (x)
Q

)
, rad =

√
1+

1
Q2 (8)

For Q > 0 we obtain circular arcs inside of the Smith Chart
as observed seldomly too, as in [11].

For Q = 0, we have a circle of infinity radius, i.e. the ρr
axis. We consider that the distance between two constant Q
circle centers is given by the distance between their inter-
sections with the ρi axis (7), then this distance between two
consecutive circles is given in Table 1. Fig. 2 shows the Q >
0 circles arcs.

Computing the distance between two consecutive circles,
for negative resistance circuits (with r ≤ 0 implying Q ≤ 0)
we obtain the results in Table 2 . Displaying now the contours
for Q< 0, we get the circle arcs in Fig.3. At the limit, Q= 0,
we have a circle of infinite radius, i.e. the ρr axis.
Finally, Fig. 4 displays the family of coaxal circles for−10
≤ Q ≤ 10 when Q is an integer value.

B. 3D SMITH CHART REPRESENTATION OF
CONSTANT Q SEMI-CIRCLES
By using the stereographic projection (9), we can get
images of the coaxal circles on the 3D Smith chart located

FIGURE 2. Various constant Q circle arcs inside of the Smith chart for
0 ≤ Q ≤ 10, with Q ∈ N.

TABLE 2. Distance between consecutive constant Q circles (Q, Q+1) and
reactance axes crossings for Q≤0.

FIGURE 3. Various constant Q circles arcs in the exterior of the Smith
chart for Q<0, with Q ∈ Z.

on the unit space sphere (surface) centered in the origin
(0,0,0) [19]–[22].

S113D (S11 = ρr + jρi) =

(
2ρr

1+ |ρ|2
,

2ρi
1+ |ρ|2

,
1− |ρ|2

1+ |ρ|2

)
(9)
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FIGURE 4. Various constant Q circle arcs for −10 ≤ Q ≤ 10, with Q ∈ Z.

FIGURE 5. Constant Q semi-circles and their fold planes on the 3D Smith
chart: (a) for r > 0 (Q > 0), (b) for −∞ < r <∞, (−∞ < Q <∞).

The coaxal circles become semi-circles on the 3D Smith
chart that pass through the pointsS113D (−1, 0) = (−1, 0, 0),

S113D (1, 0) = (1, 0, 0) and S113D

(
0, ±Q2
√
Q2
+Q
√
1+Q2

)
=

(0, ±Q
√
1+Q2 ,

1
√
1+Q2 ).

If we consider (x1,x2,x3) the space coordinates (please
see Fig.5), for Q 6= 0, these semi-circles are given by the
intersection of the 3D Smith chart surface with the fold plane:

−2
sgn (x2)

Q
x2 + 2x3 = 0, (10)

given by the two half-planes corresponding with the positive
and negative sign of x2, respectively, connected by the x1
coordinate axis.

IfQ = 0, the corresponding semi-circle passes through the
points (±1, 0, 0) and (0, 0, 1), i.e. it is Greenwich meridian.
Table 3 summarizes the results generated by (10).

TABLE 3. Constant Q semi-circles on the 3D Smith chart for different
values (intersection of the sphere with the Corresponding Surface).

FIGURE 6. Various constant Q semi-circles on the 3D Smith chart for
−10 ≤ Q ≤ 10, with Q ∈ Z.

Fig. 5 shows the constant Q semi-circles on the 3D
Smith chart together with the cutting fold planes given by
equation (10).

A more detailed view on the rendered 3D Smith chart is
given in Fig. 6 for a variety of values of Q.

C. APPLICATIONS IN RECONFIGURABLE INDUCTORS
WITH VANADIUM DIOXIDE SWITCHES IN ON/OFF STATE
The quality factor of an inductor is most commonly defined as
(11) - by grounding its second port [23]–[25], [29]–[31]. It is
usually evaluated until x changes sign and becomes negative.
Respectively, we may notice that the imaginary part of the
reflection coefficient of a 1-port network can be written as
(12) and this becomes zero when x becomes 0. Based on this
observation, the zeros of the imaginary part of S11 are given
by the zeros of x.

Q =
Im
(

1
Y11

)
Re
(

1
Y11

) = x
r

(11)

ρi =
2x(

1+ r2
)
+ x2

(12)

Secondly, (11) is identical with (5) under r > 0 and x
> 0 conditions, which are always fulfilled for a passive
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FIGURE 7. On, (pink at 100◦C) / off (black at 25◦C) extracted frequency
dependent parameters of the fabricated inductors measured between
4 GHz and 10.62 GHz: (a) Quality factor (b) Inductance.

inductor below its self-resonant frequency (when it becomes
capacitive).

Plotting the 1-port reflection coefficient on the Smith
chart delivers the values of the quality factor directly, unlike
the 2-port reflection coefficient representations, which are
unrelated to it. Displaying the 1-port reflection coefficient
(grounding the second port), we can directly detect the quality
factors and while using the 3D Smith chart implementation,
visualize the extracted inductance and frequency dependency
in a concomitant view.

Considering our previous work [22], the inductance can be
represented in the 3D space via a homothety over the S113D
parameter using (13) where LN (ω) represents the normalized
extracted inductance.

L3d (ω) = (LN (ω)+ 1) ∗ ρ3D (jω) (13)

In [22], the proposed display could not allow for the simulta-
neous displaying of L3d (ω), Q and S113D (ω).

Fig. 7 shows the extracted inductance and Q of the induc-
tors reported in [22] and using VO2 as switching element
using a classical approach. The results are measured at 25 ◦C
(off) and at 100 ◦C (on).
Let us consider now the representation proposed in the

previous section. Fig. 8 (a) displays the S113D of the inductors
in on/off states, with the second port grounded, for the same
frequency range as in Fig.8. One may directly read the value
of the quality factor in each point of them using the proposed
CAD implementation, while plotting the convenient constant
Q semi-circles. From the 3D rendering it can be visualized
that these values are between 7-10 for a wide frequency band,

FIGURE 8. On (pink) / off (black) frequency dependent extracted
parameters of the fabricated inductors between 4 GHz and 10. 62 GHz on
the 3D Smith chart: (a) S113D (b) S113D and frequency visualization (c)
S113D and L3d.

while in the case of the off state inductors, these values are
decreasing towards 0. For the on state it can be seen clearly
that these values do not decrease below 4 for the frequency
range displayed. Fig 8 (b) adds the frequency representation
proposed in [22] over the previous render, offering their
dynamical view as frequency is swept. Fig 8 (c) shows the
extracted inductance displayed over them, using a centre
projection for each point. The results picture the increased
value of the inductance in the off state as in comparison to the
one in the on state, while both showing frequency linearity.

176016 VOLUME 8, 2020
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FIGURE 9. Proposed CAD Q evaluation from the S parameters, for a wafer
full of inductors requiring Q>Qmin on a specific frequency band.

D. APPLICATIONS IN RECONFIGURABLE INDUCTORS
WITH VANADIUM DIOXIDE SWITCHES IN
TEMPERATURE SWEEPING
The proposed CAD approach is particularly useful in the case
of VO2 inductors, since these need to be tested at various
temperatures, thus a fast detection of a failure, directly from
the measured S parameters, would allow for skipping of the
testing for the same inductor at a different temperature. On a
wafer, that usually has a large number of inductors (ranging
from tens to hundreds), the proposed procedure represents a
fast tool for detecting quickly failures in the desired expected
Q. Fig. 9 summarizes the proposed procedure.

The S parameters can be exported as Touchstone 2-port
files and imported directly into the 3D Smith chart appli-
cation. The application presents a visualisation of the 3D
Smith Chart and a wide range of parameters useful in design
and analysis, as described in [21], [22]. The application is
developed using the Java programming language and for the
3D rendering and interaction with the Riemann sphere the
Open Graphics Library (OpenGL) Application Programming
Interface (API) is employed. The user can interact with the 3D
space in which the Riemann sphere is rendered to manipulate
the view of the 3D space and to adjust the parameters of the
displayed circuits, as necessary.

In order to test the temperature sensitivity of the Vana-
dium Dioxide reconfigurable inductors, let us examine a new
inductor, based on the design methodology described in [22],
but with longer switch length (minimizing losses in off state
and increasing them in the on state). The measurement setup
is shown in Fig. 10 (a) and includes a thermo chuck, whose
temperature is increased up to 50◦C. Fig. 10 (b) shows the
layout of the inductor, the same as in [22], in this case
however with a 2 µm switch length instead of 600 nm as
in [22].

Let us now verify the Q frequency dependency while
analysing the inductors in the 4-8 GHz and then check the
minimum value in this band.

The extracted Q and inductance are displayed in
Fig. 11 (a) and (b) on a 2D display. The values of the Q
decrease slightly up to 6, while the values of the extracted
inductance stay stable with temperature increase-Fig 11(b).

Using the new proposed CAD methodology, we can see
in Fig. 12 (a), the S113D (ω). It can be clearly seen how

FIGURE 10. (a) Setup for heating the measured wafer: Vector network
analyser and a thermo heater below (b) Layout of the inductors [22].

FIGURE 11. Temperature dependence of the inductors RF parameters
measured between 4 GHz and 8 GHz while sweeping the temperature
from 25 ◦C (black) to 40 ◦C (cyan) and 50 ◦C (red): (a) quality factor
(b) extracted inductance.

the Q does not decrease below 6 for none of the analysed
temperatures.

Exploiting the frequency dependency display, the dynam-
ics in Fig. 12 (b) can be observed. Fig 12 (c) shows the
extracted inductance in 3D - displaying its extremely stable
values as temperature increases up to 50◦C.

III. NEGATIVE RESISTANCE CIRCUITS
A. FREQUENCY DEPENDENT EXAMPLE
Let us consider the circuit given in Fig. 13, which is the small
signal equivalent circuit of a resonant tunnelling diode [32].
These diodes can be used as local oscillators in microwave
and millimetre wave frequencies.

Assuming now the values given in [32] for the negative
resistance:R = −120�, shunt capacitanceC = 0.7pF, while
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FIGURE 12. Temperature dependence of the inductors parameters
measured between 4 GHz and 8 GHz while increasing the temperature
from 25 ◦C (black) to 40 ◦C (cyan) and 50 ◦C (red): (a) S113D between the
constant Q circles (b) S113D between the constant |Q| circles including
frequency dependency-showing their dynamics L3D (c) S113D and L3D
displayed simultaneously.

the series resistance RS = 3.5 � and the series inductance
L=0.5 nH, let us analyse the frequency dependency of its
input impedance from its Q in between 5 GHz and 11 GHz.
The quality factor of a tunnelling diode can be negative [32],

FIGURE 13. Model of the small signal equivalent circuit of a resonant
tunnel diode consisting in a negative resistance R, shunt capacitance C
and series resistance Rs and series inductance L.

FIGURE 14. Reflection coefficient (pink) of the tunnel diode with a 50 �
port, for 5 GHz<f<11 GHz: (a) in the exterior of the Smith chart (b) on the
3D Smith chart (c) the frequency dependent 3D Smith chart, Q = −2 at
5 GHz, Q=0 at 8.3 GHz, Q=infinity at 11 GHz.

while keeping the same classical definition. In Fig. 14(a)
S11 trajectory can only be difficult spotted outside of the
Smith chart, crossing constant Q circle arcs. The evolution
of the quality factor from values of -2 towards infinity can
be seen in Fig. 14 (b)-(c) on a 3D Smith chart rendered with
the constant normalized conductance (g) and susceptance (b)
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FIGURE 15. Small signal equivalent circuit of the tunnel diode ([2, p. 154]:
(a) real values at 2 GHz (b) Normalized to 50 � impedance.

circles. The values of the normalized input admittance can
be checked in each moment along the g and b circles also.
While maintaining a negative input resistance, the device
behaves capacitive with up to 8.3 GHz when Q=0, then from
8.3 GHz the device behaves inductive. Its Q becomes infinite
in absolute value at 11 GHz, when its input resistance starts
changing sign.

All these evolutions can be easily checked and com-
puted with the 3D Smith chart without the need of further
calculations.

B. SINGLE FREQUENCY POINT ANALYSIS
Let us now analyse the tunnel diode small signal equivalent
circuit given in Fig. 15 (a) at 2 GHz. ([2, pp 154]. Let us
apply the 3D Smith chart implementation to compute the Q
and input impedance in the points 1-2-3-4 from Fig. 15 (b)
where the normalized values (to a 50 � impedance) are
given.

Employing a 2D Smith chart in Fig. 16 (a), this would be
not possible to further since the negative resistance is thrown
towards infinity. On the 3D Smith chart in Fig. 16 (b), we can
start from r =−1.25, towards South pole, withQ= 0 (purely
resistive). Thus, in point 1 we can read:Q= 0, r =−1.25 (or
g = −0.8). Points1-2: We then move on g = −0.8 circle to
b = 1.9. We can see that we touch the Q = −2.34 circle,
thus in point 2 we have g = −0.8 and b = 1.9 (or x =
−0.45). Points 2-3: wemove on the x =−0.45 constant circle
adding r = 0.02 and get to the point 3 where we intersect the
Q = −2.64 circle. Thus, we obtain here r = −0.17 and x =
−0.45. Points 3-4: We move on the r = −0.17 circle adding
the x = 0.12 value. In point 4 we can see directly that we cross
the Q=−1.94 circle thus we obtain zin = −0.17-j0.33, or in
un-normalized coordinates: the input impedance becomes:
50∗zin = −8.5-j16.5.

FIGURE 16. Input normalized impedance in the nodes 1-2-3-4 from
Fig. 15 (a) on the Smith chart-impossible to plot (b) on the 3D Smith chart.

We can verify with ease the correctness of the approach
by computing the input impedance mathematically. However,
the 3D Smith chart implementations allowed us to follow
step by step its development in different nodes, with no need
of arithmetical manipulations, and, simply by changing the
rendering, we were able to read the exact values stepwise.

The appendix shows how the implementation can also be
used for a bandstop cell in order to extract the equivalent
circuit directly from the S11 parameters intersections with
constant Q circles.

IV. CONCLUSION
In this article we have proved, for the first time, that the con-
stantQ contours (nodal quality factors) (1) form circle arcs on
a family of coaxal circles on the Smith chart. We provided,
for the first time (to the best of our knowledge), by means
of bipolar equations, their explicit equations in terms of
radius, circles centre-Q value relationship, by solving their
implicit equations. Further, we have shown while evaluated
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FIGURE 17. Bandstop cell equivalent circuit.

on the 3D Smith chart, the constant Q contours represent
semi-circles in the north hemisphere for positive resistance
circuits, respectively semi-circles on the south hemisphere for
negative resistance circuits, all cantered in 3D Smith chart
centre. This simple, compact, and practical circle shaped
property has enabled us to use these Q semi-circles directly,
in the reflection coefficients plane, for both passive and
active circuits, for the direct Q evaluations from measured
S parameters.

In the case of Vanadium Dioxide reconfigurable inductors
temperature sensitivity analysis: the proposed methodology
allowed us the multi-parameter extraction (inductance, Q,
reflection coefficient) (Fig. 12) directly from the measured
devices, simplifying the extraction procedures-and allowing
us a fast evaluation of their performances directly from the
measuring setup. In the case of negative resistance circuits,
the proposed Q visualization extended the use of constant Q
contours for circuits with negative resistance too, impossible
on a 2D Smith chart, exemplified here on tunnel diodes small
signal equivalent circuits. (Figs. 13-16).

APPENDIX
Let us consider the parallel R, L, C (which can be the equiv-
alent circuit of a bandstop cell) circuit present in Fig. 17.
Supposing one would need to determine the values of the
elements R, L, C in Fig. 17 that would fit a measured S11 of
a bandstop cell, whose equivalent circuit is completely deter-
mined by Fig. 17: one can use the new frequency dependent
Q implementation.
By representing the S11 with the second port grounded we

obtain Fig. 18.
The input admittance of the bandstop cell (Fig.17) can

be computed with (14). At resonance the imaginary part is
zero and (15) is fulfilled where ω0 is the angular resonance
frequency, while f0 the resonance frequency. The input admit-
tance at resonance Y110 becomes (16) and Q defined in (13)
becomes (17).

Y11 =
1
R
+ j

(
ωC −

1
ωL

)
(14)

ω0 =
1
√
LC

, f0 =
1

2π
√
LC

(15)

Y110 =
1
R

(16)

FIGURE 18. S11 parameter of the resonant circuit in Fig. 17 with
the second port grounded with unknown R,L,C using a 3D Smith chart
frequency dependent representation with constant Q semi circles
renderings.

Im
(

1
Y11R

)
Re
(

1
Y11R

) = 0 (17)

In Fig. 18 we can easily determine f0 and R: we check when
S11 crosses the Q = 0 circle and read the values for the
frequency and for the normalized resistance. We get f0 =
35.6 GHz and r = 8 = R/50, thus R = 400�.
Now let us compute (11) in a general form for the circuit

given in Fig. 17:

Q =
Im
(

1
Y11

)
Re
(

1
Y11

) = R
ωL
− RCω (18)

Imposing now Q = 1 we get:

R
ω1L
− RCω1 = 1 (19)

where ω1 = 2∗π f1 is the angular frequency for which Q=1
(and f1 the frequency for which Q=1)
Getting back in Fig. 18 and checking where S11 crosses the

Q=1 circle we get f1 = 34.6 GHz. Now getting back to (15)
and (19) we have:

35.6GHz =
1

2π
√
LC

(20)

400
2π ∗ 34.6GHz ∗ L

− 400C ∗ 2π ∗ 34.6GHz = 1 (21)

Solving using Mathematica [33] numerically (20) and (21)
we get one of the solutions: C=0.2 pF and L=0.1 nH. This
enabled us to extract the equivalent circuit without any fitting
procedure.
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