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ABSTRACT Estimating the surface from given atoms with location and size information is a fundamental
task in many fields, such as molecular dynamics and protein analysis. In this paper, we present a novel
method for such surface estimation. Our method is based on level set representations, which can efficiently
handle complex geometries. The proposed method is analyzed from mathematical point of view and from
computation point of view. The method does not require any prior information about the surface. This
property is fundamentally important for the surface estimation task. The presented method is evaluated
on both synthetic and real data. Several numerical experiments confirm that our method is effective and
computationally efficient. Finally, the method is applied on protein surface estimation. This method is
suitable for high performance molecular dynamics study, protein surface analysis, etc.

INDEX TERMS Molecule, surface, level set, mean curvature.

I. INTRODUCTION
Given the location and size information of some atoms, it is
important to know the geometric surface that compactly con-
tain these atoms. Such geometric surface is important for its
function, such as protein docking and Molecular Hydropho-
bicity Potential. Therefore, surface estimation from such
atoms becomes fundamentally important for related research
fields. One example is shown in Fig. 1, where the surface
is estimated by our method and the color indicates its mean
curvature property.

Before showing the molecular surface estimation, we first
introduce a surface reconstruction method from point cloud.
Different from themolecular surface, these points exactly live
on the surface and do not have a size or radius. We show this
method and its accuracy on both synthetic and real data. Then,
we extend this method for molecular surface estimation in
Section V.

A. POINT CLOUD REPRESENTATION
A point cloud P = {Exi ∈ S} is a fundamental representation
of a surface S . If an object is small compared to S, it can
be treated as a point. For example, nuclei are treated as
points to represent cells in the tissue; a small region is treated
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FIGURE 1. Protein surface estimation by our method (UBQ protein
surface). The color on the surface indicates the mean curvature value of
the surface.

as a point during tissue development; a protein is treated
as a point on the cell membrane. All points together can
represent the geometry where they live on. This idea has
been used in super resolution microscopy techniques such as
Photo-Activated Localization Microscopy (PALM, invented
by Eric Betzig who won Nobel prize because of PALM
in 2014) and Stochastic Optical Reconstruction Microscopy
(STORM).

However, surface reconstruction from unstructured point
clouds is challenging due to the absence of connectivity
information between the points, which may lead to
topological ambiguities. Even if there is a model to choose
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the topology according to the sample’s geometry, this requires
prior knowledge about the sample. Moreover, high curvature
(sharp corners or edges), irregular sampling, and noise in the
point positions often complicate the task.

Conceptually, there are two approaches to recovering
the surface S from which the points have been sampled:
interpolation (find missing data) and model fitting (reduce
error). Traditionally, both approaches require predefined
basis functions that ideally reflect geometric properties of
the true surface, such as connectivity, smoothness, sparsity,
and curvature. These implicitly assumed properties consti-
tute the prior knowledge (regularization) about the unknown
geometry. Even though their imposition may render the
reconstruction problem well-posed, these priors may mask
details or patterns in the signal, such as smoothing out texture,
or bias the reconstruction result toward the imposed priors.

Regularization-free geometry reconstruction is desirable,
specially for biological data, where prior knowledge is scarce
or needs to be investigated. If a prior was imposed, it would be
difficult to decide whether a property of resulting geometry
results from the prior or from the signal. This prior-freeness
requirement makes most of state-of-the-art approaches in
surface reconstruction fail in this context. We present a
regularization-free method for geometry reconstruction from
point clouds to tackle this challenge.

B. PREVIOUS WORKS ON SURFACE RECONSTRUCTION
Numerous methods have been proposed for surface recon-
struction from unstructured point clouds. This includes
approaches based on FFT (e.g., [1]), Poisson surfaces
(e.g., [2]), and moving least squares (e.g., [3]). Most of those
methods require that the surface normals have been first
estimated from the data. From a differential geometry point of
view, normals are first-order information about the geometry,
while position is zeroth-order information. However, esti-
mating normals from unstructured point sets is challenging
because global consistency across the entire surface must be
ensured. Traditionally, normals are estimated using Principal
Component Analysis (PCA), a local method that can not
guarantee global consistency.

Several methods, for example level-set methods [4], [5],
do not require normal information. Instead, they attempt to
minimize the energy [5]

min
S

{
E(S) = ‖d(Ex)‖q + λR(S)

}
, (1)

where q is a real number, and d(·) is the distance field to
the unknown implicit surface S (see Fig. 2(a)), and λ is
the regularization coefficient. In this energy-based approach,
methods from image segmentation have also been adapted
to surface reconstruction [6]. Thanks to the convexity of the
energy, fast solvers (e.g., split-Bregman [7], [8] or Primal/
Dual) can be used. The regularization term R(S) in the
model, however, tends to smooth the result and remove details
from the surface. Moreover, the computational cost depends
on proper initialization and stepsize control.

FIGURE 2. (a) Illustration of coupled signed distance functions and its
notions. (b) The two coupled fields φout and φin: the standard
‘‘Armadillo’’ computer-graphics test model and a protein molecular
surface. The protein surface is color coded by the Molecular
Hydrophobicity Potential for better visualization. Details are in section IV.

Previous works also demonstrated several strategies to save
memory and reduce the computational complexity of level-
set algorithms. This includes narrow-band formulations [9],
multi-scale methods [10], [11], and DT-grids [12]. The need
for computationally expensive level-set re-initialization has
been overcome by adding an additional penalty (regulariza-
tion) term in the energy [13].

II. OUR METHOD
Our work is motivated by the symmetry property of a dis-
tance field and the antisymmetry of the level set repre-
sentation [14]. It is inspired by coupled level-set methods
[15]–[17], but addresses some of their shortcomings when
reconstructing high-curvature regions, while guaranteeing the
signed-distance property. The connection of our method with
others can be found in section II-D.

We are given an unordered point set P = {Exi : Exi ∈ Rn,

i = 1, . . . ,N }. Usually, n = 2 for image processing prob-
lems, such as estimating a contour from feature points or
filling gaps between edge fragments, and n = 3 for computer
graphics problems, such as constructing a surface model from
a point cloud, or for stereo vision problems. Even though we
focus on two- and three-dimensional problems, the method
presented here also works in higher dimensions, for example
for constructing surfaces in manifold learning.

For surface reconstruction, we present a coupled Signed
Distance Functions (cSDF) method. The key idea in cSDF
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FIGURE 3. 2D example with sharp corners and uneven sampling to illustrate the individual steps of the present method.

is to use two spatially coupled signed distance functions φin

and φout to capture the surface S. This geometric constraint
is in contrast to coupled level-set methods, which are based
on topological constrains [18]. The cSDF idea is inspired by
the difference between the reflection symmetry of the dis-
tance field d and the reflection antisymmetry of the level-set
function φ.

From a variational point of view, the cSDF method
attempts to minimize the energy functional

min
S

{
E(S) =

∫
�

[
(φin)2+(φout)2+d2−φmax

]
dx
}
, (2)

where φmax = max
{
(φin)2, (φout)2, d2

}
. However,

as described in the following, we do not need to evolve any
Partial Differential Equation (PDE) in order to compute the
result. Instead, simple thresholding is enough. The reason
for this becomes apparent from the Eikonal equation (Eq. 3),
where thresholding is equivalent to wave propagation if the
wave speed is constant.

We first illustrate cSDF in 2D and then apply it to synthetic
and real-world data in 3D. The method proceeds in three
steps, as detailed byAlgorithms 1 to 3 below. The correspond-
ing steps are illustrated as in Fig. 2(a). The coupled level
set functions φout and φin are illustrated in Fig. 2(b) for two
examples. A simple example of the intermediate results after
every processing step is shown in Fig. 3.

A. STEP 1: DISTANCE FIELD
For a given point cloud P (exemplified in Fig. 3(a)), we com-
pute the distance field d(Ex) on a predefined Cartesian grid
G = m× n of uniform resolution h. This amounts to solving
the following Eikonal equation:{

‖∇d(Ex)‖ = v(Ex) ∀Ex ∈ G
s.t. d(Exi) = 0 ∀Exi ∈ P

(3)

as the boundary-value formulation of the Hamilton-Jacobi
problem associated with Eq. 2.

Several methods are available to numerically solve
this equation, including the Fast Marching Method [9],
the GroupMarchingMethod [19], the Fast SweepingMethod

(FSM) [20], the Fast Iteration Method [21], and direct
Hamilton-Jacobi solvers [22].
Here, we show three alternative methods to compute the

distance field. The first one uses an extended-window FSM
restricted to a narrow band of width b:

Nb = {Ex ∈ G : ∃Exi ∈ P s.t. ||Exi − Ex|| < b} (4)

where Eq. 3 is only solved for Ex ∈ Nb. We ensure the
distance property by setting v(Ex) ≡ 1. This method was
first published in [23]. The second method directly computes
the distance field from the point cloud using a Sparse Voxel
Oct-tree (SVO) data structure in the narrow band. The third
method solves an inhomogeneous Helmholtz equation using
FMM [24], similar to how it is done in a Schrödinger distance
transform [25].

1) EXTENDED-WINDOW FAST SWEEPING METHOD
FSM sweeps the grid until convergence, which can be inef-
ficient for points far from the interface. Fast iterative meth-
ods relax this by using locks [21]. These locks, however,
cause additional serialization. Here, we avoid these locks and
accelerate FSM by using a larger window size w > 1 (see
Algorithm 1). Theminmethod of FSM [20] is hence extended
to account for all points in a w-neighborhood, as illustrated
in Fig. 4(a) for w = 2. We initialize the algorithm with:{

d(Ex) = +∞ ∀Ex ∈ Nb \ P
d(Exi) = 0 ∀Exi ∈ P.

(5)

The original FSM [20] is recovered for w = 1.
For w > 1 the present extended-window FSM is more

accurate than the original FSM, because the integrated error is
reduced when the local window size w gets larger. Moreover,
it converges faster since the larger window causes a wave of
higher speed (not further elucidated in this paper). The local
update cost increases from 2 to w(w + 3)/2 (not (2w + 1)2,
thanks to the symmetry property).

In our implementation, we further accelerate initialization
and fast sweeping by using a Look-Up Table (LUT) for the
distances in the local window. Instead of directly computing
the distances of each sample point Exi to each grid node Exi,j
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FIGURE 4. (a) Illustration of a 5× 5 local window used in the
extended-window FSM with w = 2. Different symbols mark symmetric
points with respect to the center point Exi,j . The green/white checkerboard
illustrates the resolution of the distance look-up table that may optionally
be used to further accelerate the algorithm (see main text for details).
(b) Illustration of a Hilbert curve in 3D to enumerate all voxels of the grid.

within the local window, we subdivide each grid cell into
4 × 4 bins, represented by the green/white checkerboard
pattern in Fig. 4(a). We then build a LUT of the distances
between each checkerboard bin center and each grid node in
the local window. The distance of a sample point to a grid
node is then taken to be the distance between the bin center
that it resides in and the grid node (black arrows in Fig. 4(a)).
This can be used to further accelerate the initialization and
sweeping steps as follows:
• Initialization Step: There are two ways to initialize the
distance field. The sample point Exi, represented by a red
dot in Fig. 4(a), can be used to directly compute the
distance to its all neighbors on the grid. The other way
is to use a LUT. As shown in Fig. 4(a), Exi must be in
one of the grid cell neighboring Exi,j. All distances in
the LUT are computed with respect to the center of the
checkerboard cell containing Exi.

• Sweeping Step: We determine d(Ex) in the local window
using a distance LUT with respect to the center node
Exi,j. Thanks to the symmetry property of d(Ex), only
w(w + 3)/2 real numbers need to be stored in the LUT.
The sweeping process only uses addition and compari-
son operations, which are fast on modern CPUs.

The computational complexity of FSM is O(Nb), which
is less than the O(Nb log(Nb)) of FMM. Fig. 3(b) shows an
example d(Ex) computed using FSM with w = 3.

2) DIRECT COMPUTATION
The distance field can alternatively be directly computed
using a SVO data structure [26]. SVO has attracted a lot
of attention in the computer-graphics literature recently for
its nice properties in ray tracing, which essentially also is a
distance computation task.

We use a Hilbert curve (illustrated Fig. 4(b)) to encode the
narrow band grid points. Then, the so-encoded narrow band
is organized in an oct-tree, which is constructed bottom-up.
The distance is then directly determined by a nearest-
neighbor search in the tree. For more details, we refer to
Ref. [26].

3) HELMHOLTZ EQUATION
We can embed the distance field d(Ex) into a homogeneous
Helmholtz equation:{

τ 21ψ(Ex)− ψ(Ex) = 0
ψ(Exi) = 1,

(6)

where ψ(Ex) = exp(d(Ex)/τ ), δ ≤ τ < 0 and δ is a negative
number close to zero.1 is the Laplace operator. The solution
of this Helmholtz equation automatically also satisfies the
Eikonal Eq. 3. For τ → 0(τ < 0),

τ1d(Ex)+ ‖∇d(Ex)‖2 − 1 = 0→ ‖∇d(Ex)‖2 = 1. (7)

After solving Eq. 6, the distance field can be recovered as:

d(Ex) = τ log(ψ). (8)

The advantage of this method is that there are several very
efficient solvers for Eq. 6, such as FFT(DCT, DST)-based
solvers, Multigrid solvers, and Fast Multipole Methods [24].
Here, we use a DCT-based solver in order to directly impose
homogeneous Neumann boundary conditions, i.e., the gradi-
ent of ψ is zero in the normal direction at the band edge.

B. STEP 2: COUPLED SIGNED-DISTANCE FUNCTIONS
We aim to compute φ(Ex), the signed-distance function
associated with d(Ex). The key idea in cSDF is to apply
distance-preserving shift transformations to the output of
Algorithm 1, thus solving the boundary-value problem
in Eq. 3 without (pseudo-)time evolution. Specifically,
we shift d by an offset T in order to determine the functions
φinbin and φ

out
bin that indicate whether the shifted level set d −T

is inside or outside of S (see shaded areas in Fig. 2(a)). The
threshold T defines the separation between the regions to be
labeled. Therefore, T >

√
3h.

Algorithm 1 Extended-Window Fast Sweeping Method
in 2D
1: INPUT: threshold tol, window size w, S, U , V
2: set w+1 = w+ 1
3: initialize dk (Ex) using Eq. 5
4: define the loop sets
{(i, j) : i = w+1 . . .m− w, j = w+1 . . . n− w},
{(i, j) : i = m− w . . .w+1, j = w+1 . . . n− w},
{(i, j) : i = m− w . . .w+1, j = n− w . . .w+1},
{(i, j) : i = w+1 . . . x1 − m, j = n− w . . .w+1}

5: while max{|dk+1(Ex)− dk (Ex)|} > tol do
6: go through the loop sets and do

dk+1(Ex) = minm∈[−w,w]×[−w,w]{dk (Exm)+ |Ex − Exm|22}
7: end while
8: d(Ex) =

√
dk+1(Ex)

9: OUTPUT: d(Ex)

After thus identifying φinbin and φ
out
bin , we shift d down by Ts,

yielding the level sets φin1 and φout1. Then, the function
d − Ts is shifted up by exactly the same Ts, yielding φin2

and φout2. It is clear that T < Ts < b in order to keep the two
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layers separate. As shown later, Ts is a scale parameter. The
complete procedure is given in Algorithm 2.

Algorithm 2 cSDF Construction
1: INPUT: threshold T , Ts, d(Ex)
2: d0(Ex) = d(Ex)− T
3: select any point p0 on the outer boundary of the narrow

band.
4: starting from p0, label as φoutbin the connected component

where d0 > 0; label the rest of the region where d0 > 0
as φinbin.

5: d1(Ex) = d(Ex)− Ts
6: compute φin1 and φout1 using Algorithm 1 on φinbin and
φoutbin , respectively, with input d1(Ex)

7: φin2 = φin1 − Ts, φout2 = φout1 − Ts
8: OUTPUT: φin2 and φout2

C. STEP 3: SURFACE RECONSTRUCTION USING cSDF
After computing φin2 and φout2, a joint estimation of the
signed-distance function φ of the reconstructed surface S
is computed from φin2, φout2, and d(Ex) as described in
Algorithm 3.

Algorithm 3 Surface Reconstruction Using cSDF

1: INPUT: φin2, φout2, d
2: d inout = ||φ

in2
| − |φout2||, d inedge = ||φ

in2
| − d |, doutedge =

||φout2| − d |
3: for all x ∈ Nb do
4: t = min{d inout, d

in
edge, d

out
edge}

5: if d inout == t then φ = (φin2 − φout2)/2
6: if d inedge == t then φ = −φin2

7: if doutedge == t then φ = φout2

8: end for
9: OUTPUT: φ

There are only three possible curvature (c) cases for
any point Exi on S: positive, negative, or zero curvature (as
illustrated in Fig. 3(a)), corresponding to the three cases in
Algorithm 3:
• c > 0: S is convex at Exi. Therefore, S is captured by d
and φout2.

• c < 0: S is concave at Exi. Therefore, S is captured by d
and φin2.

• c = 0: S is planar at Exi. Therefore, S is captured by φin2

and φout2.
A simple average of the corresponding two fields provides
the estimate for φ. Fig. 3(c) shows an example φ computed
using this procedure.

D. RELATIONS TO OTHER METHODS
The cSDF method is related to coupled level set methods and
to Hilbert-Huang transforms. However, cSDF uses a geomet-
ric coupling, while coupled level sets and the Hilbert-Huang

transform only provide topology control. This difference is
illustrated in Fig. 5. For example, the inner level set in coupled
level sets can evolve arbitrarily as long as it stays inside the
outer level set (left panel of Fig. 5). This is not possible in
cSDF, where the two layers must be geometrically shifted by
Ts (right panel of Fig. 5).

FIGURE 5. Illustration of the relations between the inner and outer level
sets in coupled level-set methods (left), Hilbert-Huang transforms
(middle), and the present cSDF (right). The solid red line is the true
surface and the dash lines are the coupled inner and outer layers.

E. NOISE, OUTLIERS, AND PARAMETER
Since the present cSDF method is free of regularization and
intends to reconstruct even minute details of the surface,
it is sensitive to noise in the input point set. If the input
point positions are noisy, or contain outliers, we hence use
a different algorithm for computing the distance field d(Ex).
This robust algorithm is presented below. All downstream
processing, in particular the cSDF construction, then remains
unaffected.

We also analyze below how the parameter Ts controls the
scale of the surface details to be recovered. This parameter
hence is a scale-space parameter for the cSDF method.

1) ROBUST DISTANCE FIELD
In the presence of outliers or noise in the input point set,
we use a local variance-weighted method to compute the
distance field, which is robust against noise and outliers.
This choice is motivated by the fact that in practice the posi-
tions Exi are often uncertain due to, e.g., measurement errors.
We model this uncertainty as Gaussian noise of mean zero
and standard deviation σi i.i.d. added to the point positions.
Usually, this σi can directly be obtained from the measure-
ment or imaging device that acquired the data.

If σi is unknown, we estimate it by Kn-nearest neighbor
clustering or by singular value decomposition. In the cluster-
ing method, we first compute the Kn-nearest neighbor dis-
tances of all points and compute their average. Then, we use
the difference between the distance and this average as the
weight. When using singular value decomposition, we first
compute the variance matrix of the point set and use SVD
to compute the distance to the plane defined by the first
eigenvectors. In what follows, we use the clustering-based
method, which is also called ‘‘inverse distance weighting’’
in the literature.

The weighted distance field is then defined as:

d(Ex) =
1

D̂

Kn∑
i=1

1
Di + 1

(Ex − Exi)2, (9)
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where D̂ =
∑Kn

i=1 1/(Di + 1) is a normalization factor,
Di = |x − Exi| is the distance between x and Exi, and x is
an arbitrary position on the grid. A comparison between the
so-obtained robust distance field and the one obtained using
Algorithm 1 is shown in Fig. 6.

FIGURE 6. Comparison of un-robust and robust distance fields.

2) SCALE PARAMETER Ts

The cSDF coupling parameter Ts controls the scale space in
which the interpolated signal lives. Let

r =
1
NK

N∑
i=1

Kn∑
j=1

√
(Exi − Exij )2 (10)

be the average (across all data points) distance between
Kn-nearest neighbors. Then, Ts has to satisfy the condition:

Ts > r (11)

in order for neighboring points to meet.
This defines the lower bound on how small of details

can possibly be recovered from the samples by cSDF.
An illustration is shown in Fig. 7. The green dot represents
a grid point Exi,j, the red dots represent the input samples Exi.
The two red samples within the shaded disk around the green
dot are indistinguishable by Exi,j. Therefore, Ts must be larger
than the radius of the shaded disk in order to ensure that it is
unnecessary to distinguish between those two samples (lower
bound).

FIGURE 7. Illustration of Ts. Any samples on the circle will not be
distinguished by Exi,j . To make sure the gap is closed, Ts > r .

As mentioned, thresholding with Ts is equivalent to wave
propagation. Thus, this step turns the explicit discrete-sample
representation of the surface into an implicit continuous
representation.

Increasing Ts, however, is not equivalent to smoothing
or to a regularizer. Ts only defines the scale space for the
interpolation, but does not limit the curvature within that
space. As seen in the area highlighted by the green rectangle
in Fig. 8, surface details are not lost when increasing Ts.
However, between closely apposed surfaces, a too coarse
scale space may lead to topological problems, as for example
shown in the red rectangle in Fig. 8. This issue can be avoided
by adaptively changing Ts in a standard scale-space approach,
or by using a spatially adapted Ts(Ex).

FIGURE 8. Changing the scale parameter Ts does not introduce surface
smoothing (green rectangle), but may lead to topological problems
(red rectangle) due to scale-space coarsening.

III. NUMERICAL VALIDATION
We validate cSDF in 2D and show its accuracy by measuring
the error under the `1 and `2 norms with uniformly sampled
points on a circle. We further perform 3D benchmarks on
computer-graphics models.

A. 2D BENCHMARKS
We test the accuracy of cSDF by samplingN points uniformly
on a circle of radius R and comparing the reconstructed circle
to the ground truth for decreasing N . We use a 200×200 grid
for all N ∈ [45, 360] × R ∈ [40, 70] and directly compute
distances without LUT. We linearly interpolate the resulting
φ at each of the original Exi ∈ S. The correct value would be
φc = 0 for all Exi. We then compute the overall (reconstruc-
tion plus interpolation) `1 and `2 errors as [

∑i=N
i=1 |φ(Exi)|]/N

and
(
[
∑i=N

i=1 φ(Exi)
2]/N

)1/2
, respectively. The result is shown

in Fig. 9.

FIGURE 9. Reconstruction errors for clouds of N points on circles of
different radii R without LUT.

Figure 3 shows a synthetic example with sharp corners
to illustrate cSDF’s capability to represent them without
introducing excessive surface smoothing. The points in this
example are moreover irregularly distributed on S .
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TABLE 1. cSDF 3D benchmarks (narrow band width b = 6 in all cases) with Extended-window Fast Sweeping.

B. 3D BENCHMARKS
We benchmark cSDF in 3D by using the vertices of the
triangulated surfaces of the well-known computer-graphics
models ‘‘Armadillo’’ and ‘‘Buddha’’ as input point clouds.
The number of points for each model, the CPU time for
cSDF reconstruction of the implicit surface representation,
and the resulting errors against the known ground truth at the
vertex positions are given in Table 1. The code is implemented
in C and run on a 2GHz Intel Core i7. When the distance
LUT is used, the CPU time is further reduced to 12.8s
and 15.9s for ‘‘Armadillo’’ and ‘‘Buddha’’, respectively. The
timings compare favorably with the > 200s CPU time of
an efficient Bregman code [27] for ‘‘Buddha’’ with similar
resolution. Figure 10 shows the resulting reconstructions and
close-ups (Fig. 10(b) and (d)) with the input point cloud
overlaid to demonstrate the method’s capability to repre-
sent high-curvature regions without grid refinement (see, for
example, the ‘‘Armadillo’’ claws).

FIGURE 10. Computer-graphics model surface reconstruction using cSDF.

IV. SURFACE RECONSTRUCTION
In this section, we illustrate the use of cSDF in several
applications on real biological data. Since the cSDF is prior-
free, the resulted geometry is only based on the point cloud.
Therefore, the property of the surface, such as normal or cur-
vature distribution, is only from the geometry itself, without
being corrupted by any prior.

The first data set comprises 3D positions of atoms in a
protein conformation obtained from molecular-dynamics
simulations.1 This is an example of noise-free data where

1Data courtesy of Dr. Anton Polyansky, Zagrovic group, MFPL, Vienna.

the surface is to be reconstructed as accurately as possible.
We use cSDF to reconstruct the molecular surface of the
protein and to locally shade it according to the Molecular
Hydrophobicity Potential (MHP). The result is shown
in Fig. 11(a) and (b).

The second case considers a 2D PALM (photo-activated
localization microscopy) super-resolution image. PALM
intrinsically produces point clouds, as it detects the cen-
troids of single fluorescent molecules. cSDF can then be
used to reconstruct the surface (e.g., the membrane) on
which the fluorescent molecules live. The PALM image
in Fig. 11(c) and (d) shows fluorescent lamin proteins of
the nuclear lamina.2 We use cSDF to reconstruct the nuclear
envelope from these point detections. Due to the large amount
of outliers and noise in this data set, we use the robust distance
field method presented above.

FIGURE 11. Biological surface reconstruction using cSDF in the absence
and in the presence of noise and outliers. The protein surface is colored
by MHP value.

A. COMPARED WITH TV
In its current implementation, cSDF is about 6 times faster
than a highly efficient Bregman code for surface reconstruc-
tion [27]. This runtime can be further reduced by parallelizing

2Data courtesy of Dr. Jonas Ries, Ewers group, ETH Zürich.
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FIGURE 12. 2D example with sharp corners, compared with TV regularization [6] with parameter µ = 10−6 (left), 2× 10−6 (middle) and
3× 10−6 (right) and presented method.

the code on multi- or many-core hardware, such as GPUs or
computer clusters. cSDF computes the distance field three
times and then estimates the signed distance field. Thus,
the key point of cSDF’s parallelization is to compute the
distance field in parallel, which has been extensively studied
in computer graphics [28], [29].

Due to its regularization-free nature, cSDF can capture
high curvature without adaptive grid. It also does not bias the
reconstruction result toward a prior, nor does it excessively
smooth the reconstructed surface. This way, cSDF is for
example able to perfectly reconstruct and represent the sharp
corners and edges of a cube, whereas regularization-based
methods will round them even for the smallest amount of
regularization, as shown in Fig. 12.

B. MEAN CURVATURE ESTIMATION
From φ, thanks to the signed-distance property of cSDF,
the mean curvature can directly be computed as:

H =
1φ

‖∇φ‖
= 1φ. (12)

Examples are shown in Figs. 13. Based on the prior-free prop-
erty, the normal and curvature are guaranteed to be features
of the surface itself, without being corrupted by any prior.

V. PROTEIN SURFACE ESTIMATION
cSDF can be extended to volume data, where the inner dis-
tance field vanishes. The surface of the volume is captured
by the outer distance field and the distance field of the
point cloud. Since the inner distance field does not exist,
the concave region can not be accurately recovered (sharp
inside corners get smoothed). The algorithm is summarized
in Algorithm 4. The process is very similar with shrinking
effect in traditional level set method.

cSDF can be further extend to volume data, where a
point Exi becomes a sphere centered at Exi with given radius ri.
Algorithm 4 can be used to handle this case by letting d(Ex)
inside the sphere be negative.

A. MEAN CURVATURE DISTRIBUTION PRIOR
Since cSDF is regularization-free, we can use it to obtain prior
knowledge about the surfaces. We prepare 17 different pro-
teins from Molecular Dynamics Simulations with 1000 time

FIGURE 13. Mean curvature and its distribution as estimated using cSDF
for a molecular protein surface. (a) The protein surface colored by
curvature. (b) The mean curvature distribution of (a). (c) Surface
reconstruction, normal estimation, and curvature estimation for a part of
a human aorta point cloud (data courtesy of Dr. George Bourantas,
MPI-CBG). The mean curvature is color coded after curvature histogram
equalization for better visualization. (d) Zoom of (c). It worth pointing out
that the distribution is only relied on the surface without being corrupted
by any prior since cSDF is prior-free.

step.3 The proteins are summarized in Table 2. These names
are the same as they are in the Protein Data Bank.4 We
have five independent runs for ubiquitin (UBQ), and five
independent runs for UBM2. In total, we have 25 trajectories,
each of which has 1000 time steps. The number of points for
each protein is shown in Table 2.

We use Algorithm 4 to construct the 25,000 protein sur-
faces and estimate their mean curvature. To reduce the reso-
lution effect, instead of studying H , we study H · h2, which
is called mean curvature half density [30], [31] or weighted
curvature [32]. And it is independent on resolution h.

Two distributions of H · h2 from the examples are shown
in Fig. 14. Even though these two surfaces are very different,

3Data courtesy of Dr. Anton Polyansky, Zagrovic group, MFPL, Vienna.
4http://www.rcsb.org/pdb
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TABLE 2. First row: the index of 17 proteins. Second row: the names of 17 proteins. Third row: the number of atoms in this protein. The fourth row:
protein volume with unit 10−30 cubic meters, estimated by VOSS-VOLUME-VOXELATOR program. The protein names are the same as they are in the
Protein Data Bank.

FIGURE 14. cSDF on Volume Point Cloud. (a) UBQ protein surface; (b) distribution of H · h2 for (a), the Gaussian model is 0.0774 exp(−(x−0.0727)2

0.47952 )

with fitting accuracy SSE = 5.8× 10−4 and R2 = 0.9793; (c) UBM2 protein surface; (d) distribution of H · h2 for (c), the Gaussian model is

0.081 exp(−(x−0.1121)2

0.45502 ) with fitting accuracy SSE = 8.2× 10−4 and R2 = 0.9731. We use h = 0.4Å and set the range of H · h2 to be [−0.7,1.5].

We use 1.5+0.7
h3 ≈ 35 bins to represent p(H · h2).

Algorithm 4 Surface Reconstruction From Volume Point
Cloud
1: INPUT: {Exi},Ts
2: compute d(Ex) by Algorithm 1
3: d1 = d − Ts
4: compute dout1 by Algorithm 1 on d1
5: dout2 = dout1 − Ts
6: if d > Ts then
7: φ = d
8: else
9: φ = −dout2

10: end if
11: OUTPUT: φ

their distributions of H · h2 are similar. This fact inspires us
to study pit (H · h

2) across all trajectories, where t ∈ [1, 1000]
is the time step index and i is the protein index in Table 2 (the
index starts from left to right and from up to down).

For all proteins, the radii of their atoms are between 1.2Å
and 1.9Å, where Å = 10−10 meter. We set h = 0.4Å and
Ts = 5h. We set the range of H · h2 to be [−0.7, 1.5]. We use
1.5+0.7
h3

≈ 35 bins to represent p(H · h2) because H has
second-order accuracy O(h2).
We compute a distance matrix EM between all proteins

at each time step. EM (j, k) are the χ2 distances between

FIGURE 15. Distance matrix for all trajectories and their average.

FIGURE 16. Rearrangement of two distance matrices.

pi1t1 and pi2t2 , where j = (i1 − 1) ∗ 1000 + t1 and k =
(i2 − 1) ∗ 1000+ t2. The result is shown in Fig. 15a.
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FIGURE 17. Fitting results with Gaussian models. The x-axis is the protein index. The error bars show the standard deviations for the time steps.

We define the average distribution for each protein as

p̃i(H · h2) =

∫
t p

i
t (H · h

2)dt∫
dt

. (13)

Similarly, we can compute a distance matrix ẼM , where
ẼM (j, k) is the χ2 distance between p̃j and p̃k .
We use isomap algorithm [33] to reorder the proteins,

showing the relationship between each other. The reordered
distancematrix is shown in Fig. 16a and b. The rearrangement
shows the relationship between proteins.

B. CURVATURE DISTRIBUTION MODELING
Noticing the distributions of H · h2 can be well approximated
by a Gaussian distribution in Fig. 14, we use a Gaussian
model to approximate each distribution of H · h2 for all
25,000 protein surfaces. The Gaussian model is defined as

f (x) = a exp

(
−

(
x − b
σ

)2
)
. (14)

The modeling results are shown in Fig. 17. The parameters
a and σ are stable for all tested proteins. The parameter b
is stable for each protein during time steps. This stability
guarantees that mean curvature distribution can be used as
priors.

We can also rearrange the proteins by simply sorting the
parameter b. The result is shown in Fig. 18b. The reordered
parameter b is shown in Fig. 19b. The similarity between the

FIGURE 18. Distance matrix after the rearrangement of these proteins.

FIGURE 19. The parameter b in different rearrangement methods. The
error bars show the standard deviations for the time steps.

result from Isomap and the result from sorting parameter b
suggests that b is a dominant parameter in this modeling.

VI. SUMMARY
We have presented a regularization-free method for geometry
reconstruction from unstructured point clouds. The result is
guaranteed to be a signed-distance function, dispensing with
the need for re-initialization and regularization. We bench-
marked the method on 2D and 3D artificial datasets and
showed its accuracy and computational efficiency.We further
showed its application in real-world surface reconstruction
for protein molecular surfaces and PALM microscopy data.

Thanks to the regularization-free property, the mean curva-
ture distributions from the estimated surfaces can be obtained
and modeled as a prior. We show how to compute and model
the mean curvature distributions for a Molecular Dynamic
Simulation dataset.

Thanks to the computational efficiency, our method can
reach real-time performance and can be applied in many
fields, such as protein surface estimation, studying the rela-
tionship between structure and function, molecular dynamics,
etc.
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