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ABSTRACT The use of machine learning has increased over the years, especially in the world of molecular
data. Generally, the inference of relationships between features is determined by statistical models. The
phenotype (observable clinical characteristics) can result from the expression of the genotype (genetic code)
or environmental factors. Molecular datasets have limited information, while supporting clinical data is
ambiguous. There are no well-established approaches for combining clinical information with genomic
repositories. The genomic tests that are available only use molecular data and give physicians a result which
can be integrated clinically. In this article, we present the strategy where clinical data, regardless of its
limitations, is combined in one predictive model with molecular features. We predict the risk of malignancy
in the thyroid nodules based on the results of fine-needle aspiration biopsy and expression of selected
genes. We utilize a Bayesian network (BN) framework to discover relationships between molecular features
and assess the impact of added clinical data quality on the performance of the chosen gene set. Bayesian
network offering both prognostic and diagnostic perspectives is a perfect non-parametric technique for
feature selection, feature extraction, and prediction purposes.We show that certain clinical factors couldwork
as a synthetic feature and provide predictive abilities beyond what genes alone can offer. The experimental
results demonstrate a higher performance of predictive models based on molecular and clinical data than
when using only molecular data. We also explain why, one should consider the source of clinical data, but
be aware of the quality of variables.

INDEX TERMS Bayesian networks, feature integration, synthetic features, Markov blankets, Quality of
features, thyroid cancer, Bethesda classification.

I. INTRODUCTION
In 2018, according to the World Health Organization,
the number of new cases of thyroid cancer (TC) in Poland
was more than 3,600. Since the beginning of the 21st cen-
tury, this number has increased every year. The thyroid
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cancer related mortality rate is low and ranges between 0.4-
0.6 deaths/100,000 people [1]. An independent work [2],
showed that from a good prognosis, the main problem we
have to face in the diagnostic process results from the fact that
malignancy in the thyroid nodule only occurs in about 5%
of patients who have them. Therefore, proper stratification
of the risk of malignancy in the thyroid nodule remains
the major challenge. Precise stratification would allow the
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establishment of a final diagnosis and enable the selection
of those patients who really need surgical treatment. Unnec-
essary surgeries result in lifelong drug administration and a
reduction in the quality of life.

Diagnostic difficulties in the management of patients with
thyroid nodules and, in some cases, the ambiguity of cyto-
logical findings, have contributed to the development of new
molecular tools. Continuous progress in technologies that
allow simultaneous testing of multiple genes results in lower
molecular testing costs and an increased number of studies
on molecular markers. A recently published paper related to
TC raises the role of molecular classifiers [3]. At the same
time, the supportive role of clinical data is underestimated.
Classifiers that are available for thyroid nodules operate only
on molecular data without including clinical features in the
stratification risk algorithm. This means that these factors
need a separate medical evaluation by a physician. According
to National Thyroid Associations guidelines, results must
always be integrated with the patient’s clinical status, appear-
ance of the ultrasound scan on the thyroid nodule and its
cytological analysis [4], [5]. According to American Thyroid
Association guidelines, molecular tests may be suggested
as additional risk stratification tools in the categories men-
tioned. In the Guidelines of the Polish National Societies
Diagnostics and Treatment of Thyroid Carcinoma (GPDT)
2018 Update, the molecular test is suggested as an additional
tool that helps to distinguish between benign and malig-
nant nodules. Such an examination is recommended only in
the reference medical centers experienced in the molecular
investigation. At the same time, research aiming to develop
cost-effective molecular testing, affordable in Poland, are
mentioned.

Combining features from different sources is a widely
used technique [6]–[9], e.g. using meta-analysis as an alter-
native approach to parameter learning from data or expert
knowledge [10]. Bayesian networks have also been fre-
quently used as predictive models in a different type of
cancer [11]–[13]. Fenton and Neil [12] presented a Bayesian
network as a method preferred by users who do not believe
in ‘‘black box’’ algorithms. A graphical representation of
the probability distribution over a large number of casual
variables allows the inference to be followed from evidence
to the event. Another desirable property is the ability to
set one’s own prior probability to a particular independent
variable just before calculation: a medic’s risk assessment.
Zhao and Weng [7] demonstrated how combining Electronic
Health Records (EHRs) and seemingly independent sources
like PubMed databases can impact the performance of the
BNs evaluated. Additional information allowed them to
calculate the weight, i.e. importance, of the nodes which
increased the Area Under a Curve metric (AUC) by about
ten percent points above the conventional BN, outshining
other methods. This combination is essential in the area of
medicine due to inconclusive information being obtained
within the diagnostic process when data from a single source
is analyzed.

None of the recently developed molecular tests which
support physicians in the management of thyroid nodules
with indeterminate cytopathology, use clinical data in the
malignancy risk stratification algorithm [14]–[17]. Finally,
there are not many studies available which have compared the
models using the same variables but with different qualities.

This article aims to show that some clinical features can
form synthetic features and, despite quality issues, they may
support genes in the prediction of the risk of malignancy
in thyroid nodule. We assume that they can provide general
information, which, in some cases, may not be consistent with
molecular evidence. The impact of such a lack of matching
has been described and discussed. We compared both the
strategies mentioned above to assess which is the better solu-
tion for medics. This study is part of a more comprehensive
project called MILESTONE, in which different feature sized
classifiers are considered, and an intuitive tool to compare
their results is required. To build such a tool, we utilized
Bayesian networks, which offer both prognostic and diagnos-
tic views on the node’s relationships while keeping the same
joint probability distribution.

A. CLINICAL ANALYSIS BACKGROUND
The initial management of a patient with a thyroid nodule
must be focused on clinical risk factor analysis. According
to the National Thyroid Association’s guidelines, clinical risk
factors such as a thyroid nodule bigger than 4 cm, a history of
thyroid problems in the family and a history of neck radiation
should be considered as indicators of a higher pre-surgical
risk of malignancy. According to GPDT, thyroid nodule diag-
nosis in patients younger than 20 and older than 60 may
also increase the risk of malignancy. Furthermore, lymph
nodes that have been confirmed to be cancerous, occurrence
of distant metastasis, rapid thyroid nodule enlargement, and
symptoms such as swallowing difficulties or voice change
also significantly increase the probability of malignancy in
the thyroid nodule [5], [18].

In the diagnostic process of the thyroid nodule, an ultra-
sonography examination is the first step of imaging, after
clinical assessment. There are several Thyroid Imaging and
Reporting Data Systems (TIRADS) applied in clinical prac-
tice. Depending on the estimated risk for a particular image,
the threshold for the size of the thyroid nodule is set for
further evaluation. According to the ultrasound reporting
system proposed by the American College of Radiology
(ACR-TIRADS), a biopsy of nodules deemed highly suspi-
cious is recommended if they are 1 cm or greater in size.
ACR-TIRADS advocate the biopsy of a nodule with a low
risk of malignancy when the nodule measures 2.5 cm or
more [19].

Fine needle aspiration biopsy (FNAB) of the thyroid nod-
ule produces material for cytological analysis. Cytopathology
provides clinically useful data in the form of the widely
used Bethesda System for Reporting Thyroid Cytopathol-
ogy (TBSRTC, Bethesda), comprising of 6 categories
assigned with different malignancy risks, which drives
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TABLE 1. Empirical risk rates in Poland based only on data gathered and published by NCI. Source: The 2017 bethesda system for reporting thyroid
cytopathology, Table 2 [18]. *lack of Polish data - data given in the table are NCI data.

patient management [20], [21]. Unfortunately, about 20% of
cytopathology results are inconclusive falling in one of the
indeterminate categories, i.e. Bethesda III (B3) or IV (B4),
with the risk of malignancy varying widely among popula-
tions [5], [18], [21]. Rates for part of the Polish population
were published in GPDT, as shown in Table 1.
Decisions about surgery should be taken individually based

on risk assessment and the experience of the center. In the
case where a unit does not have much experience, surgery
will be promoted for safety reasons. Results that have been
reported on the use of gene-expression classifiers in the
diagnostics of indeterminate thyroid nodules are very promis-
ing [2]. However, in countries wheremolecular tests are avail-
able, the decisions concerning surgical treatment is based
on a cytological assessment with molecular analysis in a
supportive role.

Clinical features are also used in risk stratification for TC
and may affect the patient’s prognosis. One such feature is
the patient’s age. Survival rate is reduced for middle-aged
patients [22], and gets progressively worse. The role of age
as a factor has also been confirmed by Zaydfudim et al. [23],

who showed that the age of 45 was identified as a cutoff
point after which lymph node disease impacts survival rate.
Recent validation from many international institutions [24]
resulted in a change of risk stratification, with the age cutoff
for thyroid cancer changing from 45 to 55 in the American
Joint Committee on Cancer’s (AJCC) staging system. The
initial conclusion from these studies is that age should be
taken into account during the analysis as to whether surgery
is necessary; the research by Kelly et al. [25], confirmed this.
However, this does not mean that this is the direct cause of
a lesion’s malignancy (i.e., risk stratification in the thyroid
nodule), but it is an indicator that the prognosis of malignancy
is worse when the nodule is malignant. These risk factors
are related to the population and the Human Development
Index [26], [27].

Recommendations about paying attention to clinical fea-
tures are also included in the Polish GPDT. The same papers
report that more women are affected by TC, but the stage of
malignancy is higher for men. This was the reason why we
took into account those particular features as potential factors
in the risk stratification of the thyroid nodule.
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B. MOLECULAR ANALYSIS BACKGROUND
Over the last decade, some molecular tests have been devel-
oped. These are based on the analysis of differentially
expressed genes. One of these tests is the test presented
in the paper [15], in which local cytopathological reports
were used (primary Bethesda) and, if necessary, reclassified
by three (3) experienced specialists (revised Bethesda). The
authors of this article also stated that in 14% of revised cases,
there was a disagreement in the final assessment. However,
no further information about the relationship between local
recognition and revised assessment was reported, i.e. changes
in scoring. This classifier was finally developed based solely
on gene expression data within the subset of patients who
were selected by cytopathology. Other tests [14], [16] that
just focused on indeterminate lesions did not integrate clinical
features into the algorithm.

A comparison of the main characteristics of the tests [4]
and their analysis by independent evaluation [28] show a sig-
nificant difference between the performance reported by the
test creators and what was actually achieved in the evaluation.
It stands to reason that in real-life it is harder to select a
perfect group of patients, and the test would be carried out
in a less meticulous way than in a clinical trial. So, when
there is an uncertainty about the classifying criteria, the clas-
sification performance may be affected more. Independent
studies highlighted that the results of classifiers could also
vary depending on the center’s experience. Both aspects are
related to the quality of the cytological assessment and may
impact the diagnostic process. When Bethesda categorization
is carried out by a pathologist inexperienced in the area of
TC (especially in B3 or B4 samples), clinicians may have
potential problems with integrations and rejections.

In this study, we took a gene set from a published gene
expression classifier, as described by Chudova [29], which
was proved to distinguish between benign and malignant
lesions in indeterminate nodules.

C. THE IDEA BEHIND THIS ARTICLE
Realistically, indeterminate lesions are probably the target
population most suitable for molecular classifiers. However,
this group is not clearly defined and is not heterogeneous
in its nature. The consulting pathologist provides a vast
amount of data which could potentially be taken into account
when providing the feedback based on molecular test results.
Thus, the idea behind our analysis was to integrate the
probability based on prior knowledge resulting from clini-
cal classification into decision-making when the molecular
test result is available. This process is carried out by every
physician confronted with having to make a decision about
his patient; we tried to incorporate this formally into the
process.

Trying to find out the impact of adding clinical features to
the previously discovered set of distinguishing genes, we con-
sidered some additional questions:

1) How can combining clinical features with genes change
the basic molecular set’s performance?

2) Is there a difference between the impact of locally
performed tumor lesion assessment and the impact of
expert judgment on the classification performance ?

3) What if the Bethesda assessment is mismatched? Could
this result in the wrong interpretation and influence test
outcomes?

We were also motivated by the problems with the acces-
sibility of molecular diagnostics in Poland, where the usage
of commercial molecular tests is costly. The decision about
testing is made based on clinical evidence and the Bethesda
category. In practice, features verified accurately during
test development and the validation procedure can be mis-
matched. The Bethesda categorization requires experience in
the area of TC and much practice with different samples.
However, a suitably qualified person with the relevant experi-
ence may not be available; in this case some patients may be
rejected from molecular testing because of mistakes made by
a less-experienced specialist. Finally, even if the molecular
test is done, and the result is opposite to the cytological
assessment, the clinician’s decision may be difficult.

It was assumed that for any reason, the feature selection
process had not taken clinical variables into account, when
classifier [29] was developed. Consequently, the study started
with molecular features that distinguish between benign and
malignant lesions of the thyroid.

The Bayesian network framework was chosen to build the
reference model and all of the rest of the combined mod-
els [30]. This is a great tool to reduce initial dimensional-
ity and to discover the network of dependencies among a
given set of variables. The knowledge discovered about the
uncertain domain (dependency between gene expressions and
malignancy) is represented in the form of a directed acyclic
graph (DAG). Visual representation facilitates the ability to
distinguish cause and effect from the correlation. It is a
very intuitive framework to analyze relationships between the
variables taken into account in the unsupervised analysis.

II. BAYESIAN NETWORK BACKGROUND
Bayesian networks have become very popular in recent years.
Data is represented in the form of a DAG that presents con-
ditional dependencies among a set of variables. The graph
consists of nodes representing features and arcs represent-
ing known or discovered relations between variables. The
structure of the graph can be built manually based on expert
knowledge or learned from data using constraint-based or
score-based learning algorithms.

For the DAGs in this article, the focus was only on three
properties:
• d-separation (separation of nodes in a directed graph),
• the Markov blanket,
• the strength of arc.

Only discrete variables were used. Each discrete variable can
have a finite number of states. They can be connected directly
or indirectly (via another node), but in both cases, a particular
state of node X can cause a change in the probability distri-
bution of node Y. Data can only be introduced into some of

175128 VOLUME 8, 2020



A. Płaczek et al.: Bayesian Assessment of Diagnostic Strategy for a Thyroid Nodule

these, marginalizing the rest, and the probability of a specific
state of the variable of interest calculated. The whole net-
work encodes a global joint probability distribution over the
nodes. By using the d-separation property, a joint probability
distribution can be replaced by the product of conditional
probability distributions for each variable, as presented in
Equation 1. This reduces the need for computing resources
and limits the number of variables that need to be observed.

Px(X ) =
n∏
i=1

Pxi (Xi|
∏

xi), (1)

where

Xi is the variable of interest in the factorization step,∏
xi is the set of the parents ofXi.

To discover whether two nodes (e.g. X and Y) become
independent after introducing data into the network, all paths
between those variables must be checked. Variables may
block communication when they are instantiated and they are:
• in the middle of the path between X and Y (serial
connection),

• parents of both (diverging connection),
• children of both (converging connection).
Definition 1 (D-Separation): According to the definition

provided in [31], two variables are d-separated if, for every
path between them, there is an intermediate variable Z (dis-
tinct from X and Y) such that one of the following conditions
is true:
• the connection including all variables is serial or diverg-
ing, and Z is instantiated, or

• the connection is converging, and neither Z nor any of
Z’s descendants have received evidence (data)

From definition 1, we can easily deduct that there are nodes
in the nearest neighborhood of each variable, which, when
instantiated, make this variable practically insensitive to
changes in the rest of the network. This particular set of nodes
is called the Markov blanket.
Definition 2 (The Markov Blanket): According to the def-

inition in [32] the Markov blanket of node A is the minimal
subset of nodes such that:

MB = A ⊥⊥ p V−S−A|S (2)

where

p : means probabilistic independence,

V : is the set of all variables,

S : is the subset of V.

The Markov blanket property can also be described in prob-
abilistic form:

P(A|MB(A),V \ {MB(A),A}) = P(A|MB(A)) (3)

where

MB :meansthe set of nodes standing forthe Markovblanket,

V : is the set of all variables,

Regarding graphical separation, the Markov blanket consists
of parents of node A, their children, and spouses. From Equa-
tion 3, one can see that to predict the probability of a particular
state of variable A, only states of the Markov blanket nodes
must be entered as evidence. The rest of the nodes might be
marginalized.

The results of structure learning and parameter learning
should be validated before using a BN for inference in
medicine. One of the methods used to do this is bootstrap
re-sampling [33]. It is necessary to do this validation because
the structure learning process is sensitive to data, especially
in the vicinity of arcs, i.e., existence and direction. The
bootstrap re-sampling method takes a subset of samples and
learns the structure. Then the model takes average values,
and, as a result, it provides two features of BN: strength (the
number of times when the arc was present in the learned
networks modulo its direction) and direction. In a perfect
DAG, the arc strength is the confidence measure that this
arc (relation) exists. Dependent variables are connected via
a direct arc in the network. Conditionally independent vari-
ables are connected through the path (a sequence of nodes
and arcs).

Bayesian networks are reported as a great tool in
individual-level risk prediction, can be easily extended into
decision models by incorporating a decision node [34],
and are used for feature extraction, including the area of
medicine [35]. Incorporating nodes from different sources
into one network allows the researcher to identify the causal
structure between variables and assess which features are
related to the predicted variable (e.g. malignancy node).
On the one hand, the number of molecular features obtained
from high throughput molecular experiments (like microar-
rays or sequencing, proteinmass spectrometry, quantity PCR)
can be huge. On the other hand, there are only a few clinical
features. The strength of the relationship between the clinical
predictor variable and predicted node can be omitted, during
the process of learning the network structure from combined
molecular and clinical data. Thus, we proposed using the
Bayesian network to predict the clinical risk of malignancy
in a thyroid nodule and then incorporating the result of this
prediction as a synthetic feature into the molecular Bayesian
network. We presented that such an approach allows this
variable to stand for an essential feature and to enrich other
methods of malignancy prediction.

III. MATERIALS AND METHODS
Our research process consisted of several steps. A Bayesian
reference network was learned just from clinical data stored
in hospital databases. Next, networks were built, learned
from the molecular and combined sets of features, respec-
tively. Predictions obtained from networks by conditional
queries were compared in order to evaluate whether the qual-
ity of input data significantly changes diagnostic reasoning.
Attempts were made to predict the malignancy probability
by using the level of expression of specific genes or Bethesda
categories as evidence.
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FIGURE 1. Overview of the research process. Colors correspond to the
ones used in further analysis, apart from grey, which depicts preparation
steps, and sandy, which depicts common actions. Details of each step are
shown in the following subsections. The same process is provided for
primary and revised Bethesda, prepared as annotations for every sample.

The figures presented in this article do not contain the
names of the molecular features due to the pending publica-
tion of the set of features for the new TC molecular test.

A. DATASETS
The clinical data samples was collected from the database
shared by the National Cancer Institute (NCI). The 8,000 thy-
roid FNAB reports from the period of 2007 to 2017 were
analyzed retrospectively. Depersonalized data was extracted
from the database where they remains in an unstructured
format. Problems that had to be dealt with were dealing
with changing terminology over the years, the lack of the
Bethesda categorization in many older reports, and surgery
decisions described in native languages within medical docu-
mentation. The RetroNGSC classifier (95% k-fold accuracy)
for retrospective data [36] was designed, implemented, and
used to get fully categorized biopsy reports. Next, medical
documentation was examined to find out who had had surgery
and what their histopathological results were. This enabled
the labelling of malignant or benign to be made to virtually all
biopsies. Two crucial assumptionsweremade: firstly, patients
with a Bethesda category of B2 and who were not due to visit
for the next two years, had their class set to benign, despite
the lack of surgery and existence of a histopathological report.
Secondly, for patients with Bethesda category B5 or B6,
and without information about their histopathological results
from a biopsy, the class was set tomalignant; either the patient
had died or had not agreed to surgery. These assumptions
resulted from the fact that not every surgery was performed

FIGURE 2. Malignancy distribution based on the 2007 - 2017 period
among Polish patients treated in the Silesian branch of NCI.

in NCI. The results achieved were presented in Figure 2 and
are consistent with the values mentioned for the Polish data
in the guideline [18], with exception for the B3 category.

Molecular data was collected by the National Cancer Insti-
tute (NCI) for the MILESTONE project during the FNAB
of thyroid nodules. Gene expression was measured using
Affymetrix HTA2.0 arrays. The analyzed data set comprises
of 198 arrays (75malignant and 123 benign) pre-processed by
the Department of System Biology and Engineering, of the
Silesian University of Technology. Data was pre-prepared
with the Aroma tool in the R/Bioconductor environment [37]
with the RMA background correction and quantile normal-
ization method. Probes were mapped on ENTREZ genes
using the customChip Definition File provided by [38]. From
normalized and annotated data, features extracted were pre-
sented as molecular markers for thyroid malignancy in [29].
The transcripts are involved in a variety of cellular and bio-
logical processes. Out of the 167 transcripts which are listed
as part of the gene expression classifier, 163 were available
in our data set.

B. BUILDING THE CLINICAL REFERENCE MODEL
The clinical network was learned directly from the NCI
database. The distribution captured by the network was com-
pared with the existing literature to ensure that predictions
based on this model are reliable. Figure 2 depicts a histogram
of the Bethesda score either written directly by a specialist or
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deduced by our algorithm mentioned below, indirectly based
on the cytological report’s content.

In 2017 the Bethesda system was revised after the reclassi-
fication of thyroid neoplasm previously considered as malig-
nant to benign [39]. In this category the risk has therefore
become lower. In the results for this article, the occurrence of
malignant cases were more similar to the global risk before
this change, since the results were based on records assessed
and stored in the database before this change was made. From
the dataset, records were excluded where, despite existing
medical documentation, a malignancy state could not be
established by using text mining techniques alone.

The following features were considered:
• age,
• sex,
• size of lesion,
• shape,
• Bethesda category,
• the existence of multiple lesions,
• echogenicity,
• additional information about affected lymph nodes.

Amongst all these variables, age and size were continuous
and, before learning networks, these were discretized, as pre-
sented in Table 2. Considering the results of research about
the impact of clinical features on a risk stratification in TC,
we arbitrarily utilized information about recent changes in
age stratification cutoff and ACR TI-RADS recommenda-
tions to build intervals.

TABLE 2. Feature bins after discretization.

Figure 3 presents the Bayesian diagnostic network learned
from this data and used in further analysis as a clinical refer-
ence model.

All selected variables might be observed during labora-
tory or physical examinations. Size, lymph node metastases
(Lymphs), and echogenicity (Echo) are determined from thy-
roid ultrasound, and Bethesda (Beth) is the state of tissue
interpretation under a microscope. These features could not
be treated as a separate risk, which can cause malignancy, but
their specific values could suggest an increased probability
of malignancy. Since not all variables were collected for
samples used in our research, we decided to use only: age,
sex, Bethesda (Beth) and size. Providing them as pieces of
evidence and marginalizing other variables, we estimated the
clinical risk of malignancy for every sample (reported as
Clinical Risk).

Figure 4 presents the characteristics of the samples’ clini-
cal features.

FIGURE 3. The clinical Bayesian network’s diagnostic perspective
presents relations between clinical features and malignancy events
learned from the database over a ten-year period. The probability of
malignancy is called Clinical Risk.

FIGURE 4. The characteristics of samples from the perspective of clinical
features. All variables are discrete. There is a histogram and a box plot for
the clinical risk presented for each feature.

The risk estimated from BN was a continuous variable;
therefore it had to be discretized before further calculations.
For this purpose we used the affinity propagation (AP) clus-
tering algorithm [40], [41]. TheAPwas applied to find a set of
similar distributions using gene-expression data of patients as
samples. This is a high-speed and straightforward algorithm.
It takes a collection of real-valued similarities between data
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points as an input and transmits real-valued messages along
the edges of the network until a good set of exemplars comes
up. We built a similarity matrix between patient samples
using a Jaccard distance metric [42]. Each patient (sample)
was described by a four element vector (four probabilities):
the risk of malignancy (RofM) given the patient’s sex, age,
nodule size, and Bethesda score. All values were estimated
using the Bayesian clinical reference model. This standard-
ized the parameters and allowed them to discover exemplars
(members of the input set that are representative of clusters).
The most desirable property of this method is the lack of
initial setting of the number of expected clusters. We used
exemplars to create bins for the discreteClinical Risk variable
without any prior assumptions.

C. MOLECULAR DATA DISCRETIZATION
Gene expression data was continuous. Due to the non-normal
distribution visible in the data, we had to convert continuous
variables into discrete ones. Many discretization techniques
are dedicated to gene-expression data [43], [44] trying to
achieve a trade-off between the loss of information and cost
of computation. An unsupervised discretization approachwas
used to discover unknown relationships between features.

Firstly, we standardized gene-expression data by subtract-
ing the mean from each value and dividing by the standard
deviation. Our goal was to assign the same discrete values
to all similar variables to ensure that only the different levels
of expression of various genes were distinguished between
benign and malignant tumors. Then, we divided each gene
expression level into three intervals using the k-means algo-
rithm. We created three bins: less, normal and more.

We also checked the binary level of discretization. How-
ever, a comparison of the partial results showed that three
discrete values should allow us to achieve better results.

D. MOLECULAR SAMPLE ANNOTATIONS
Each molecular sample was annotated. Sex, age, and size of
bi-opted nodules were recorded. For the Bethesda variable,
two values were collected. The first one, which we called Pri-
mary Bethesda, was set by a local specialist during the local
cytological assessment prior to sending tissues (or micro-
scope slides) to the reference center. The second one, which
we called Revised Bethesda, was the result of reclassification
or confirmation based on aspirated material or slides taken by
at least two pathologists in the reference center.

The approach used assumes that NCI specialists are more
experienced in the area of TC than local medics, and their
assessments are of better quality. Their assessments should
be more consistent with molecular findings. Both values
were used independently in our research to compare their
impact when added to the molecular dataset. When estimat-
ing the clinical risk of malignancy from the clinical refer-
ence model, these values were used as data together with
the other three features (sex, age, and size of biopted nod-
ule) to calculate the probability of event MAL = ‘M’ (the
state of Malignancy node representing a malignant tumor).

The results (the estimated Clinical Risk) were integrated with
the rest of the molecular variables and the BNs were allowed
to select the most appropriate features from the data set.

E. BOOTSTRAP APPROACH
Only a small number of molecular samples were available
(198), and the initial analysis showed that the data was not
entirely consistent with the population distribution; compar-
ing a clinical reference histogram with one for all annotations
collected for the molecular dataset. The dataset was imbal-
anced. The imbalanced ratio was 1.64; more benign samples
than malignant. The bootstrap technique [33] was used to
evaluate the performance of each Bayesian network classifier.

The same clinical referencemodel was used in all bootstrap
tests. The clinical risk was evaluated and the result then
compared to a class variable (malignant or not) based on the
annotations of the test samples. That was the baseline used,
i.e. only a risk assessment on clinical data, and at the same
time, the value was added to each sample in the combined
networks.

500 iterations were planned, sampling 200 records each
time with replacements. Those of the records that were not
sampled to particular iteration of bootstrap, constituted the
testing dataset of this iteration.

During each iteration, the BN structure was trained, and
for this the parameters were estimated using bootstrapped
instances corresponding to three data sets: molecular data,
the same data combined with the clinical risk based on Pri-
mary Bethesda and the last set combined with the clinical
risk based on Revised Bethesda. Every network was learned
using a TABU search with a multi-nominal log-likelihood
score. The TABU search is a search technique based on the
greedy search algorithm. It tries to avoid getting stuck in
local minima by selecting a network with a slightly worse
score than the optimal. The score is equivalent to the entropy
measure, which is, in general, the measure of uncertainty
for the researcher’s assumptions and enables making precise
statements because it is a measure of how well the network
can predict the class state [31]. To avoid building an extensive
network, we limited the number of each parent node to three.
The most crucial node in each network was the one represent-
ing malignancy.

F. FEATURE SELECTION - THE MARKOV BLANKETS
In this article, the focus was on the Markov blanket (MB)
of the Malignancy Node (MAL) in order to reduce the com-
plexity of queries as presented in Equation 3. The property
used was that when all nodes in the MB of MAL are instan-
tiated, the changes in the certainty of nodes in the rest of the
network minimally influence MAL. Complete data samples
were collected in preparation for any set of nodes that might
be discovered. For each BN, by averaging the Malignancy
Node’s Markov blanket from bootstrap tests, features were
extracted that existed in MBs more than 50 times, no matter
if they acted as a parent, child or spouse node. Figure 5 shows
the highest-ranked features for each classifier.
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FIGURE 5. Highest-ranked features obtained from a bootstrap run for
various variants of the malignancy risk classifiers relying on (a) only
molecular data – GBN, (b) molecular data combined with primary
Bethesda – PMBN, (c) molecular data combined with revised Bethesda –
RMBN. Colors correspond to a position in the ranking for every iteration.
Gene identifiers in the plot (b) and (c) are the same genes as in the
plot (a).

The feature’s position was calculated based on the
strength of arc drawn between the node representing Malig-
nancy (MAL) and the node representing analyzed feature
(e.g. Gene#1) belonging to the MB of MAL. Values of
strength were normalized using the min-max formula, then
a weight of 1 was added to all direct connections to MAL.
Edges between spouse nodes and children of MAL were
given a weight of 0.5. After summing up the data grouped
by the nodes, the rankings of nodes were determined in
descending order.

G. PERFORMANCE METRICS
Before summarizing the results obtained, it is important to
emphasize that the dataset used was imbalanced and that
most of the samples were benign. This might result in quite
good accuracy for each model, especially since the gene set
used was initially discovered during the development of the
rule-out classifier (which prefers negative samples to positive
ones).

There is some discussion in the literature about which
metrics to use when comparing different learning algorithms.
Accuracy only takes into account correct classifications, and
if the negative class is wider, it has a significant impact on
the result; it is sensitive to class imbalance. Since this is the
case here, accuracy was not the best metric. Many researchers
prefer AUC in order to compare models. The AUC is a great
metric enabling the overall classifier’s ability to distinguish
between two classes compared to random guesses. However,
there are some limitations when comparing different learning
algorithms [45]. Nevertheless, in this case, all the networks
are learned from the data, and no prior distributions are set.

BNs are used indirectly as a feature selection tool limiting
features of interest to MB of MAL. In this way, a different
set of nodes and parameters in each model were obtained,
and all were discovered during the training process. The
AUC metric was used to compare models in each bootstrap
iteration and it was decided that the Matthews correlation
coefficient (MCC) should be used instead of accuracy. Full
symmetry is the crucial property of MCC. This metric does
not prefer any class, because it takes all values from the
confusion matrix [46], [47].

H. OPTIMAL CUTOFF VALUE
To show whether adding clinical features changes some-
thing in the performance, one ‘‘optimal’’ cutoff had to be
defined in order to dichotomize the results. Among many
approaches for selecting the optimal cutoff, two have similar
justifications [48], [49] and both are equally popular. For this
work, the Youden index was chosen because the authors of
this article agree with Perkins and Schisterman [48], who
say that mathematical equations in the medical field should
have a rationale in the clinical world. Besides, this index
has two desirable properties: a) the independence of the
relative size of both groups, and b) all tests that have the
same mis-classifications are characterized by the same index
value [50].

To sum up, the AUC metric based on sensitivity and speci-
ficity was used to assess the discrimination. The MCC was
evaluated for each iteration.

IV. RESULTS
As expected, Bayesian networks allowed the discovery
of relationships between variables. A comparison of the
highest-ranked features of the three models created shows
that the strength of clinical features depends on their quality.
The more accurate the cytological assessment, the higher
its position in the ranking. Figure 5 depicts the strength of
clinical features represented by synthetic feature, clinical risk
of malignancy, estimated by the clinical reference model.
Because Bethesda has the most significant impact on clinical
risk, rankings were analyzed with attention to this particular
variable. The PMBN ranking reveals that Primary Bethesda
in many samples does not correspond to molecular evidence
and can be treated as an observed but confounding variable.
In many cases, it is chosen as a second or even third feature.
Molecular variables still play the first role. Comparisons of
the frequency of particular genes for being chosen in GBN
and PMBN suggests that Bethesda only slightly supports
molecular data.

A more in-depth analysis of particular samples, presented
later in Figure 9, shows that the PMBN has better predic-
tion capabilities in B5 and B6 categories, even though many
B5 assessments are mismatched. However, in the dataset
used here, mismatched B5 samples were largely underesti-
mated, and samples were malignant; genes were expected
to predict malignancy. This corresponds with the results
reported in [15], [28] where negative predictive values (NPV)

VOLUME 8, 2020 175133



A. Płaczek et al.: Bayesian Assessment of Diagnostic Strategy for a Thyroid Nodule

(Equation 4) for suspicious cytological findings (B5) during
the internal evaluation were 85% and even lower in indepen-
dent ones. NPV is defined as follows:

NPV =
TN

TN + FN
(4)

where

TN : the number of true negatives,

FN : is the number of false negatives,

Bethesda was underestimated, but only by about one category
in most samples, which still clinically gives a high probability
of malignancy. Thus, it improves the PMBN’s performance
in the B5 category, resulting in fewer FN decisions. The
RMBN ranking in Figure 5 depicts that Clinical Risk based
on Revised Bethesda has become the essential feature and
significantly changes the proportions of genes playing a key
role in malignancy prediction and their importance. Clinical
Riskwas chosen as a node connected with the highest strength
to MAL. The Clinical Risk is outside of the MB of MAL in
only three of the bootstrap tests. This case is fascinating and,
because of this, it will be involved in future investigations.

A comparison of the three models’ performances shows
that the RMBN exceeds the rest of the models, including
genes, by about 3-5 percent points. Such a difference may be
caused by the clinical data’s functional prediction capabilities
or a more extensive range of Bethesda categories used in
the research. The set of genes selected for analysis were for
the samples where cytological assessment was indeterminate
(B3 or B4) so during development, B2 and B6 samples were
not of interest. In this study, the entire scope of categories
was analyzed, hence the performance of molecular classifiers
might be lower in border categories.

Figure 6 depicts ROC curves averaged from all bootstraps
for all classifiers and evaluated quartiles. Both GBN (b) and
PMBN (c) models barely have the same median AUC consid-
ering all iterations. There is a difference between the RMBN
model (d), and the GBN one (b). The AUC seems to be better
for RMBN; the variation is lower, and the median value is
higher. The median is significantly better in the clinical clas-
sifiers based on Revised Bethesda than on Primary Bethesda.
In both cases, the molecular data provides a solid foundation
for a wide range of cutoffs, so almost any threshold value can
be chosen without affecting the overall performance.

At first, when the essential clinical variable is mismatched,
there is no significant difference between the performance
of models built on molecular and clinical features. However,
it should be remembered that an imbalanced dataset was
used, and that more than 60% of the samples were benign.
The optimal threshold for clinical data was about 0.325 of
what was necessary to make all B5 and B6 samples malig-
nant. An analysis of the mismatched cytological assessment
revealed that most corrections concerned the changes from
B5 to B6, which did not affect the RCBN predictions, and
from B5 to B3 or B4. That, in turn, made a cut-point shift to
the left of the lower value. For this reason, a clinical Bayesian

FIGURE 6. ROC curves averaged from all bootstraps and evaluated AUC
for (a) clinical data classifier based on Primary Bethesda – PCBN, (b) only
molecular data classifier – GBN, (c) molecular data combined with
Primary Bethesda – PMBN, (d) clinical data classifier based on Revised
Bethesda – RCBN, (e) molecular data combined with Revised Bethesda –
RMBN. The last plot presents a comparison of all averaged curves.
Whiskers are scaled to get approximately 95% confidence intervals.

classifier based on Revised Bethesda had such a high AUC
even though the optimal cutoff was lower.

The impact of genes can be seen in the middle of the
false-positive rate data. It should be taken into account that
a gene set was used that was developed to support the
prediction of benign lesions (rule-out molecular classifier)
for which performance was initially evaluated in the range
of B3 - B4 and for some B5 samples. Where the clinical
classifier based on Primary Bethesda stayed the same, the
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molecular classifier slowly increased its ability to rank ran-
domly chosen positive samples higher than randomly chosen
negative ones after a certain cut-point. The reason for this
was because of the better prediction of indeterminate samples
(B3 or B4). When integrated into one model, they became
complementary. It was also noticed that RCBN (clinical
classifier based on Revised Bethesda) outperforms RMBN
(combined one). Concerning the authors’ initial questions,
it has just been shown that it is better to combine clinical and
molecular features in one model than to integrate the results
of the molecular analysis into a clinical context later on.

FIGURE 7. Matthews correlation coefficients for all cutoffs. PCBN
[Mean – 0.48, Median – 0.48], GBN [0.67, 0.69], PMBN [0.67,0.68], RCBN
[0.65, 0.74], RMBN [0.76, 0.76]. Colors correspond to the colors in Figure 6.

Having regard to the results of the experiments with imbal-
anced dataset reported in [46], [51], we decided to compare
our classifiers using the MCC metric to handle data imbal-
ance; the disproportion ratio was 1.64. Figure 7 depicts the
comparison of averaged MCC values for all the developed
classifiers and cutoffs. It is worth mentioning that a combi-
nation of clinical and molecular features reduces variations
among all the possible cutoffs and brings mean and median
close to each other. As a result, choosing ‘‘the best cut-point’’
does not affect the final performance as much. With regard
to PCBN and RCBN (clinical classifiers), the overall quality
significantly depends on the researcher’s choice of cut-point.
The green line represents MCC for RCBN (clinical classifier
based on Revised Bethesda), and the purple one describes
MCC for RMBN, when the same variable is integrated with
molecular data. In both types of models, the quality of binary
classification increased significantly.

In further analyzes, results achieved for a specific cutoff
chosen based on themedian of Younden’s indexwas reported,
as presented in Figure 8.
The impact of clinical data quality on performance is

also visible when increasing the value of optimal cut-point
between PMBN and RMBN. The cutoff is about 6 points
higher, which mainly affects the proper prediction of B5 sam-
ples. For samples where Bethesda is B5 or B6, and genes
are not clear for the benign tumor, predictions are mainly
malignant (B5 and B6 clinical results show evidence of
malignancy). Samples with strong gene evidence are benign.

Figure 9 shows a detailed comparison of each model’s
prediction capabilities for all bootstraps: the left side shows

FIGURE 8. Younden’s index – median value from all bootstraps.

samples with cytological assessment B5; colors correspond to
the results of a classification in every bootstrap. The revised
category for each sample was put in the middle. The right side
presents models that rely on those revised values.

The difference between PCBN and RCBN is visible
because the clinical models are data- (sample-) independent.
They are built on external data from the clinical database.
In every bootstrap, they predict the same value. The only
parameter which can have an impact on the performance
is the cut-point. Figure 9 shows that those samples which
were cytologically overestimated are malignant according to
PCBN but are benign in the majority according to RCBN.

The molecular and combined models are sample sensitive,
but when they rely on features from different sources, those
features become complementary. Genes give better results
when the sample is benign. Clinical Risk, in turn, reduces
the number of False Negative instances when the sample is
malignant; when it is based on Revised Bethesda, it reduces
further. It must be remembered that the sample size was small,
and there is no sharp border of probability between adjacent
categories, apart from those at the border. Therefore, the use
of machine learning methods (mainly unsupervised) on ‘‘as
is’’ datasets may lead to wrong decisions when new data is
introduced.

V. DISCUSSION
The overall average MCC for various cutoff values shows
that molecular features provide a solid foundation. Even
mismatched Bethesda categories cannot significantly reduce
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FIGURE 9. Comparison of prediction capability of developed classifiers in all bootstraps. Plot with Revised title depicts the Bethesda category after tissue
revision by experienced pathologists from NCI. The cutoffs evaluated after averaging the ROC curves are as follows: 0.495/0.325/0.51/0.315/0.565.
The figure presents samples initially assessed as B5 (suspicious for malignancy).

the accuracy of classifiers. The strength of the molecular
set is visible when compared to the clinical ones where
accuracy decreases drastically for higher cutoffs. However,
as presented in this article, adding synthetic clinical features
based on Bethesda to the set of initial features and the usage
of Bayesian networks, enables strong dependencies to be dis-
covered between them and the molecular data. The strength
depends on the quality of Bethesda as evidence, and this
can vary from center to center [52], [53]. The difference
in specialists’ experience and the role of the center in TC
treatment explains the reason for this existing variety.

Please note, that in Figure2, the risk of malignancy of
Polish patients in category B3 could be underestimated due
to the fact that patients diagnosed in NCI are referred to other
centers for surgery and may not be in the observations. The
authors are aware of this, but in their opinion the higher risk of
malignancy should only improve the results of the combined
data models.

Bayesian networks allow researchers and medics to update
their beliefs even if it is only partial, hard evidence or suspi-
cion (soft evidence) that exists. This may help in the daily
practice of pathologists who can query the network to get
the most probable values of particular genes or assess the
probability of co-existence.

In the diagnostic process of the thyroid nodule, the first step
is to analyze clinical features. The decision about whether

to use the molecular test is made based on them. Currently,
Bethesda is used as a selection criterion in order to check
whether the patient should be tested. If the initial assessment
of the Bethesda categorization is undervalued (e.g. B3 when
it is actually B5), that may result in misclassification due to
a much lower specificity, i.e. false negatives. On the other
hand, when the score is overestimated (i.e. B5 is in fact,
B3), the patient may be deprived of the opportunity to be
tested. Proper interpretation of all these test results requires
integrating them [4] in the clinical context, meaning that
decisions about surgery should incorporate the consistency
of both clinical and molecular results.

Many papers describe the impact of clinical features on the
patient management process [54], [55], and some researches
have started taking into account the combination of clinical
and molecular data in the management of the thyroid nodule
in the area of molecular test development [56]. However,
no studies focusing on the quality of clinical data and its
impact on analysis have been reported. The use of unsu-
pervised methods in mining patterns in data is vast, but in
the context of a particular diagnostic process, one should
be aware of the quality impact on test development. So far,
molecular tests that have been introduced are aimed to sup-
port physicians when indeterminate nodules are found, but
what if the clinical assessment is incorrect? In this arti-
cle, it was confirmed that based on molecular data, benign

175136 VOLUME 8, 2020



A. Płaczek et al.: Bayesian Assessment of Diagnostic Strategy for a Thyroid Nodule

samples could be predicted well, but the prediction capabil-
ities are better when combined with clinical data. Even if
Bethesda is mismatched, the performance does not deterio-
rate. Available independent research of molecular tests in TC
highlights the necessity of integrating molecular tests results
into a clinical context. Thus, the context should be reliable.

In future research, the same Bayesian networks can be used
to detect whether the provided Bethesda category could be
mismatched. Bethesda is a factor variable, but it determines a
risk of malignancy, which in turn is measured on a continuous
scale within clinical practice. Because of overlapping values
(different categories may cover the same risk), there is a
problem with conflict analysis between clinical and molec-
ular evidence and identification of true negative correlation.
On the other hand, BNs learned from combined data sources,
capture the probability distribution over all the nodes of inter-
est (both molecular and clinical), which could be explored
towards the identification of the true Bethesda’s value. The
conditional queries using the Bethesda’s Markov blanket is
the right direction. Also, the authors want to investigate why
the Clinical Risk was excluded from the MB of MAL for
three iterations. Last but not least is the problem of the proper
method of discretization. This could affect the performance of
each model.
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