
Received August 31, 2020, accepted September 14, 2020, date of publication September 25, 2020, date of current version October 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3026839

Dynamic and Static Energy Efficient Scheduling of
Task Graphs on Multiprocessors: A Heuristic
MANOJ KUMAR 1, LAKHWINDER KAUR1, AND JAGPREET SINGH 2
1Department of Computer Science and Engineering, Punjabi University, Patiala 147002, India
2Department of Information Technology, Indian Institute of Information Technology Allahabad, Prayagraj 211015, India

Corresponding author: Manoj Kumar (manoj@pbi.ac.in)

This work was supported by the Department of Science and Technology (DST), India, under Grant ECR/2018/002794.

ABSTRACT For energy efficient scheduling of task graphs on multiprocessors, dynamic voltage and
frequency scaling (DVFS) and duplication are two widely used techniques. DVFS is generally used to
utilize the execution slack by lowering the voltage and frequency of a task to decrease the dynamic energy
consumption. Whereas duplication decreases the schedule length and communication energy consumption
by replicating certain dependent tasks to avoid communication delays. However, while making decisions on
DVFS and duplication for a task, the static energy consumption is mostly overlooked.With chip technologies
reducing to a few nano meters, static energy consumption due to leakage current has become important.
This article proposes a novel polynomial time heuristic that uses both DVFS and duplication to optimize
static energy consumption along with dynamic and communication energy when scheduling task graphs on
heterogeneous multiprocessors. The proposed list scheduling algorithm also balances schedule length with
energy consumption using proposed normalized difference parameters while making scheduling decisions
for a particular task. The results demonstrate the ability of the proposed algorithm to decrease the overall
energy consumption with an improved or comparable schedule length as compared with other algorithms in
various scenarios.

INDEX TERMS Scheduling, duplication, DVFS, multiprocessors, heterogeneity.

I. INTRODUCTION
The static scheduling of task graphs or Directed Acyclic
Graphs (DAGs) on heterogeneous multiprocessors is an
NP-Hard problem [1], [2]. This problem gained more atten-
tion in the research community with the increase in energy
consumption of multiprocessors [3], [4]. However, most of
the published literature deals with optimizing performance
(schedule length or makespan) along with only dynamic
power consumption [4], [5]. Dynamic voltage and frequency
scaling (DVFS) is one widely employed technique to reduce
the dynamic power consumption by running certain tasks
on low voltage-frequency pairs. Since, the dynamic power
consumption is directly proportional to the frequency and
voltage, this decreases the dynamic energy consumption,
however, increases the execution cost of the tasks and hence,
increases the schedule length. Many scheduling algorithms
uses DVFS only for slack reclamation i.e., in an already
known schedule, tasks with idle slots (also called as slack)

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

are run on low voltage/frequency to fill the idle slot. By doing
this, the energy consumption can be decreased without
increasing the schedule length.

Along with the dynamic power consumption, the static
power consumption has significantly increased as an impli-
cation of the Moore’s law [6], [7]. Static power consumption
is independent of the tasks or processes being run on the
hardware. The major source of the static power is the leakage
current which is because of the reverse bias current in a
transistor even in an off state. The increasing chip density
and hence chip technology dropping below 65nm is one of the
major reasons of an increasing leakage current. Also, leakage
current is directly proportional to the temperature of the
device. Hence, if a processor does more computation, then,
along with dynamic power consumption, the temperature also
rises which increases the leakage current and eventually static
power consumption.

Current processor manufacturers employ dynamic power
management (DPM) to keep the processors on a low-power
state whenever possible to reduce the static power cons-
umption. The Advanced Configuration and Power Interface

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 176351

https://orcid.org/0000-0001-8746-9511
https://orcid.org/0000-0001-5806-3010
https://orcid.org/0000-0003-1118-7109

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

(ACPI) standard [8], [9] defines various low power states
(S1 to S4) in the standby mode. Each of these low power
states save more power than its predecessor, however,
requires more time (and energy) to bring the system back
to the active state. Hence, a processor needs to be idle for
a certain minimum time instance to save on static energy by
going into the low power state. For every low power state, this
time instance is called as a break-even time.

The DVFS uses the idle slots to decrease dynamic energy
consumption whereas, in DPM, these idle slots can be opti-
mized to decrease the static energy consumption. Hence,
there is an interesting trade-off in using idle slots for
either running tasks on low voltages/frequencies to save
dynamic energy consumption or keeping the idle slots within
break-even time to save more on static energy consumption.
Another interesting trade-off of DVFS and duplication for
optimizing computation and communication energy along
with performance has been recently explored [10], [11].
The duplication of tasks in idle slots is done to reduce
the inter-task communication delay to shorter schedule
length [12] and also to reduce the communication energy
consumption. Hence, idle slots can be used in three different
ways as follows:

1) putting the processor into a sleep state to reduce
static energy consumption and also temperature of the
processor

2) duplicating tasks to reduce communication delay and
energy consumption and also to shorten schedule
length

3) use slack reclamation using DVFS to reduce computa-
tion energy consumption

This article proposes a polynomial time scheduling heuris-
tic named DSEAS to optimize dynamic, static and commu-
nication energy consumption along with the schedule length
when tasks graphs are scheduled on heterogeneous multi-
processor using DVFS and duplication. While deciding on
dynamic voltage/frequency pair for a task or it’s duplicate,
DSEAS considers static energy consumption to make optimal
decision and hence balance schedule length with the energy
consumption. The DSEAS algorithm also uses an integer
linear program (ILP) named OptILP-idle to optimally uses an
idle slot in the partial schedule to decrease dynamic and static
energy consumption. The results show that DSEAS is able to
decrease the energy consumption with a better of comparable
schedule length than the state-of-the-art algorithms. The rest
of the article is organized as follows: Section II describes
the related work. The task and system model is presented in
section III. The DSEAS algorithm is presented in detail in
section IV with OptILP-idle in section IV-A. The experimen-
tal results are discussed in section V followed by conclusions
and future directions in section VI.

II. RELATED WORK
Static scheduling of DAGs on multiprocessors with only
makespan objective is an NP-hard problem [1], [2].
To deal with hardness, researchers have proposed optimal

ILPs [13]–[15], meta-heuristics [16]–[19] and low-
complexity heuristics [20]–[22]. The Heterogeneous Earliest
Finish Time First (HEFT) [20] is one of the first very popular
polynomial time list scheduling algorithm, which sorts tasks
in a DAG in to a list and later greedily schedule tasks from
the list one at a time to reduce the finish time. The HEFT
algorithm was later extended with duplication [21] to further
shorten the makespan. The last decade has seen the focus
with scheduling of task graphs been shifted from performance
(reducing makespan) to optimizing energy consumption and
also to control the thermal properties of the system. To reduce
the dynamic energy consumption, Dynamic Voltage/
Frequency Scaling (DVFS) has been widely utilized [3],
[23]–[26]. A detailed survey on energy aware schedul-
ing is presented in [3]. Kappiah et al. [23] effectively
reduced the processor energy consumption by applying
slack reclamation to the MPI programs. They experimentally
evaluated the approach without modifying the programs.
Son et al. [25] simultaneously reduced the voltage on the
processors and the network links to utilize the available
slack. Rizvandi et al. [24] proposed the concept of scheduling
certain tasks with integrated max-min voltages to effectively
reclaim the slack. Their results were found to be close to the
optimal solution.

There are a few efforts to simultaneously reduce the
makespan as well as the energy consumption. Lee and
Zomaya [26] proposed a polynomial time Energy Conscious
Scheduling (ECS) algorithm using DVFS, which uses a
parameter that simultaneously considers the energy and the
schedule length to make task scheduling decisions. However,
it is seen that ECS sacrifices the makespan to reduce the
power consumption [11]. Duplication has also been used
to decrease the energy consumption [27], [28]. Zong et al.
have proposed an algorithm that duplicates a task only if it
keeps the increase in energy and schedule length below a
threshold level. An extension of HLD, named Enery Aware
Minimizing Duplication (HLD-EAMD), was proposed [28].
HLD-EAMD works in two steps. First, it runs the HLD algo-
rithm to decrease the makespan with duplication and then,
it removes the redundant duplications to decrease the energy
consumption. However, both of these algorithms do not uses
DVFS and perform poorly in the case of low communica-
tion costs. Scheduling with duplication has also been imple-
mented using an Mixed Integer Linear Program (MILP).
Bender [13] described an MILP to reduce the makespan with
duplication. Tosun and Suleyman [29] used DVFS and dupli-
cation for scheduling independent tasks using anMIP. In [10],
authors proposed an MILP formulation using DVFS and
duplication to optimize both of these objectives together. The
formulation has proved to be very effective, however, only for
smaller instances of the scheduling problem. A normaliza-
tion based heuristic with duplication and DVFS is proposed
in [11] but it does not optimizes static energy consumption.

All of the above works do not optimise static energy
consumption. Niu and Quan [30] proposed a hard real-time
algorithm to reduce dynamic and static energy consumption.

176352 VOLUME 8, 2020

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

TABLE 1. Notations for task, processor, network, and energy model. Notations with capital letters are constant and with small letters are variables.

The main idea of their paper is to shift scheduled tasks in
such a way that the small idle slots are merged together to
make bigger ones with a constraint that none of the task
misses its deadline. They used DVFS to finish tasks earlier
so that slightly bigger idle slots can be obtained. However,
their solution is only for independent tasks. A similar approch
to combine execution slacks is proposed in [31]. The authors
have used multiple sleep states and also proposed an offline
method to calculate break-even time for each sleep state.
Chen and Thiele [32] also looked at a similar problem in
real-time system with independent tasks. Their approach is
to find optimal frequency to run a task such that there is
a possibility to push the processors into a dormant state.
In [33] authors proposed an algorithm to shutdown the under
utilised processors and limit the number of processors along
with DVFS to reduce the static energy. Ma et al. consid-
ered dependent tasks and used clustering based scheduling
alongwith duplication and dynamic powermanagement tech-
niques. They assume that DVFS is not available in the cluster
system. An optimal ILP based solution for scheduling hard
real-time and mixed-criticality tasks on multiprocessors to
optimize static energy consumption is proposed in [34]. This
work uses multiple sleep states as utilized in our work. But,
they do not use DVFS and the algorithm is designed for
independent tasks only. More recently, Kaur et al. [35] pro-
posed a duplication based approach combined with dynamic
power methods to reduce dynamic as well as static power

consumption for dependent tasks. However, their work also
does not utilize DVFS. In this paper, we propose a DVFS
and duplication based polynomial time heuristic that also
focuses on static power consumption along with the dynamic
power consumption and balances power consumption with
performance i.e., decreasing the makespan.

III. TASK AND SYSTEM MODEL
We define the task and systemmodel used in this study in this
section. The system model used in this research is similar to
the one in [11], [26], [34]. Table 1 describe all the notations
used in this work.

A. TASK, PROCESSOR AND NETWORK MODEL
In static version of the scheduling problem, the information
about the task graph which is represented as a directed acyclic
graph (DAG), is available in advance. The application DAG
(F) is required to be scheduled on a set P of heterogeneous
processing elements (PEs). There are N nodes (represented
as a set F) of the DAG which represents N non-preemptive
tasks. A set G ∈ F × F of directed edges between the
nodes in the DAG defines dependency among tasks. An edge
between two tasks i and j means that the task j can not begin
its execution until the task i has finished and communicated
required data to task j. Since, we employ duplication, there
can be multiple copies of a task on different processors.
In case copies of tasks i and j are scheduled on different

VOLUME 8, 2020 176353

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

TABLE 2. Equations used to describe the energy model.

processors then C[i, j] (∈ RF×F) gives the time required to
transfer data from the ith task to the jth task. Both the tasks,
if scheduled on same processor, are assumed to exchange
data through shared memory, which does not incur any cost.
T [i,m] ∈ RF×P represents the execution cost of the ith task
on the mth processor at the highest voltage (Vm

max) and fre-
quency pair. The Vm

max represents the maximum voltage of
the mth processor.
Each processor in this model can run on multiple voltage

and frequency pairs, where Vm
k represent the k th voltage/

frequency pair on the mth processor. As energy consumed
while transiting between various voltage pairs is small, we do
not consider this in our study. Each of the processors, when
not in use, can be in one the idle states s where s ∈ S[m].
The set S[m] define idle states on a processor m. We consider
four different idle states as have been used in [35]. The state
S[m, 0] represents active-idle state on a processor m. In an
active-idle state, a processor is idle i.e., it is not executing
any tasks, however, all of the components of the processor
are in active (power-on) state. Generally, a processor is in
active-idle state when it is idle for a short duration of time
while waiting for some communication to finish. In case a
processor is idle for relatively large duration of time then
some parts of the processor can be powered-off to bring the
processor to a state such that static energy consumption can
be reduced. These states are called as passive-idle states.
We use three passive-idle states viz. standby, dormant, and
shutdown as has been extensively used in the literature [35].
We describe the amount of static energy consumed during
these states in the section III-B.

For inter-process communication, we assume a contention
free fully connected topology. Each of the processors have
a network interface card (NIC) which is used to connect
the processor to a network. Here, we assume homogeneous
network cards throughout the system, where ENB and ENI
are the network interface busy and idle energy consumption
respectively. It has been noticed that a switch consumes
almost similar energy in busy aswell as idlemode [36]. Hence
in busy and idle modes, a unified parameter ES is used to
describe energy consumption of a switch.

B. ENERGY MODEL
The total energy consumption for scheduling task graphs on
heterogeneous multiprocessors is defined in equation E1 in
table 2, where, enPdyn and en

P
sta stands for dynamic and static

energy consumption of processors respectively. We explain
how to evaluate all of these energy components in the follow-
ing sections.

1) DYNAMIC ENERGY
The dynamic energy consumption (enPdyn) can be evaluated
by calculating the amount of time processors (or cores) are
busy executing the tasks. The part ∗ in Equation E1 gives the
energy consumption of a task i on processor m.
In our heuristic, a task is allowed to be executed using

integrated voltage-frequency pairs i.e., some fraction on one
voltage and the remaining on the other. It is reported in
literature [24] that the slack time can be optimally utilized
when a task is allowed to be executed on integrated voltages.
In part ∗ in Equation E1, dk [i,m] represents fraction of time
task i executes on voltage-frequency pair k and Eb[m, k] is
the unit busy energy consumption of processor m on Vm

k .
Eb[m, k] is evaluated as:

Eb[m, k] = βmV 2
· f

βm =
Eb[m](

(Vm
max)2 · f

)
The βm is evaluated from the fact that the capaci-
tive (dynamic) power consumption of a processor is defined
as Eb = ACV 2f , where A: the number of switches per
clock cycle, C : the total capacitance load, V , f : voltage and
frequency.

2) STATIC ENERGY
A processor consumes static energy consumption while it
is busy executing tasks as well as when it is idle. How-
ever, when busy (or active), the static energy consumption
depends on the thermal properties of the system. Since, in this

1We label the equations with symbol E for easy understanding that these
equations belong to energy model

176354 VOLUME 8, 2020

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

work, we are not focusing on thermal modeling, we assume
a fixed active-static energy consumption for a processor m
i.e., Eas [m]. Hence, total active-static energy consumption of
all the processors is:

The equation E2 is exactly similar to the equation E1 with
a minor difference that now we multiply the execution cost
of tasks with unit active-static energy consumption (Eas [m]).
The crucial part of saving static energy consumption is when
a processor is in idle state. Depending on the amount of time
a processor is idle i.e., the size of the idle slot, a processor can
be put into one of the idle states as discussed in section III.
The unit idle-static energy consumption (E is[m, active−idle])
of a processor decreases as we send a processor to a deeper
idle state i.e., we can decrease the static energy consumption:

E is[m, active− idle] > E is[m, standby] > E is[m, dormant]

> E is[m, shutdown].

However, the break-even time (Bt[m, active − idle]) to
push a processor to a deeper idle state and energy penalty
(Eps [m, active− idle]) to bring a processor to active-idle state
from a deeper idle state increases as we move to a deeper idle
state as described below:

Bt[m, active− idle] < Bt[m, standby] < Bt[m, dormant]

< Bt[m, shutdown]

Eps [m, active− idle] < Eps [m, standby] < Eps [m, dormant]

< Eps [m, shutdown]

Assuming an idle slot with a size len, we can find an
idle state from s ∈ {shutdown, dormant, standby} for which
l > Bt[m, s]. Then, the static energy consumption for this
idle slot is (len − Bt[m, s]) ∗ E is[m, s] + Eps [m, s]. The total
idle-static energy (enPsta−i) consumption can be found using
equation E3.

3) COMMUNICATION ENERGY
The communication energy is mostly consumed by network
interface cards (enCN) and the switches (en

C
S). Hence, the total

communication energy ((enC)) consumption is calculated as
enC = enCN + enCS as used in [36]. For enCN , we need to
evaluate the amount of time network cards are involved in
communication during the entire schedule length. The part
∗ in equation E4 calculates the total communication time
between all of the processors in the entire schedule length.
If task i and task j have an edge (eij = 1) and d[i,m] = 1 and
d[j,m] 6= 1 then there is a communication for C[i, j] times
between processor m where task I is allocated and another
processor where task j is allocated.

To simplify the calculation of enCN , we assume that all of
the network cards consume idle energy consumption for the
entire makespan (|P| · ENI · fmax), where ENI is the unit idle
energy consumption of the network cards. Later, after calcu-
lating the total communication time in part ∗ in equation E4,
we add twice the busy network energy consumption for this
amount to account for sender and receiving processors and
subtract the similar amount of idle energy consumptionwhich

was added earlier. Equation E5 is used to calculate energy
consumption of switches.

In equation E5, ES is the unit energy consumption of
switches. Also, depending on the number of processors,
we can calculate the number of switches (Nswitch) as follows:

Nswitch =

1, if |P| ≤ Nport⌊
|P|
Nport

⌋
+ 1, otherwise

LISTING 1. Algorithm for DSEAS (input: F; output:schedule).

IV. ALGORITHM:DSEAS
The proposed algorithm uses greedy approach as used
in [11], [26]. We name our algorithm as Dynamic and Static
Energy Aware Scheduler (DSEAS). DSEAS algorithm is sig-
nificantly different than the other state-of-the-art algorithms
since it explores the interplay of DVFS, duplication and DPM
to optimize performance, dynamic, static and communication
energy consumption at the same time. The main objective
is to generate schedules which balances energy consumption
with makespan. Algorithm 1 describe the pseudo-code of our
heuristic. The algorithm begins by topological sorting of the
nodes of the task graph with decreasing values of the b-level.

VOLUME 8, 2020 176355

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

TABLE 3. Evaluating improvement factor IF.

The b-level (or bottom-level) for each node is calculated as
follows:

blevel[i] = µe[i] ∀i ∈ F, succ(i) = φ (1)

blevel[i] = µe[i]+ max
j∈succ(i)

(
c[i, j]+ blevel[j]

)
(2)

In the equations above, µe[i] =
(∑

m∈P T [i,m,max]
|P|

)
is

taken as the average execution cost of task i on Vm
k where

m ∈ P and succ(i) gives all of the successors of task i. The
b-level measures the largest path from a task to a leaf task
and is widely used in literature for sorting task in a graph
to a list for list scheduling heuristics. The tasks are selected
for allocation and scheduling based on decreasing values of
b-level. Initially, for every task, we select any random proces-
sorm0 and theminimum voltage level onm0(i.e.,V

m0
min). Later,

we iterate through every processor (step-5) and all of volt-
age/frequency pairs (step-7) to see which processor and volt-
age level is more appropriate for a particular task. To decide
this, we make use of a parameter named as Improvement Fac-
tor (IF). Equation P1 in table 3 is used to calculate IF. The
parameter IF is defined as the improvement in makespan and
energy consumption when a new voltage-frequency pair and
a processor is selected for a task as compared to the current
mapping. If a task i is currently allocated to a processor m′

with voltage Vm′
k ′ and we want to see if processor m and volt-

age level Vm
k should be preferred then the improvement factor

should be positive i.e., IF should be positive (steps 7-9). The
distinct feature of IF is that it makes use of affective energy
consumption (ea[i,m,Vm

k]) which consider dynamic as well
as static energy consumption while scheduling a task with or
without duplication. To be the best of authors knowledge this
kind of parameter is not used by any known greedy algorithm.

The IF in makespan is evaluated as the normalized differ-
ence in the earliest finish time (EFT) of task i on (m′,Vm′

k ′) and
(m, Vm

k). Similarly, the IF in the energy consumption is eval-
uated by taking into account the affective energy consump-
tion (ea[i,m,Vm′

k ′]) of the task i on (m′, Vm′
k ′) and (m, Vm

k).
Importantly, we take in to account the affective energy con-
sumption in comparison to only busy energy consumption as
used in [11], [26]. The idea behind using affective energy
consumption is that in case a task does not execute in a

particular slot (i.e., no busy energy consumption) then there is
still some idle static energy consumption. Hence, we trade-off
dynamic and static energy consumption while scheduling
tasks. To calculate the affective energy consumption (equa-
tion P4), we subtract the idle energy consumption of task i on
(m, Vm

k) from the busy energy consumption i.e., eb[i,m,Vm
k].

The eb[i,m,Vm
k] and ei[i,m,V

m
k] are calculated in equations

P2 and P3 respectively.
The EFT [i,m,Vm

k] is the time the task i can finish the
earliest while executing on processor m on voltage Vm

k . This
also depends on the data arrival time from parents of task i.
In case IF is negative (steps 12-23) then we try to duplicate
the most important immediate parent (MIIP) of task i which
delays its execution the most on processorm. This can reduce
the EFT , however, can also increase the energy consumption,
hence, we also consider the duplicated parent while calcu-
lating the affective energy consumption as in equation P5.
In case duplication leads to IF > 0 then we schedule this
task with duplication (step 26) otherwise without duplication
(step 28). Once all of the tasks are scheduled then we remove
any redundant duplication in step 27 to create more idle
slots in the schedule. Finally, for each idle slot, we optimize
the dynamic and static energy consumption by running an
optimal ILP as described in section IV-A. The complexity
of DSEAS is |O(|F |log(|F |) + (|F | + |E|) ∗ |P| ∗ V 2

max)|,
where V 2

max is the maximum number of voltage levels on a
processor. The DSEAS time complexity is a Vmax factor more
than the [26] and [11] because we decide on a voltage level
for the duplicated task as well. This helps us to achieve better
results without increasing much on the time complexity. For
large task graphs, a restricted number of voltage-frequency
pairs can be used [15] to reduce the time complexity.

A. OPTILP-IDLE
As highlighted earlier, an idle slot can be used either to
reduce the dynamic energy consumption (by running tasks
on low voltage/frequency pairs) or to decrease the static
energy consumption (by putting the processor to a deep idle
state). We propose an integer linear program (ILP) named as
OptILP-idle for optimized use of the idle slots. Figure 1 gives
the basic idea of the problem which we solve using the ILP.

176356 VOLUME 8, 2020

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

TABLE 4. Equations in OptILP-idle.

FIGURE 1. Idle slot optimized for static and dynamic energy consumption.

Every idle slot other than at the beginning of a processor is
preceded by a scheduled task (for ex. task i). We re-define the
size of the idle slot here, which now begins at the start of this
task i and finish at the end of the actual idle slot as shown
in the figure 1. The problem Task-in-Idle-Slot is described as
follows:
Problem 1: Task-in-Idle-Slot: Given an idle slot on pro-

cessor m with size lenidle_slot and a task i to be scheduled
from the beginning of the slot, minimize the total dynamic
and static energy consumption such that the final schedule
remains feasible.

The objective of the OptILP-idle is as follows:

minimise enidyn + en
i
sta−i + en

i
sta−a

where, enidyn and enista−a are the dynamic and active static
energy consumption of task i on processorm. The enista−i rep-
resents the idle static energy consumption of the idle slot that
follows task i on processorm. Table 4 describe the constraints
required to optimally solve the Task-in-Idle-Slot problem.
As shown in figure 1, the task i is executed by running it on
some fraction (dmax[i,m]) of time on maximum voltage/fre-
quency level (vertical strips) and some fraction (dmin[i,m])
on minimum voltage/frequency level (horizontal strips) to
optimally utilize the idle slot and eventually the dynamic
energy consumption. Hence, as in equation I1, the execution
cost of task i on processor m (ec[i,m]) is calculated by the

time i runs on max and min voltage/frequency pairs. In case
any task j depends on task i for data, the ec[i,m] is upper
bounded by a known communication cost (C[i, j]) and the
largest possible data arrival time (DAT [im, jm′]) from i to j.
The fractions dmax[i,m] and dmin[i,m] makes the problem
interesting since they are used to calculate the total dynamic
energy consumption (enidyn) of task i on processor m as in
equation I3. Equation I4 gives the total active static energy
consumed by task i (enista−i).
Finally, the size of the remaining idle slot, lenidle_slot −

ec[i,m] is used to decide a deep idle state to minimize
the static energy consumption. Equations I5-I8 achieve this
objective of deciding a deep idle state. A variable x[s] is set
to 1 if based on the size of the remaining idle slot and the
break-even time of state s (Bt[m, s]), it is possible to shift
processor m to idle state s (equation I5). Equations I6 and I7
force the ILP solver to select only one of the possible idle
states in variable y[s]. A state for which y[s] = 1 is used to
calculate enista−i. The overall minimization objective makes
sure that the state that minimize enista−i is selected in y[s].

V. EXPERIMENTAL RESULTS
In this section, we compare DSEAS algorithm with
three other state-of-the-art algorithms viz: NormEAS [11],
C-SEED [35] and ECS+idle [26]. Table 5 briefly compare
these algorithms with their properties.

TABLE 5. State-of-art algorithms compared with DSEAS.

Table 6 provides details of the parameters used to generate
widely used real task graphs: LUDecomposition (LUD) [16],
Fast Fourier Transform (FFT) and Random task graphs [4].
Approximately ten thousand graphs have been generated by
varying graph parameters as listed in table 6 using the tool,
Task Graph Generator [37]. The parameters are set same
as [11], [26], [35]. Other than these graphs, we also use three

VOLUME 8, 2020 176357

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

FIGURE 2. (a) Processor types with dynamic and static energy consumption (b) voltage-relative speed pairs.

TABLE 6. Graph parameters.

application task graphs Robot Control (RC), Sparse matrix
Solver (SMS), SPEC fpppp (SPECF) from Standard Task
Graph Set (STG) [38]. The STG set defines graphs only
with execution costs, the communication cost is generated to
maintain various CCR values as shown in table 6.
All the algorithms have been implemented in C++.

We have used CPLEX ILP Solver [39] to solve OptILP-idle
which takes only a few seconds to optimally solve.
Figure 2(a) [35] shows the two processor types we use
in this study with voltage pairs for both the processors
in 2(b) [11], [26]. It is important to mention that the pro-
posed algorithm does not depend on a particular processor
architecture and these two processor types are only selected
because of the availability of the technical specifications
(specifically idle-states parameters) of the processors from
research papers. We take equal number of both types of
processors while varying number of processors as described
in table 6.
For comparison, we have used two performance metrics:

SLR (Schedule Length Ratio) and ECR (Energy Consump-
tion Ratio) [26] as used in other relevant studies. The SLR is
computed as follows:

SLR =
makespan∑

i∈CP

min
m∈P

(
T [i,m,Vm

max]
)

where, CP is a set of tasks on the critical path of the applica-
tion task graph. The ECR is evaluated as:

ECR =
entotal∑

i∈CP

(min
m∈P
{T [i,m,Vm

max]} · EBV [m,V
m
max])+ en

c
cp

where enccp is the communication energy for Critical
Path (CP). The lower the values of SLR and ECR, the better
the algorithm has performed. Next, we compare the algo-
rithms by varying CCR, number of tasks and number of
processors and then summarize the results based on various
graph types.

A. IMPACT OF CCR
Figure 3 shows the impact of varying CCR on SLR (a) and
ECR (b). For low values of CCR (<1) i.e., when the compu-
tation cost is higher than the communication cost, an only
duplication based algorithm C-SEED suffers a little with
the energy consumption because of not using DVFS, with
limited duplication, it is able to reduce the SLR though.
Similarly, ECS+idle sacrifices SLR by running tasks on low
voltage/frequency pairs to reduce the dynamic energy con-
sumption and hence reducing ECR than C-SEED. NormEAS
does better than the two by using duplication and DVFS
both and finding a nice balance between SLR and ECR.
However, NormEAS does not do anything to reduce the static
energy consumption. Especially, when the number of tasks
are higher, even for CCR<1, still there are idle slots, which
are utilised by DSEAS to reduce the static energy consump-
tion alongwith dynamic energy consumption by usingDVFS.
The DSEAS algorithm also employs selective duplication to
reduce the SLR than other algorithms and hence, reduces
the communication energy consumption as well. Overall,
the DSEAS performs the best among other algorithms.

With increasing values of CCR (≥1), communication
begins to dominate, and hence, SLR and ECR increases for
ECS+idle for not using duplication and anymethod to reduce
the static and communication energy consumption. Since,
computation is lower than communication, DVFS impact to
reduce only the dynamic energy consumption is negligible.
Infact, using only duplication and dynamic power manage-
ment (DPM) methods to reduce static energy consumption
works in favour of C-SEED. With duplication, C-SEED
reduces the communication and hence reduces SLR and
communication energy consumption. Duplication increases
the dynamic energy consumption, however, savings on com-
munication energy consumption dominates dynamic energy

176358 VOLUME 8, 2020

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

FIGURE 3. Impact of varying CCR on (a) SLR and (b) ECR.

FIGURE 4. Impact of varying number of tasks in the application DAG on (a) SLR and (b) ECR.

consumption. Another, interesting result is that the ECR of
C-SEED is lower than NormEAS for CCR (≥2). This is
attributed to DPM techniques used by C-SEED to put the
processors into deep idle states when the idle slots are big
enough. With increasing CCR, the idle slots starts getting
bigger and hence saving static energy consumption dominates
dynamic energy consumption, since, NormEAS also employs
DVFS and duplication to reduce dynamic energy consump-
tion and communication energy consumption.

Interestingly, DSEAS is able to optimize the use of DVFS,
duplication and deep idle states to significantly decrease
the ECR than C-SEED. The DSEAS algorithm sacrifices
a little on SLR (Figure 3(a)) for higher values of CCR
but reduces the dynamic energy consumption far more than
C-SEED. Also, DSEAS decision of whether to duplicate
a task of not depends both on dynamic and static energy
factors (refer Table 5, equation P6) which helps to do selec-
tive and optimized duplication and hence, does not blindly
increases redundant duplications. This is also a distinctive

factor of DSEAS as compared to NormEAS. Other than this,
NormEAS, first allows to do redundant duplications and once
all the tasks are scheduled then look for removing redundant
duplications. We argue that this is not a good technique
because allowing redundant duplications fill up the idle slots
which can be used to either to schedule other tasks or used as
idle slots to reduce static energy consumptions and DSEAS
does exactly the same to reduce ECR than NormEAS.

B. IMPACT OF NUMBER OF TASKS
Another interesting way to look at the results is to compare
algorithms on the basis of increasing number of tasks in an
application DAG. Figure 4(a,b) shows the impact of number
of tasks (or nodes) on SLR and ECR respectively. All dupli-
cation based algorithms except ECS+idle achieved similar
SLR. This effect is attributed to duplicating tasks to reduce the
schedule length, especially, when either communication cost
or dependency among tasks increases. Only for high number
of tasks, C-SEED is able to improve SLR by a small fraction

VOLUME 8, 2020 176359

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

FIGURE 5. Impact of varying number of processors on (a) SLR and (b) ECR.

upon NormEAS and DSEAS. This is because of use of
selective duplication and DVFS techniques in NormEAS and
DSEAS to balance SLR with ECR as compared to C-SEED.
In case of NormEAS, this can be seen for medium sized
graphs (<200), where NormEAS is better than C-SEED.
However, as the number of nodes in the graph increases
(≥200), C-SEED is able to pull down ECR than NormEAS.
Because, as the number of tasks increases, the dependency
among tasks also increase, hence, the delay in executing
these tasks increases the idle slots. Increasing size of the idle
slots give chance to both C-SEED and DSEAS algorithms to
reduce static energy consumption by putting processors into
deep idle states.

The DSEAS algorithm is however better than both
C-SEED and NormEAS for all the graph sizes while compar-
ing ECR. Compared to NormEAS, DSEAS does duplication
optimally by considering the static energy consumption along
with dynamic energy consumption of the duplicated task.
This step helps DSEAS to prevent redundant duplications
and make optimal duplication choices. Secondly, is the opti-
mization of static energy consumption, as in DSEAS every
idle slot is optimally used to decrease dynamic as well as
static energy consumption as explained in section IV-A. The
downside of C-SEED is not using DVFS, which is efficiently
used in DSEAS to decrease ECR.

C. IMPACT OF NUMBER OF PROCESSORS
Figure 5 shows the impact of increasing number of processors
on SLR and ECR. With an increase in number of processors,
the SLR decreases for all of the algorithms, however, increas-
ing processors from 16 to 64, does not improve the SLR
further. Because, for relatively small or medium sized graphs,
16 number of processors seems sufficient. The C-SEED
algorithm reduces SLR slightly than DSEAS because of
increased duplications which can be seen as C-SEED having
higher ECR than DSEAS. Also, to save more dynamic energy

consumption, DSEAS uses DVFS which slightly affect it
SLR as compared to C-SEED. However, with increasing
number of processors, the possibility of having (large) idle
slot increases, which gives an opportunity to DSEAS and
C-SEED to save on static energy consumption. As can be
seen in ECR plots, from processors 16 to 64 C-SEED reduces
the ECR than NormEAS. However, as is seen in other plots,
Opt-ILP helps DSEAS to decrease the static energy further
with ECR of DSEAS is significantly better than NormEAS.
A without duplication ECS+idle does relatively well as com-
pared to C-SEED for smaller number of processors by scari-
fying SLR. But clearly is not a good choice to achieve a bal-
ance of SLR and ECR. Whereas, DSEAS with an optimized
mix of DVFS, duplication and dynamic power management
techniques able to achieve a perfect balance of SLR and ECR.

TABLE 7. DSEAS percentage improvement in ECR over other algorithms.

D. SUMMARY OF RESULTS
Tables 7 and 8 summarises and presents percentage improve-
ment of DSEAS for ECR and SLR over other algorithms for
various graph types. The impact of optimizing both dynamic
and static energy consumption at the same time can be easily
seen by comparing 14.88% and 13.53% improvement over
NormEAS and C-SEED (uses DPM for static energy con-
sumption) achieved by DSEAS. NormEAS reduces dynamic
energy consumption for computation dominated task graphs

176360 VOLUME 8, 2020

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

TABLE 8. DSEAS percentage improvement in SLR over other algorithms.

and small graph sizes with less dependencies as compared to
C-SEED whereas C-SEED reduces static energy consump-
tion for high CCR and large graph sizes. However, both of
these algorithms are comparable with ECR. But, DSEAS
focuses on both dynamic and static energy consumption
and performed significantly better than these algorithms to
reduce the energy consumption. For SLR, C-SEED does
more duplication and reduces makespan on an average 1.98%
than DSEAS. Whereas, DSEAS performs significantly better
than NormEAS and ECS+idle that tries to balance energy
consumption with schedule length. The results clearly shows
that it is important to focus both of dynamic as well as static
energy consumption and DSEAS does exactly the same.

VI. CONCLUSION
This paper talks about an ingenious polynomial time heuristic
DSEAS for scheduling precedence tasks on heterogeneous
multiprocessors with a focus on dynamic energy, static energy
and communication energy consumption along with the
makespan. The DSEAS algorithm optimizes the use of DVFS
(for reduing dynamic energy consumption), duplication (for
reducing schedule length and communication energy) and
DPM (for reducing static energy consumption). The results
exhibit that it is important to focus on all three energy con-
sumption along with makespan. The proposed algorithm is
able to generate balance schedules where schedule lengths
are comparable or better and total energy consumption is
always better than the state-of-the-art algorithms. In future,
DSEAS can bemade temperature aware as well to account the
impact of energy consumption on temperature of the system
and vice versa.

REFERENCES
[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences), 1st ed. New York, NY, USA: W. H. Freeman, Jan. 1979.

[2] J. D. Ullman, ‘‘NP-complete scheduling problems,’’ J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, Jun. 1975.

[3] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, ‘‘Sur-
vey of energy-cognizant scheduling techniques,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 7, pp. 1447–1464, Jul. 2013.

[4] Z. Deng, Z. Yan, H. Huang, and H. Shen, ‘‘Energy-aware task scheduling
on heterogeneous computing systems with time constraint,’’ IEEE Access,
vol. 8, pp. 23936–23950, 2020.

[5] U. U. Tariq, H. Wu, and S. A. Ishak, ‘‘Energy-efficient scheduling of
tasks with conditional precedence constraints on MPSoCs,’’ in Towards
Integrated Web, Mobile, and IoT Technology, (Lecture Notes in Busi-
ness Information Processing), T. A. Majchrzak, C. Mateos, F. Poggi, and
T.-M. Grønli, Eds. Cham, Switzerland: Springer, 2019, pp. 115–145.

[6] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, ‘‘Leakage current: Moore’s law meets
static power,’’ Computer, vol. 36, no. 12, pp. 68–75, Dec. 2003.

[7] G. Ananthanarayanan, S. R. Sarangi, and M. Balakrishnan, ‘‘Leak-
age power aware task assignment algorithms for multicore platforms,’’
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016,
pp. 607–612.

[8] (2019). (ACPI) Specification, Version 6.3. [Online]. Available:
https://uefi.org/sites/default/files/resources/
ACPI_6_3_final_Jan30.pdf

[9] (2018). System Power States. [Online]. Available: https://docs.microsoft.
com/en-us/windows/win32/power/system-power-states

[10] J. Singh and N. Auluck, ‘‘DVFS and duplication based scheduling for
optimizing power and performance in heterogeneous multiprocessors,’’
in Proc. High Perform. Comput. Symp., San Diego, CA, USA, 2014,
p. 22.

[11] J. Singh, A. Gujral, H. Singh, J. U. Singh, and N. Auluck, ‘‘Energy
aware scheduling on heterogeneous multiprocessors with DVFS and dupli-
cation,’’ in Proc. IEEE 17th Int. Conf. Parallel Distrib. Comput., Appl.
Technol. (PDCAT), Dec. 2016, pp. 105–112.

[12] M. Orr and O. Sinnen, ‘‘Integrating task duplication in optimal task
scheduling with communication delays,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 10, pp. 2277–2288, Oct. 2020.

[13] A. Bender, ‘‘MILP based task mapping for heterogeneous
multiprocessor systems,’’ in Proc. EURO-DAC Eur. Design Autom.
Conf. with EURO-VHDL Exhib., Los Alamitos, CA, USA, 1996,
pp. 190–197.

[14] A. Davare, J. Chong, Q. Zhu, D. M. Densmore, and A. L. Sangiovanni-
Vincentelli, ‘‘Classification, customization, and characterization:
Using MILP for task allocation and scheduling,’’ EECS Dept., Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2006-166,
Dec. 2006.

[15] J. Singh, S. Betha, B. Mangipudi, and N. Auluck, ‘‘Contention aware
energy efficient scheduling on heterogeneous multiprocessors,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 5, pp. 1251–1264, May 2015.

[16] P. Chitra, R. Rajaram, and P. Venkatesh, ‘‘Application and comparison
of hybrid evolutionary multiobjective optimization algorithms for solving
task scheduling problem on heterogeneous systems,’’ Appl. Soft Comput.,
vol. 11, no. 2, pp. 2725–2734, Mar. 2011.

[17] A. J. Page, T. M. Keane, and T. J. Naughton, ‘‘Multi-heuristic dynamic task
allocation using genetic algorithms in a heterogeneous distributed system,’’
J. Parallel Distrib. Comput., vol. 70, no. 7, pp. 758–766, Jul. 2010.

[18] S. G. Ahmad, C. S. Liew, E. U.Munir, T. F. Ang, and S. U. Khan, ‘‘A hybrid
genetic algorithm for optimization of scheduling workflow applications in
heterogeneous computing systems,’’ J. Parallel Distrib. Comput., vol. 87,
pp. 80–90, Jan. 2016.

[19] Y.-K. Kwok, A. A. Maciejewski, H. J. Siegel, I. Ahmad, and A. Ghafoor,
‘‘A semi-static approach to mapping dynamic iterative tasks onto hetero-
geneous computing systems,’’ J. Parallel Distrib. Comput., vol. 66, no. 1,
pp. 77–98, Jan. 2006.

[20] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and
low-complexity task scheduling for heterogeneous computing,’’
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,
Mar. 2002.

[21] S. Bansal, P. Kumar, and K. Singh, ‘‘Dealing with heterogeneity
through limited duplication for scheduling precedence constrained task
graphs,’’ J. Parallel Distrib. Comput., vol. 65, no. 4, pp. 479–491,
Apr. 2005.

[22] S. Baskiyar and C. Dickinson, ‘‘Scheduling directed a-cyclic task
graphs on a bounded set of heterogeneous processors using task dupli-
cation,’’ J. Parallel Distrib. Comput., vol. 65, no. 8, pp. 911–921,
Aug. 2005.

[23] N. Kappiah, V.W. Freeh, and D. K. Lowenthal, ‘‘Just in time dynamic volt-
age scaling: Exploiting inter-node slack to save energy in MPI programs,’’
in Proc. ACM/IEEE SC Conf. (SC), Nov. 2005, p. 33.

[24] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and Y. C. Lee, ‘‘Linear combina-
tions of DVFS-enabled processor frequencies to modify the energy-aware
scheduling algorithms,’’ in Proc. 10th IEEE/ACM Int. Conf. Cluster, Cloud
Grid Comput., May 2010, pp. 388–397.

[25] S. W. Son, K. Malkowski, G. Chen, M. Kandemir, and P. Raghavan,
‘‘Integrated link/CPU voltage scaling for reducing energy consumption
of parallel sparse matrix applications,’’ in Proc. 20th IEEE Int. Parallel
Distrib. Process. Symp., Apr. 2006, p. 8.

VOLUME 8, 2020 176361

M. Kumar et al.: Dynamic and Static Energy Efficient Scheduling of Task Graphs on Multiprocessors: A Heuristic

[26] Y. C. Lee and A. Y. Zomaya, ‘‘Energy conscious scheduling for distributed
computing systems under different operating conditions,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 8, pp. 1374–1381, Aug. 2011.

[27] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, ‘‘EAD and PEBD:
Two energy-aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters,’’ IEEE Trans. Comput., vol. 60, no. 3, pp. 360–374,
Mar. 2011.

[28] J. Mei and K. Li, ‘‘Energy-aware scheduling algorithm with duplication on
heterogeneous computing systems,’’ in Proc. ACM/IEEE 13th Int. Conf.
Grid Comput. (GRID), Sep. 2012, pp. 122–129.

[29] S. Tosun, ‘‘Energy-and reliability-aware task scheduling onto hetero-
geneous MPSoC architectures,’’ J. Supercomput., vol. 62, pp. 265–289,
Nov. 2011.

[30] L. Niu and G. Quan, ‘‘Reducing both dynamic and leakage energy con-
sumption for hard real-time systems,’’ in Proc. Int. Conf. Compil., Archit.,
Synth. Embedded Syst., New York, NY, USA, 2004, pp. 140–148.

[31] M. A. Awan and S. M. Petters, ‘‘Enhanced race-to-halt: A leakage-aware
energymanagement approach for dynamic priority systems,’’ in Proc. 23rd
Euromicro Conf. Real-Time Syst., Jul. 2011, pp. 92–101.

[32] J.-J. Chen and L. Thiele, ‘‘Expected system energy consumptionminimiza-
tion in leakage-aware DVS systems,’’ in Proc. 13th Int. Symp. Low power
Electron. Design (ISLPED), 2008, pp. 315–320.

[33] P. de Langen and B. Juurlink, ‘‘Trade-offs between voltage scaling and pro-
cessor shutdown for low-energy embedded multiprocessors,’’ in Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, S. Vas-
siliadis, M. Bereković, and T. D. Hämäläinen, Eds. Berlin, Germany:
Springer, 2007, pp. 75–85.

[34] V. Legout, M. Jan, and L. Pautet, ‘‘Scheduling algorithms to reduce the
static energy consumption of real-time systems,’’ Real-Time Syst., vol. 51,
no. 2, pp. 153–191, Mar. 2015.

[35] N. Kaur, S. Bansal, and R. K. Bansal, ‘‘Duplication-controlled static
energy-efficient scheduling on multiprocessor computing system,’’
Concurrency Comput., Pract. Exper., vol. 29, no. 12, p. e4124,
Jun. 2017.

[36] X. Li, Y. Zhao, Y. Li, L. Ju, and Z. Jia, An Improved Energy-Efficient
Scheduling for Precedence Constrained Tasks Multiprocessor Clusters.
Cham, Switzerland: Springer, 2014, pp. 323–337.

[37] (2020). Task Graph Generator. [Online]. Available: http://taskgraphgen.
sourceforge.net/

[38] (2020). Standard Task Graph Set. [Online]. Available: http://www.
kasahara.cs.waseda.ac.jp/schedule/index.html

[39] (2020). IBM ILOG CPLEX Optimization Studio, Version 12.10.0
Documentation. [Online]. Available: https://www.ibm.com/support/
knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html

MANOJ KUMAR received the master’s degree
from Guru Nanak Dev Engineering Col-
lege (GNDEC), Punjab Technical University,
Jalandhar, in 2010. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, Punjabi University,
Patiala, India. He is an Assistant Professor with
the Department of Computer Science and Engi-
neering, YCOE (Punjabi University Guru Kashi
Campus Talwandi Sabo), Bathinda, India. His

research interests include scheduling, distributed computing, and MANETs.

LAKHWINDER KAUR received the Ph.D. degree
from the PTU, Jalandhar, India. She is a Profes-
sor in computer engineering with Punjabi Uni-
versity, Patiala, India. She has been in teaching
since September 1992. She has published more
than 50 research articles in various reputed inter-
national journals and conference proceedings. She
has written three books. Her research interests
include image processing, parallel computing, and
computer networks.

JAGPREET SINGH received the B.Tech. degree
in computer science and engineering from Punjab
Technical University, Jalandhar, India, in 2003,
the M.S. degree in software systems from the Birla
Institute of Technology and Sciences at Pilani
in 2009, and the Ph.D. degree in computer sci-
ence and engineering from the Indian Institute of
Technology at Ropar, India, in 2015. He is working
as an Assistant Professor with the Indian Institute
of Information Technology Allahabad, India, since

2015. His research interests include parallel and distributed systems, schedul-
ing theory, high performance computing, and wireless sensor networks.

176362 VOLUME 8, 2020

