IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 30, 2020, accepted September 15, 2020, date of publication September 25, 2020, date of current version October 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3026911

Test Suit Generation for Object Oriented
Programs: A Hybrid Firefly and Differential

Evolution Approach

MADHUMITA PANDA™!, SUJATA DASH "', (Member, IEEE),
ANAND NAYYAR'“23, (Senior Member, IEEE), MUHAMMAD BILAL" 3, (Member, IEEE),

AND RAJA MAJID MEHMOOD 4, (Member, IEEE)

Master of Computer Application (MCA), North Orissa University, Baripada 757003, India
2Graduate School, Duy Tan University, Da Nang 550000, Vietnam

3Department of Computer and Electronics Systems Engineering, Hankuk University of Foreign Studies, Yongin 17035, South Korea
“#Information and Communication Technology Department, School of Electrical and Computer Engineering, Xiamen University Malaysia, Sepang 43900,

Malaysia
SFaculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam

Corresponding author: Raja Majid Mehmood (rmeex07 @ieee.org)

This work was partially supported by the Xiamen University Malaysia Research Fund (XMUMRF) under Grant

XMUMREF/2019-C3/IECE/0007.

ABSTRACT In model-based testing, the test suites are derived from design models of system specification
documents instead of actual program codes to reduce cost and time of testing. In search-based software
testing approach, the nature inspired meta-heuristic search algorithms are used for automating and optimizing
the test suite generation process of software testing. This paper proposes a concrete model-based testing
framework; using UML behavioral state chart model along with the hybrid version of the two most popular
nature inspired algorithms, Firefly algorithm (FA) and Differential Algorithm (DE). The hybrid algorithm is
adopted to generate optimized test suits for the benchmark triangle classification problem. Experimental
results evidently show that the hybrid FA-DE search algorithm outperforms the individual model-based
Firefly and Differential Evolution algorithm’s performances in terms of time complexity, better exploration
and exploitation as well as variations in test case generation process. The framework generates optimized
test data for complete transition path coverage of the available feasible paths of the example problem.

INDEX TERMS Firefly algorithm, differential evolution, hybrid FA-DE algorithm, object oriented testing,

path coverage, search-based testing, model-based testing.

I. INTRODUCTION

The software development organizations spend more than
two third of the project development cost on product testing.
The main intention of testing is to define some specific set
of test suites that are capable enough to reveal the hidden
errors/mistakes associated with the software under test thus
avoiding bugs or system failures in future [37], [53]. The two
most universally adapted testing strategies followed by testers
are functional testing commonly known as black box testing
and structural testing, popularly known as white box testing
[67]-[71]. White box testing tests the logical flows, the key
control flow paths, and program logics of the software under
test. The black box testing tests the functions or modules of

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the software, verifying the outputs generated for a given set
of inputs.

Currently in major sectors like banking, stock markets,
telecommunication, health management, university man-
agement, internet applications, rocket launching systems
and mobile applications etc., almost in every domain the
widespread use of object-oriented programming approach
is noticed. The popularity of the object-oriented program-
ming concept is due to its modular structure and spe-
cific features like encapsulation, polymorphism, inheritance,
dynamic binding etc. [22] that make the development and
modification of applications quite simple in comparison to
structured programming style. The object-oriented testing
paradigm, popularly known as grey box testing was intro-
duced in late 80s, the main challenges and complexities
encountered in this approach is the testing of the specific

179167

https://orcid.org/0000-0002-6270-595X
https://orcid.org/0000-0003-2649-7652
https://orcid.org/0000-0002-9821-6146
https://orcid.org/0000-0003-4221-0877
https://orcid.org/0000-0002-2284-0479
https://orcid.org/0000-0001-6835-5981

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

features introduced by object-oriented programming con-
cepts. The specific programming features that make the
object-oriented programming popular also made it too critical
to test. Therefore, a different testing style known as model-
based testing approach was adapted for object-oriented test-
ing [39]. In the model-based testing approach the test cases
are derived directly from system specification and design
documents, i.e. mainly from the dynamic models also known
as behavioural models of software systems instead of actual
programme codes [49], it is a very tough task and an open
research problem [22], [27]. The existing testing strategies are
still incompetent to generate optimal set of test cases or test
suites for critical path coverage and therefore the researcher
community is still trying to figure out some new frameworks
or methodologies for the complete automation of the process
of object-oriented testing [30]. In last two decades researchers
have started applying the meta-heuristic search algorithms
[40], [43]-[45] to the field of model-based testing [22], [31],
[34], [39], [78] for generating optimized test cases or test
sequences.

Nature inspired algorithms are gradually being hybridised
[86], [87] keeping in mind the best features of different
algorithms, [1], [18], [24], [32], [48], [63] to obtain more
variation and quality in the solutions, as some metaheuristics
are very efficient in exploration where as others are good at
exploitation. The hybrid metaheuristic techniques are created
by combining two search algorithms where balance between
exploration and exploitation is maintained, one algorithm
is better in exploration and other one in exploitation [86].
The Firefly Algorithm (FA) is a stochastic, population-based
metaheuristic, that has proved its efficiency in solving NP
hard problems, in various fields of engineering and industry
like wireless network design, market pricing, structural opti-
mization, robotics etc. [11], [16]. Many versions of Firefly
algorithms are applied for solving various problems in the
fields like cryptanalysis [18], graph colouring [17], speech
reorganization [3], for improving the speed of convergence,
for diagnosing Parkinson’s disease, for feature selection [6]—
[8] and to provide microarray data for cancer prediction [1],
[3], [7]. Similarly, the Differential Evolution (DE) algorithm
is based on the evolutionary principle of survival of the fittest;
it’s a very popular algorithm, proving its excellence in global
optimization, at the same time hybridization of DE with
several other algorithms have provided excellent results [29].

Keeping the above research findings in mind, in this paper
a novel FA-DE algorithm has been proposed along with a
framework for model-based testing of object-oriented pro-
grams, using UML behavioural state chart model. The pro-
posed hybrid algorithm provides good exploitation feature
using Firefly Algorithm (FA) and enhanced exploration fea-
ture using Differential Evolution (DE) algorithm to generate
balanced test suits for the benchmark triangle classification
problem. Initially, the UML State chart models are converted
to state chart graphs (SCG), then feasible test sequences
are extracted from the SCG graph and finally model-based
hybrid FA-DE algorithm is applied to select a suitable set of

179168

test suites from a vast set of possible test suits for testing
those feasible paths. Efficiency of the algorithm is verified
using the benchmark triangle classification problem. Hence,
the objectives of the proposed proposal would be achieved by
implementing the following modules.

1) Development and generation of object-oriented test
suites for triangle classification problem using FA
based model.

2) Development of a DE based object-oriented model for
generation and verification of test suits for the same
classical problem.

3) Development of FA-DE hybrid model for test suit
generation and its performance verification using the
triangle classification problem.

4) An extensive set of experiments has been performed on
a well-known benchmark triangle classification prob-
lem and a comparative analysis with state-of-the-art
methods including single and hybrid metaheuristics.

The remaining parts of the paper are arranged as follows.
Section II provides a detailed literature review, section III
provides explanations of the hybrid metaheuristic algorithms
with parameter settings; Section IV describes the proposed
framework for test suit generation, and Section V explains
the detailed experimental set up and statistical analysis of the
experimental results. Finally, the paper provides the conclu-
sions and possible future directions in Section V1.

II. LITERATURE REVIEW

At present the newly emerging subdomain of testing, search-
based software testing had shown promising results in the
field of software testing, where metaheuristic nature inspired
algorithms, predominantly evolutionary Genetic algorithms
(GA), genetic programming (GP), bio-inspired algorithms
including particle swarm optimization (PSO), Ant colony
optimization (ACO), Firefly Algorithm (FA), and Cuckoo
search (CS) algorithms were employed in automating the
process of test case generation and test case prioritization
[33], [68], [76]. The nature inspired evolutionary algorithms
mainly the Genetic algorithms or genetic programming and
swarm based metaheuristic algorithms [19], [32] includ-
ing PSO, ACO, CS and FA were used for generating test
data or test cases targeting specific coverage criteria [12].

In last two decades as there was a paradigm shift from
structured programming approach towards object, oriented
programming approach a new testing methodology known as
model based testing was adapted to test the object-oriented
programs. Then researchers started applying the metaheuris-
tic search algorithms both evolutionary as well as swarm
based [43]-[45] to the field of model-based testing [22], [31],
[34], [39], [70] for generating optimized test cases or test
sequences.

The metaheuristic algorithms, also known as nature-
inspired algorithms are robust optimizers coming under the
category of stochastic algorithms. The metaheuristic algo-
rithms were developed replicating the natural processes such

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

as the gravitational force of attraction, various laws of
physics, harmonics, principles of chemistry, the adaptability
features followed by the nature i.e. the process of evolution
and the intelligentsia shown by its various species starting
from micro-organisms like bacteria to birds, honey bees, flies,
fishes, frogs, monkeys, wolfs and many more [81].

The popular and widely applied metaheuristic algorithms
include Genetic Algorithms (GAs) [33], [73], [75], Particle
Swarm Optimization algorithm (PSO) [41], [42], [59], [60],
[65], Artificial Bee Colony algorithm (ABC) [25], Cuckoo
Search algorithm (CS) [15], [19], [26], [35], Firefly Algo-
rithm (FA) [11], [20], [32], [37], [46], Differential evolution
(DE) algorithms [25], [29], [30], [85], Ant colony optimiza-
tion(ACO) [55] etc.

Though more than 300 types of nature inspired metaheuris-
tic algorithms are available in the literature [82], the most
widely accepted and popular primary algorithms mainly
include the Genetic algorithms(GAs), Differential evolution
algorithms(DE), Artificial Bee colony algorithms(ABC), par-
ticle swarm optimization algorithms(PSO), fireflies algo-
rithm(FA) and ant colony optimization algorithm(ACO). The
metaheuristic bio-inspired algorithms have proved their pro-
ficiency in solving complex real world application problems
in versatile fields of Engineering like language recognition
using firefly algorithm [3], in speech recognition where
the parameters of a fuzzy neural network are optimized
using Firefly algorithm [13] in electronics circuit design,
in problems of traffic optimization using popular metaheuris-
tics like GA, DE, ACO, GP(genetic programming), ABC
etc [36], in enhancing the image contrast using FA with
chaotic sequence and data classification using ACO [8], [52],
in healthcare the firefly model is used for Parkinson’s dis-
ease diagnosis and classification [5]-[7], in Robotics, where
swarm based Glow worm optimization algorithm with multi-
modal functions was used for collective robotics applications
similarly GA and PSO Algorithms were used for Intelligent
Robot Path Optimization [16], [59].

Gradually with wider use of metaheuristics it was observed
that these algorithms are not suitable for solving all kinds of
problems and a specific metaheuristic algorithm shows excel-
lent performance in solving a particular problem whereas
the same algorithm shows worst performance in solving
another type of problem, therefore one or a few metaheuristic
algorithms cannot be standardized to get optimized solutions
for all types of problems. Problem definition, fitness func-
tion, and parameters play a major role in the performance
of those metaheuristic algorithms. Therefore gradually the
hybrid approaches combining two metaheuristics are adapted
for solving complex problems, a hybrid model based TVIW-
PSO-GSA algorithm and SVM was applied for Classifica-
tion Problems [60], a binary hybrid grey wolf optimization
technique was used for feature selection [61] and some added
applications like layout designing, graphics and art designing
[28].

The model-based testing framework using metaheuristics
seems too complex and difficult, as a small number of stan-

VOLUME 8, 2020

dard papers are available and the area still remains chal-
lenging to the researchers, Kari and Kumar [15] used a
model based Cuckoo search algorithm for test suite optimiza-
tion, similarly Shirole and Kumar [34] provided a detailed
analysis on the model-based test case generation processes
using UML behavioural models, Utting et al. [39] provided
a thorough taxonomy of the various model based testing
approaches. Since last two decades more than seventy percent
of research work in the field of model-based testing using
metaheuristics, is mainly based on genetic algorithms [33],
[72] or genetic programming [9]. Many researchers have
already suggested that instead of individual metaheuristic
algorithms the hybrid models are more suitable for providing
better-optimized solutions due to their combined exploration
and exploitation capabilities [86]. In literature, very less num-
ber of papers [84] are available, where hybrid algorithms are
applied for model-based testing of object-oriented programs.
In this section out of the vast number of available papers,
the basic papers have been provided, which have proved
to be useful in providing a detailed analysis and through
understanding of the metaheuristic algorithms, hybrid meta-
heuristic algorithms, application of those metaheuristic and
hybrid metaheuristic algorithms in the broad area of search
based testing and model based testing.

Uzun et al. [77] have described that search based software
testing is the emerging field of software engineering domain
where the software testing problem is reformulated as a
search problem to select an appropriate and specific set of test
suites using some metaheuristic algorithms and the fitness
function is defined on the basis of certain coverage metric.
They have mentioned that although a number of search-based
optimization techniques are available but still a very little
theoretical analysis is available regarding the suitability of
the problem for specific testing problems, they also suggested
that a hybrid global search approach may be suitable for
solving the test data generation problem.

Daniel et al. [87] have made an exhaustive literature study
of bio-inspired algorithms during past few decades and they
find out that the number of metaheuristic bio-inspired opti-
mization approaches have reached to such unprecedented
levels that it may dark the future prospects of this research
field. They have addressed the problem by proposing two
comprehensive, principle-based taxonomies thus allowing
the future researchers to organize the existing and upcoming
algorithmic developments on the basis of two well defined
criteria i.e. the source of inspiration and the behavior of each
algorithm. In this work they have reviewed more than three
hundred publications dealing with nature-inspired and bio-
inspired algorithms, and the most interestingly they revealed
that more than one-third of the reviewed bio-inspired solvers
are versions of classical algorithms mainly Genetic algo-
rithms, particle swarm optimization algorithm, Ant colony
optimization algorithm etc.. The authors have also suggested
that the hybridisation of the existing algorithms may produce
new algorithmic behaviours and the results may be able to
solve complex problems which still remain unsolved using

179169

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

existing single metaheuristic algorithms and once solid proof
is provided that the hybrid approaches are able to compensate
the increasing complexity then those approaches would be
gradually incorporated using existing taxonomies of meta-
heuristic algorithms.

Khari and Kumar [15] have presented a cost effective and
time efficient Cuckoo Search (CS) algorithm for test data
optimization; they have provided a detailed statistical study
for validating their results.

Zhang et al. [48] have proposed a hybrid firefly algorithm
combining the advantages of firefly (FA) and differential
evolution (DE) algorithms and also verified the performance
of the hybrid algorithm using benchmark unimodal and mul-
timodal functions. The experimental results show that the
hybrid firefly algorithm had better performance than the
original versions of FA, DE and PSO algorithms in con-
vergence rate and in avoidance of getting trapped in local
minima.

Nayyar et al. [51]-[53], Durbhaka et al. [54], Nayyar and
Nguyen [55], Diwaker et al. [56], and Gheisari et al. [57] have
provided a detailed understanding on evolutionary algorithms
including GA, and swarm based algorithms including ACO,
ABO, PSO, Glow worm, Cockroach swarm optimization,
Cat swarm optimization, Dolphin echo location, Eagle strat-
egy, monkey search algorithm etc., highlighting the various
computational models, the versatile approaches along with
their applications in the newly emerging complex fields of
engineering including 10T, Al, Big data, Data mining and
Robotics.

Panda and Dash [23] have provided a detailed overview of
the popular metaheuristic algorithms since last two decades
including Cuckoo Search(CS), Gravitational search algo-
rithm(GSA), Genetic Algorithms(GA), Particle swarm opti-
mization(PSO), Differential Evolution(DE) and Artificial
Bee Colony algorithm(ABC) and have compared the per-
formances of the algorithms to generate test data for path
coverage based testing.

Sahoo et al. [84] have used a hybrid bee colony algo-
rithm combining Particle swarm optimization(PSO) and Bee
Colony (ABC) algorithms along with unified modelling lan-
guage (UML) combination diagram for optimized test data
generation using the UML state chart diagram and sequence
diagram of an ATM system.

Panthi and Mohapatra [27] used firefly algorithm for gen-
erating optimized and prioritized test sequences from UML
state machine diagrams. The firefly algorithms have proved
themselves in solving numerical optimization problems, i.e.
the NP hard problems and also the firefly algorithm reduces
the overall computational effort by 86 and 74 percent respec-
tively in comparison to Genetic algorithm(GA) and particle
swarm optimization algorithm(PSO).

Srivastava et al. [37] have used a modified firefly algorithm
along with guidance matrix for generating optimal test paths.
They claim that their methodology is capable of generating
optimal discrete independent test paths that are highly useful
in software testing.

179170

Guohua et al. [83] have presented a very recent detailed
review on popular strategies known as ensemble strategies
that could be incorporated to different stages of population-
based algorithms, to enhance their efficiency, precision and
robustness. These ensemble techniques improve the compu-
tational intensiveness of the population-based algorithms by
providing versatile tools and paradigms to design a better
algorithm that would be able to handle versatile optimiza-
tion problems. Here the adapted controlling parameters are
updated automatically depending on the type and complexity
of optimization algorithms, i.e. the algorithm tuning is per-
formed by those automatically adapted parameters instead of
normal hit and trial method.

Grosan and Abraham [86] stated that although evolution-
ary computation has solved many practical problems in engi-
neering, business, commerce, etc., still sometimes they fail to
give better performance due to poor parameters selection or in
appropriate problem representation. This is in accordance
with the No Free Lunch theorem, which states that for any
algorithm, any high performance over one class of problems
is paid by poor performance in another class, therefore the
need for hybrid evolutionary algorithms is emphasized and
they explained the several possibilities for hybridization of
the metaheuristic algorithms along with they presented a
detailed review of the available hybrid frameworks using
PSO, ACO, Bacteria foraging algorithm(BFO) and some
generic hybrid evolutionary architectures developed during
the last couple of decades.

The object-oriented testing paradigm was introduced in
late 80s, where the main challenge was the testing of the
specific features of the object-oriented programming con-
cepts such as inheritance, multiple inheritance, polymor-
phism, encapsulation and overloading [22]. At the same time,
it is also unavoidable to ensure the quality and dependability
of the software. The best way out for reducing cost and han-
dling program complexity during software testing of object-
oriented software is the complete automation and optimiza-
tion of its entire product testing phase.

In earlier 90s Panda and Dash [22], tried to apply the
traditional testing techniques in testing object-oriented pro-
grams and recommended that these programs can only be
tested by considering the massage passing between the
objects or change of states of the objects i.e. taking into
consideration the dynamic behaviour of the system. There-
fore, generating test cases from design documents rather than
codes would be more appropriate.

Sharma et al. [33] proposed that the model-based test-
ing approach mainly concentrates on test case generation
and test result evaluation using a model. A software model
mainly describes the system behaviour in terms of the input
sequences accepted by the system, a set of conditions, actions,
the data flow between its modules and routines.

Panda and Dash [22] described that the code-based testing
approaches are not applicable in object-oriented programs
testing, due to the specific features of Object-Oriented pro-
gramming concepts like data encapsulation, data abstraction,

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

dynamic binding etc. and therefore model-based testing
approaches are used for the testing of object oriented pro-
grams. Some of the popular software testing models include
the unified modelling language (UML) models, finite state
machines (FSM) models, Markov chains model and formal
models. The design artefacts, mainly the UML behavioural
models are mostly used by researchers for testing; these
include Use case model,

Activity model, State chart model, sequence model, object
model and component model. A group of researchers also
used combinatorial models fusing two UML models like Use
case and sequence model, Activity and sequence model, state
chart and sequence model etc.

Ananya and Swapan [2] demonstrated that the UML mod-
els cannot be used directly for testing; some intermediate
representation is required for using those UML models in
testing. A lot of research work is conducted in this direc-
tion and the popular techniques include symbolic execution,
OCL(Object control language), Directed graph(DG), System
sequence diagram(SSD), Sequence diagram graph(SDG),
Extended control flow graph(ECFG), State machine graph,
Activity graph, Message flow graph(MFG), Use case dia-
gram graph(UDG),Communication tree, object oriented
graph(OOG).

Srivastava et al. [37] revealed that it is a very tough task to
analyse UML models, in particular the behavioural models
as they capture the dynamic system behaviour. Specifically,
for object-oriented programs, many researchers propose the
automation of software testing process but till date test
sequence generation and complete test coverage remains an
open research problem. The existing testing strategies cannot
guarantee the exact and optimal set of test cases or test
suites for coverage of the critical paths as well as quality of
testing.

Saeed et al. [49] explained that optimization algorithms
are broadly classified into two primary categories; first,
one is the deterministic algorithms and the second one is
stochastic algorithms. Deterministic algorithms include the
algorithms like Hill Climbing, Newton-Raphson Method,
Simplex method etc., for similar set of initial values; these
algorithms obtain similar set of final values. The stochas-
tic algorithms always produce a new set of solutions even
though they begin with the same set of initial points. These
algorithms include some advantages as well as disadvantages.
The advantages include shared information, preservation of
good solutions and very few chances of getting confused
with local best as the global best. The disadvantages include,
these are complex metaheuristic algorithms, require a lot of
parameter settings and show better performance with large
data sets.

In model-based testing approach appropriate test suites
can be extracted from UML models to test object-oriented
programs, a detailed view of the literature available on model-
based testing in last two decades is presented in TABLE 1.
Though around more than two decades of research work has

VOLUME 8, 2020

been carried out, still we require some concrete framework to
automatically generate optimized and prioritized test suites
for the hassle free model-based testing of object-oriented
programs and software.

In the literature, few papers are available for model-based
test data generation employing firefly algorithm [27], [37].
The authors have used the ATM state chart model and vending
machine model as a case study for their problem. Srivastava
et al. [37] have used a combined graph reduction technique
with firefly algorithm to generate discrete and independent
paths. Panthi and Mohapatra [27] have generated optimized
and prioritized test sequences from UML state machine mod-
els, specifically generated test sequences for the composite
states. Samuel ef al. [31] generated test cases from UML
state machine diagrams by applying transformed predicate
functions.

The exhaustive search of the available literatures of last
five years showed the availability of only one research work
based on model-based testing using hybrid Bee colony algo-
rithm [84]. In this work optimised path sequences are gen-
erated from UML combinational diagrams, the state-chart
sequence diagram system graph (SCSEDG) of the ATM
withdrawal operation. The hybrid Bee colony algorithm is
developed by merging PSO and Bee colony algorithm where
first the initial population was randomly generated and the
fitness function of individual solutions was calculated and
then the candidate solutions were ranked according to the
fitness value. Afterwards the solutions were divided into two
groups, the best solution are kept and the worst solutions
are replaced with a copy of the best solutions, then the two
metaheuristic algorithms are separately applied to get best
optimal solutions. Here the solutions are path sequences and
the optimized path is only one, the best path having minimum
cost.

This work has much similarity with our work in terms
of the model-based testing approach using UML diagrams
as well as hybrid algorithms, but this approach cannot be
compared with our work, as our objective is to generate test
data for every feasible path targeting transition path coverage,
also in our case the case study is the benchmark triangle
classification problem having four paths and in the above
work the case study is for ATM withdrawal operation, and
their objective is to select only one path sequence having
minimum cost.

After performing an in-depth study of the available
literature on model-based testing using metaheuristic algo-
rithms, it was observed that very few papers are avail-
able on the use of hybrid metaheuristic in the field of
model based testing; no concrete framework is still avail-
able for automatic test suite generation with complete
path coverage. In order to overcome the above difficul-
ties, this paper proposed a novel FA-DE algorithm which
generates optimal test suits fulfilling complete transition
path coverage for model-based testing of object-oriented
programs.

179171

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

TABLE 1. Literature review on model-based testing.

Year of Title of paper Author What Research work is Advantages/ disadvantages
Publication name proposed from abstract

2018 Model-Driven Uzunet al. | Model driven architecture-based | They have suggested that the field
Architecture [77] testing mainly derives test cases | is still novice and the approaches
Based Testing: A from the system architecture | followed in those papers are quite
Systematic models. Here the authors have | different from each other in the test
Literature Review analyzed 739 papers and | goals, modeling approaches as well

identified 31 of them exactly | as in the test data generation
related to the area and provided a | process.

thorough review identifying the

current research directions and

the methodologies followed.

2015 Review of model- | Rajvir et | The authors have provided a | This paper suggested that the most
based approach | al.[78] detailed survey on the | difficult part of the model-based
for automating the publications related to the various | testing approach is to decide and fit
test case test data generation techniques | a specific model to a specific
generation for using UML behavioral models. problem and no concrete
Object Oriented guidelines are available to measure
Systems. the suitability of the techniques

used.

2013 UML S.Mahesh [79] This paper provided a survey on | This work provided a clear classification of
Behavioral the different UML model-based | the various research approaches used for test
Model-based testing techniques, giving special | case generation, like formal specification,
Test Case emphasis on the UML behavioral | Model-based graph based, UML
Generation: A diagrams like sequence, state | specification etc. It suggested that the
Survey chart and activity diagrams. different behavioral models are able to

capture the different features of the same
scenario and therefore appropriate test cases
can be designed using this model-based
testing approach.

2011 Automated test | Shanthi et al.[80] This paper proposed an automatic | The specification-based test case generation
cases test case generation technique | approach is generating test cases from UML
Generation for using UML class models, Genetic | class models. But it is not validated with any
object algorithm, and Depth first search | other test case generation approach.

Oriented algorithm along with transition
software path coverage criteria.

2009 Object-Oriented | S. Supavita.[81] This report summarized | It suggested some areas which could be
Software and noteworthy published works in | explored further in the domain of UML
UML-Based object-oriented software testing | model-based object-oriented testing, like
Testing: and UML-based testing areas | application of symbolic execution
A Survey over the past 15 years. It included | techniques, data flow testing techniques and

Report innovations in the concepts, | aspect-oriented software.
techniques, and approaches.

2006 A Taxonomy of | Utting et al. [39] This paper provided an overall | This research work provided a concrete
Model-based review on the model-based | conceptual framework to analyze and
Testing testing paradigm in seven | categorize different model-based testing

dimensions. It provided the | approaches and their usability along with the
advantages disadvantages along | supporting tools available. It also provided
with the approaches used and | the research challenges and limitations
issues arise in model-based | encountered in this field of model-based
testing process. testing and test data generation.

179172 VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

TABLE 1. (Continued.) Literature review on model-based testing.

2002

Model-based
Testing of
Object-Oriented
Systems

Rumpe et al.[82]

It argued that an approach using
models as central development
artifact needs to be added to the
portfolio of software engineering
techniques, to further increase
efficiency and flexibility of the
development as well as quality
and reusability of results. Then
test case modeling is examined in
depth and related to an
evolutionary approach to model
transformation. A number of test
patterns are proposed that have
proven helpful to the design of
testable object-oriented systems.
In contrast to other approaches,
this approach uses explicit
models for test cases instead of
trying to derive (many) test cases
from a single model.

The proposal made in this paper is part of a
pragmatic approach to model-based software
development. This approach uses models as
primary artifact for requirements and design
documentation, code generation and test case
development and includes a transformational
technique to model evolution for efficient
adaptation of the system to changing
requirements and technology, to optimize
architectural design and fix bugs. To ensure
the quality of such an evolving system,
intensive sets of test cases are an important
prerequisite. They are modeled in the same
language, namely UML, and thus exhibit a
good integration and allow us to model
system and tests in parallel. Therefore, we
can conclude that techniques such as model-
based development, model evolution and
test-first design will change software
engineering and add new elements to its

portfolio.

Ill. PROPOSED HYBRID MODEL-BASEDTESTING
APPROACH

Nature inspired algorithms are good at solving many com-
plex problems in different fields of science and engineering
efficiently. There are several stochastic model-based nature
inspired algorithms and out of them the Firefly (FA) and
Differential Evolution (DE), have outperformed in various
complex optimization problems. The detailed descriptions of
FA and DE along with their algorithms have been presented in
the Algorithm 1 and Algorithm 2. However, both algorithms
have some inherent limitations such as FA searches nearby
local regions and take more time to converge, whereas DE
explores more randomly due to its mutation operator and gets
premature convergence. Therefore, integrating the respective
merits of FA and DE, a hybrid algorithm, denoted as FA-DE
is proposed in Algorithm 3 to obtain quality test suites for
testing object-oriented programs.

A. FIREFLY ALGORITHM

Firefly algorithm (FA) is a population-based optimization
technique in the swarm intelligence family and it is proposed
by Yang and He [46], Yang et al. [47]. This algorithm is
inspired by the swarming and flashing light characteristics
of the fireflies. In the summer night group of fireflies in
the sky produce flashing light for two fundamental reasons,
to attract their partners for mating and to protect themselves
from potential predators [8].

However, the flashing lights follow two physical laws:
first, the light intensity (I) is inversely proportional to the
distance (r) in the form of Ix1/r2 light intensity deceases
as the distance increases and second, the intensity of light
exponentially decreases due to absorption of light in the air.

VOLUME 8, 2020

Algorithm 1 Firefly Algorithm (FA)
Input: Objective function f(x), number of decision variables
(D), parameters bounds [L, U]
Output: Optimal candidate solution
1. Initialize parameters: Population size (N), y, Bo, &
Initialize a set of random fireflies x;, {1, -- -, N}
Compute light intensity f (x;) for all fireflies
Define the light absorption coefficient (y)
while r<MaXGen do
fori <~ 1toN do
forj < 1toN do
Compute the distance r;; between two fire flies x;
and x; using Euclidean distance in Eq.(4)
if light intensity f* (x;) < f (x) then
Less-brighter firefly moves towards more-brighter
firefly
10. Compute attractiveness varies with absorption
parameter () and distance (r;;) using Eq.(3)
11. Move firefly x; towards firefly x; using Eq.(5)
12. Update new solution x;(new) and its light intensity
f (xi) (new)
13. end if
14. end for
15. end for
16. Sort light intensity of the fireflies to update the best
solution
17. t=t+1
18. end while

PN hE WD

e

Therefore, in FA algorithm the intensity of light is associ-
ated with fitness value of the cost function to be optimized

179173

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

[11]. The FA can be formulated based on following three
rules:

1) All fireflies assumed to be unisex so any firefly can
be attracted to other fireflies irrespective their sex for
mating.

2) The attractiveness is proportional to light intensity of
the fireflies.

3) The light intensity of a firefly is determined by the cost
function that is to be optimized.

From the above rules, it is understood that FA has been
designed using two important issues: i) the variation of light
intensity and ii) formulation of the attractiveness that is
inversely proportional to the distance. Hence, the attractive-
ness of a firefly can be established with its flashing light
intensity which in turn is considered as fitness value of the
corresponding firefly. In addition, flashing light of firefly
also gets absorbed in the air. Hence, the light intensity (I)
inversely varies with distance (r) and adsorption (y) which
can be derived as follows:

I=1Ipe™ " 1)

where Iy denotes the light intensity of the firefly with distance
r = 0, and the light absorption is assumed with a fixed light
absorption coefficient. In order to avoid singularity at r = 0
in Eq. (1) we can combine inverse square law and adsorption
using Gaussian form as follows.

I=1Ie ")

Similarly, the attractiveness (8) is also the function of dis-
tance and adsorption. The attractiveness of a firefly is deter-
mined based on light intensity of the fireflies in its neighbor-
hood in Gaussian form and it is defined as follows.

B =By " 3)

where By is the initial attractiveness of a firefly which is
initialized with a constant value at distance r = 0. The terms
light intensity I and attractiveness 8 are by some means equiv-
alent. The term light intensity indicates total light emitted
by a firefly, the term attractiveness denotes amount of light
that someone can see and being observed by other fireflies
at a distance (r). The distance between any two fireflies in a
group X; and x;j can be computed by Euclidean distance in the
Cartesian space, as follows.

“

ry = b -5 =

where d denotes the dimensionality of each firefly; x; and
Xj are the i and jt fireflies of the population. In the FA,
movement of each firefly takes place based on the principle
that the i firefly attracts another j* firefly when j™ firefly is
more attractive than it firefly. The movement of the fireflies
is formulated in the algorithm as follows

- 1
Xiy1 = Xi + Boexp i |t = | + ¢ (rand B 5) ®

179174

where « is a randomization parameter and third term generate
random number in the range [—1, 1] from the Gaussian
distribution. Eq. (5) represents new position of the i firefly
consists of three terms: the current position of i firefly, move
to j firefly which is more attractive, and a random walk in
the range of [—1, 1]. Finally, the steps of Firefly optimization
are summarized in Algorithm 1.

B. DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution (DE) is a stochastic population-based
optimization technique in the evolutionary algorithms family
and it is proposed by Rainer Storn and Kenneth Price [29].
DE algorithm works on the principle of evolution theory of
nature i.e. survival of the fittest [39]. It primarily consists of
two operators namely, mutation and recombination. In DE,
the main role is played by the mutation operator and it
is followed by the recombination operator. In evolutionary
algorithms, each candidate solution is known as a genome
or chromosome. However, in DE candidate solutions are
referred to as vectors with three different names such as
target vectors, donor vectors, and trial vectors. The classi-
cal DE algorithm comprises four major steps: initialization,
mutation, recombination, and selection. Initialization step
randomly initializes population and controlling parameters
of the algorithm for one time. Then, last three steps of the
algorithm are repeated iteratively till maximum number of
generations is reached or termination criterion is satisfied.
The candidate solutions are referred as target vectors that
are randomly generated within the search space restricted by
lower and upper bounds such as,

Xmin = (xmin,l’ Xmin,2s -+« » xmin,d) and

Xmax = (xmax,lv Xmax,2> -+ +» xmax,d)-

Then, we can initialize the j component of the i target vec-
tor as follows, where rand is a uniformly distributed random
number that varies within O and 1.

Xij = Xminj + rand™ (Xmaxj — Xminyj) (6)

1) MUTATION

After the initialization step, DE algorithm generates i*
donor/mutant vector V! corresponding to each target/parent
vector x;' in n' iteration using mutation operator. Two most
popular mutation operators are formulated as mentioned
below:

h

DE [rand/1 v} = x}, + F * (x}, — X3) (7a)
DE /best/1 v} = xj,, + F * (x}j; —x%,) (7b)

1

where random numbers R;/ = Ry/ = Rz within the range
of [1,2,.....,Np]; One of the control parameter F is known
as scaling factor which is a positive real number in the range
of [0, 2]. In this work, we use these two mutation operators
in the experiment that offer better result over other variants
of mutation strategies. Unlike GA, in the DE algorithm the
target vector is not involved in mutation operation.

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

Algorithm 2 Differential Evolution Algorithm
Input:Fitness function f , number of decision variables (D),
parameters bounds (lower bound (/b), upper bound (ub))
Output: Best candidate solution

1: Initialize control parameters: maximum number of genera-
tions (MaXGen), population size (Np), Scaling factor (F) and
crossover probability (P,)

2: Initialize random candidate solutions X;

3: while t<MaXGen do

4:for i < 1to Npdo

5: Select randomly three target vectors XR,, XR,, and Xgr; €
Np

6: Generate the donor vector vj using mutation operation

7: end for

8: for i < 1 to Np doPerform binomial crossover operation
9: Generate a set of N random integer indices (K) €
{i, - ,D)}

10: Generate a set of N random real numbers (r;) € U (0, 1)
11: end for

12: fori < 1toNpdo

13: for j < 1to D do

14: ifrijcORszithen

15: Ujj = Vij

16: elseif r; > Pcandj # K;

17: Ui j = Xij

18: end if

19: end for

20: end for

21:fori < 1to Npdo

22: Bound trail vector u; within sample space
23: Evaluate fitness f (u;)

24. Perform greedy selection between f (uj) and f(x;)
and update target vector xj

25: end for

26: t=t+1
27: end while

2) CROSSOVER

In order to increase the diversity in the search space, next
recombination (crossover) operator combines the compo-
nents of donor/mutant vector v/ with the target vector x!' to
obtain trial/offspring vector, u} = (u? ug S ,u('i’). In this
strategy, the trail vector is directly involved for the crossover
operation. The DE algorithm basically uses two crossover
operators such as binomial (uniform) and exponential (two-
point modulo). Binomial crossover is applied on a number
of D components of the donor vector based on uniformly
generated random numbers which vary from O and land is
less than or equal to a pre-defined control parameter called
crossover rate (Pc).

!le ifrand;j <P.orj=k
u. =

i . . (3)
ifrand;j > P.andj #k

W n
Xii»

The binomial crossover is defined as in equation (8), Where

k is a randomly generated natural number in the range

VOLUME 8, 2020

{1,2,---,d}, rand;j is a randomly generated real number
that varies in between [0, 1]. Next, the exponential crossover,
we first need to choose a random integer number (n) between
{1,2,---,d}. Before nth component, all components of tar-
get vector are copied to the trail vector, than nth variable
from donor vector is directly copied to corresponding position
of the trial vector. For subsequent components, real valued
random numbers are generated between [0, 1]. If rand; ; < Pc
Then copy the components from donor vector to trial vector.
When rand;; > Pc, copy remaining components of target
vector to the trial vector. In this work, both the crossover
operators have been used to maintain diversity in the solu-
tions; here the solutions are the different test cases. From the
experiment results, it was revealed that exponential crossover
produces variation in the test cases, which is needed for all
paths coverage.

3) SELECTION

Based on fitness values of target (parent) and trial (offspring)
vectors, the greedy selection scheme is adopted to decide sur-
vival condition of the vectors to the next generation (n + 1).
The selection procedure is expressed as:

n . n n
x{l+1 — u;, lff ((ui) z (xi)))
l n 3
x;, otherwise
where f(.) is the objective (cost) function to be maximized. It
is necessary to mention that we consider only maximization
problem in this paper.

C. PROPOSED HYBRID FIREFLY-DIFFERENTIAL
EVOLUTION ALGORITHM

In order to improve the quality of the solutions and overcome
the limitations of both individual Firefly and Differential
evolution algorithms, this paper introduced a novel hybrid
model-based framework established on the hybrid version
of Firefly(FA) and Differential evolution(DE) algorithms.
In proposed work, quality of the solutions means to generate
test cases for the transition path coverage of the feasible paths
present in the objective function, from all parts in the search
space. It is only possible when both exploitation and explo-
ration features are simultaneously justified in a metaheuristic
optimization technique. Each metaheuristic algorithm has its
own capacity to improve either exploitation or exploration
characteristics.

Recently, researchers are showing interest to use hybrid
approach, [86] by combining more than one algorithm
together in a single framework, to improve quality of the solu-
tions, by giving importance to both exploitation and explo-
ration features. In this work, firefly and differential evolution
algorithms are combined to form an efficient hybrid meta-
heuristic approach, referred to as hybrid FA-DE algorithm,
in which the algorithms FA and DE will work together for
simultaneously increasing the exploitation and exploration
capability.

179175

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

As a result, the gap between exploitation and exploration
decreases, that increases the number of test cases for each
path. The FA has good exploitation capability because each
firefly moves towards another brighter one neighbour firefly.
In this way, all the fireflies of the population make different
clusters based on their attractiveness property. Similarly, DE
is an evolutionary algorithm which has higher exploration
capability due to its mutation operator that is used for all
candidate solutions in the population to increase randomness
in the search space.

In FA, every firefly gets attracted to another brighter firefly
and if the firefly is unable to find any neighbourhood brighter
one then it tries to find another firefly through a random
walk [20], [21], [47]. Here the DE algorithm [48] replaces
the random walk feature used for exploration of the search
space for the desired firefly. Differential evolution algorithm
uses mutation and crossover operators only on those fireflies
that cannot find a brighter one. When any firefly is unable
to find a nearest brighter one then it is considered that the
firefly may be the local best. At this point, in this case the
DE operators such as mutation and crossover promote the
firefly in avoiding the situation of getting trapped in local
minima and provide quality test suits for object-oriented
programs. The detailed steps of the hybrid FA-DE is given
in Algorithm 3.The hybrid FA and DE algorithm has been
designed as follows, FIGURE.1.

An individual firefly is attracted to its neighborhood firefly
when the later firefly is brighter in the population based on its
fitness. This process continues until the maximum number
of fireflies in the population is reached. To ensure diversity,
only some specific fireflies are selected for the execution of
DE with greater random number [0, 1] in comparison to the
rate of selection of FA. Thus it can be concluded that the
DE improves exploration capability and convergence speed.
Therefore, the combination of FA and DE algorithms is useful
to increase the random search behavior of the proposed hybrid
algorithm, for getting high quality solutions in the form of
uniform number of test cases for all paths coverage.

D. TIME COMPLEXITY OF HYBRID FIREFLY AND
DIFFERENTIAL EVOLUTION ALGORITHM

All of the metaheuristic algorithms are used to solve NP hard
complex engineering optimization problems in polynomial
time. They are less complex in design and easy to implement.
Hence, they produce efficient results compared to other con-
ventional optimization techniques.

Nowadays, many hybrid metaheuristic algorithms have
been proposed for engineering design applications to provide
consistent and better results than the individual metaheuristic
algorithms. In practice, the design of hybrid model-based
algorithm is to eliminate the limitations of individual meta-
heuristic algorithms at the cost of a little bit more time
complexity. In this work, a hybrid FA-DE algorithm is pro-
posed by combining the best exploitation property of FA and
exploration feature of DE, with the expectation of generating
consistent test suits by covering entire problem space in less

179176

START

‘ Set algorithm parameters

!

Generate initial

population

l

Evaluate fitness of

candidate solutions

Return optimal test

suites

Yes

Is
 (xj) > f (xi)

Use DE algorithms for

individual solutions

Calculate light intensity l

Generate donor vector

— using three randomly
Update the position of selected target vectors
firefly l
l Generate trial vector
Evaluate the new .
using crossover operator
position of each firefly l
l Evaluate the fitness of
Update population for all trial vector
fireflies l

Update candidate

solution in the new

population

t=t+1

FIGURE 1. Proposed hybrid FA-DE flowchart.

computing time. Firefly algorithm consists of two inner loops
of maximum size (n), the population size and one outer loop
of size t, which is the maximum number of generations of
the FA. Hence the time complexity of Firefly in worst case is
O (nzt). Similarly, DE has the same time complexity which
is O (nzt). In case of small n (our case, n = 50 maximum)
and small t (our case, t = 30 maximum), the computation
cost is relatively linear with respect to t. In general, the major
computational time is expended in the evaluations of fitness
function, which is same for all metaheuristic algorithms.
In case of the proposed hybrid FA-DE algorithm, if a firefly
fails to get neighbourhood brighter firefly then DE algorithm
is executed in place of the random walk feature in FA. Hence,
the proposed hybrid FA-DE algorithm takes same constant
time i.e., O (n’t) which is relatively inexpensive than the
standard FA, DE and other hybrid algorithms as mentioned
in the literature [46].

IV. PROPOSED FRAMEWORK
This paper suggests a framework as shown in FIGURE. 2 to
generate a set of suitable test suits from UML state chart

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

Algorithm 3 Proposed Hybrid FA-DE Algorithm

Input: Objective function f , number of decision variables

(D), parameters bounds [L, U]

Output: Optimal test suite

1: Initialize parameters: Population size (N), y, Bo, «, F and

Pc

2: Initialize random candidate solutions x;j, {1,- - - ,N}
/Mnitial position of each firefly

3: Evaluate fitness of each firefly f (x;)

//Measure light intensity of each firefly

4:while t<MaXGen do 1

MaXGen: Maximum number of generations

5: for each firefly x; € {1, - - -, N} do

6: for each firefly x; € {1, - - -, N} do

7 if f (xj) > f(x;) then

8: Calculate the Euclidean distance between x; and x;j using

Eq.(4)

9: Calculate attractiveness (8) using Eq.(3)

10: Update x; to new solution X;j (new) by using Eq.(5)

11: Evaluate the objective function based on fireflies f (Xpew)

12: Update new population based on fitness

13: end if

14: end for

15: end for

16: for each target vector x; € {1, - - -, N} do

17: if rand () < R then Execute DE algorithm when

random value [0, 1] <Selection rate(R)

18: Select three target vectors randomly XRr1, XR2, and Xg3 €
N

19: Generate donor vector for each target vector vj using
mutation operator Eq.(7)

20: Generate trial vector u; using crossover operator as fol-
lows Eq.(8)

21: Evaluate the objective function based on trial vector f (u;)
22: Update individual candidate solution of the new popula-
tion based on fitness

23: end if
24: end for
25: t=t+1

26: end while
27: Return optimal test suit

model using hybrid FA-DE algorithm. Initially the UML state
chart model is converted to state chart graph. Then the start
node of the state chart graph(SCG)is assigned weight=1,
edges are also assigned with weight=1, here the parent node
number is the weight for the child node and if a child node
has many parent nodes then the sum of all parent node
weights is the weight of the child node [19]. Then Depth
first search is applied to traverse the SCG graph, tracing the
feasible paths and the total path cost, i.e. the sum of node
weights and edge weights assigned to each path. Here the
total path weight is the fitness function for each feasible path
[24]. After calculation of the fitness function, the fireflies are

VOLUME 8, 2020

e Convert
R L State chart diagram Assign weights to

State chart diagram |_y, to State chart graph [P State chart graph | —
for example problem (SCG) edges

Y

Apply DFS to traverse Apply Hy :"d,F:,_m' Evaluate fitness
weighted SCG graph [~ e =P | function to generate

to trace feasible paths ngorithm on Test suites
State chart graph

FIGURE 2. Proposed framework for test suites generation.

generated randomly at each node and the sum of the edge
and node weights is the fitness function of respective fireflies.
Finally, the hybrid FA-DE metaheuristic algorithm is applied
to generate test suits for path based coverage of the feasible
paths.

V. EXPERIMENTS AND RESULT ANALYSIS

Here in the example problem, the UML state chart is devel-
oped using ArgoUML, and then the test suites are generated
using MATLAB R2016b. The experiments were performed
on Intel Core TM i3 CPU, 2.0GHz speed, 4GB RAM, running
on 64-bit windows.

This paper suggested a framework to generate optimized
test suits for the model-based testing of object-oriented pro-
grams using UML state chart model and hybrid metaheuristic
FA-DE algorithm. In this framework for test suite generation,
first of all the UML state chart model is developed for the
example case study, ‘the benchmark triangle classification
problem’, using ArgoUML case tool as shown in FIGURE 3.
Then the state model is converted to start chart graph (SCG),
as shown in FIGURE 4, where the states of the state chart
model are considered as nodes of the SCG graph. In the next
step DFS graph traversal algorithm is applied to traverse the
SCG graph for generating the feasible path sequences and
from those feasible path sequences the total path weight of
respective path sequences is calculated. The path weight is
the fitness function of the problem, and it’s a maximizing
optimization problem.

The hybrid FA-DE optimization algorithm has been used to
generate test suites and here the path-based coverage criteria
determines the fitness of the candidate solutions. In this work,
the performance of the proposed hybrid FA-DE algorithm
was implemented and compared among metaheuristic algo-
rithms including FA, DE, PSO, CS and our recently published
hybrid particle swarm optimization and gravitational search
algorithm(PSO-GSA) [22] and hybrid Cuckoo search and
simulated annealing(CS-SA) [24] metaheuristic algorithms
for test suites generation. The first experiment determines
optimal control parameter values of the proposed algorithm,
then the second experiment compares four metaheuristic
algorithms to point out the importance of the proposed hybrid
algorithm, and finally the third experiment compares the

179177

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

[] .Tlash; Triangle]
Trangh

Wota Trangie Tangle

[' Types of Triangel

®

FIGURE 3. State chart model for triangle classification problem.

G

FIGURE 4. State chart graph (SCG) triangle classification problem.

effectiveness of the proposed FA-DE algorithm with FA, DE,
PSO, CS, PSO-GSA, CS-SA algorithms.

A. EXPERIMENTAL SETUP

The Classic Triangle classification problem is the bench mark
problem used by many researchers, [22], [23] since last three
decades in the domain of software testing specifically test
data generation [34]. The generated test suites must hold test
data that satisfies the triangle characteristics and distinctive
attributes of this problem, thus putting it in a very specific
group of benchmark software testing problem. Separate sets
of data are required for different categories of triangles like
isosceles, scalene and equilateral, which is too complex to
figure out manually [25]. The triangle classification problem
has been used as a case study for generating test suites using
metaheuristic algorithms like Cuckoo search, Particle swarm
optimization etc., [22]-[26], and is already recommended as a
bench mark problem in the domain of test cases and test data
generation. Therefore, the triangle classification problem is
used in this work as a case study to generate test suites using
metaheuristic FA, DE and hybrid FA-DE algorithms.

179178

TABLE 2. Path sequences for triangle classification problem.

Path Path Sequence Type

Path 1 S1-S3 Not-a-Triangle
Path 2 S1-S2-S4 Scalene

Path 3 S1-S2-S5 Isosceles
Path 4 S1-S2-S6 Equilateral

The UML state chart model of the example triangle clas-
sification problem is shown in FIGURE 3 and its state chart
graph (SCQG) is depicted in FIGURE 4. As shown in FIGURE
4, the triangle classification problem has six states, and four
feasible paths. The state S1 is the test for triangle, S3 is not
for a triangle, and S2 is a composite state showing a triangle,
S4 state is for scalene, S5 state is for isosceles, and S6 is
for equilateral. The TABLE II clearly includes the name of
the paths, state sequences for the respective paths and the
conditions that the respective path sequences satisfy.

B. EXPERIMENT 1: PARAMETER TUNING OF THE
PROPOSED ALGORITHM

The performance of the metaheuristic algorithms is very
much sensitive to their control parameters values. In this
work, different combination of parameters values have been
tried on the proposed FA-DE algorithm to get test suite for
all the feasible paths of the benchmark program. The two
common control parameters of all metaheuristic algorithms
are the maximum number of generations and population size.
In this work all the metaheuristic algorithms were examined
with three different sizes of populations and generations i.e.
10, 20, and 30. First of all keeping number of generations
constant, the model-based algorithm was executed repeatedly
for the above three population sizes with different combina-
tions of control parameters. For FA-DE algorithm five control
parameters were needed to be tuned, out of which FA contains
three control parameters: mutation coefficient(«), attraction
coefficient (Bp) and light absorption coefficient(y)and DE
comprises of the other two control parameters: scaling fac-
tor (F)) and crossover rate (Pc). The range of values for
a = (0.1,0.2,0.3,0.4,0.5), B0 = (1,2,3), y = (1,2,3),
F=(1.1,12,13,1.4,1.5),and Pc = (0.6,0.7,0.8,0.9, 1)
obtained 10, 125 different configurations of control param-
eters. The proposed FA-DE algorithm was run 30 times for
each configuration of the control parameters to tune the opti-
mal control parameters values. The optimal control param-
eter values of the proposed FA-DE algorithm are given in
TABLE III.

C. EXPERIMENT 2: NUMERICALEXPERIMENTS AND
COMPARISIONS

In order to analyse the behaviour of each metaheuristic
algorithm in a large search space, all the experiments were

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

TABLE 3. Proposed hybrid FA-DE parameters.

Parameters Description Values
Firefly Algorithm (FA)
Bo Initial value attraction coefficient 2
y Light absorption coefficient 2
a Mutation coefficient 03
alpha_damp Mutation coefficient damping ratio 0.97
Differential Evolution
(DE)
R Selection rate for DE algorithm 0.4
F Scaling factor for mutation 1.4
Pc Crossover rate 0.7

performed for the search space bounded with the range
[—10,000 to 10,000]. In addition, the experiments were con-
ducted keeping population size fixed at 30 with varying the
total number of generations to 10, 20, and 30. Similarly the
experiments were repeated keeping the number of generation
fixed at 10 with varying population size to 10, 20, and 50. For
each configuration of parameters population and generation,
each algorithm was run 30 times to compute descriptive
statistics on the test suite results. The descriptive statistics
computed for the result of test data includes minimum, max-
imum, mean, standard deviation to evaluate the effectiveness
and suitability of the proposed FA-DE hybrid algorithm over
individual FA and DE algorithms. The statistical results pro-
duced by individual FA, DE, and hybrid FA-DE algorithms
were presented in TABLE IV and TABLE V. The test data
generation at each generation is depicted in graphical manner
for varying population size and numbers of generations are
represented in Figure 5 and Figure 6. In the TABLE IV and
TABLE V, the minimum test cases interpret minimum path
coverage i.e., the minimum number of test cases generated for
a particular path in one of the algorithm executions. It points
out the lower bound in test cases generation for a particular
path. Similarly, the maximum test cases infer maximum path
coverage i.e., the maximum number of test cases generated
for a particular path in one of the algorithm executions.
It points out the upper bound in test cases generation for a
particular path.

In this experiment, if a minimum value is zero, then it indi-
cates that in at least one of the executions that particular path
has not been covered. If a maximum value is zero that means
that no test case has been generated for a path in 30 times
execution of the algorithm. In the results, it is clearly observed
that one minimum value is zero in the proposed FA-DE hybrid
algorithm. The mean test cases indicate average number of
test cases generated for a particular path in the total number of
executions of the algorithm. The proposed FA-DE algorithm
ensured large mean value of the test cases for all paths; how-
ever, it is not true for all paths in case of FA and DE. Another
important statistic is the standard deviation that indicates the

VOLUME 8, 2020

variations in test cases generation in the number of times
of execution. Depending on the statistics in TABLE IV and
TABLE V, mainly the mean and standard deviation values are
closer for all paths in the proposed FA-DE than FA and DE.

In addition, it was also observed that FA has more exploita-
tion capability that leads to some path coverage, a large
number of times than other paths. Similarly, DE has better
exploration capability that implies more paths were covered
with closer values than FA. These results motivate us to
hybrid FA and DE to produce a set of balanced and stable
statistics values with much improved generation of test suites
as compared to FA and DE. In many cases the FA and DE gen-
erated zero data for path 2 and 3 whereas the proposed hybrid
FA-DE algorithm provides uniform number of test data for
every path. By comparing TABLE 1V, and TABLE V, it is
clearly evident that for a small population and generation,
FA and DE, are not able to generate adequate number of
test suits for all the four paths. On the other hand, FA-DE
is quite efficient in generating stable and uniform test suits
for all the four paths specifically for path3 which is a critical
path of the problem. The FIGURE 5 (a, b, ¢) and 6 (a, b, ¢)
depict the tests suites generated for the triangle classification
problem by DE, similarly, FIGURE 5 (d, e, f) and 6(d, e, f)
show the test cases generated by FA and FIGURE 5 (g, h, 1)
and 6 (g, h, i) show the test cases generated by the proposed
hybrid FA-DE algorithm. The above derived inference aligns
with the projected graph depicted in FIGURE 5 (g, h, 1)
and FIGURE 6 (g, h, i). Hence, the proposed hybrid FA-
DE algorithm generates optimal test suits uniformly for all
the test paths which are pictorially shown using bar chart in
FIGURE 7.

Test suit

0E FA FADE
Paths

FIGURE 7. Comparison of test suits generation using DE, FA and FA-DE
algorithms.

D. EXPERIMENT 3: STATISTICAL ANALYSIS OF
METAHEURISTIC ALGORITHMS

In this experiment, the effectiveness of test suits generation by
the proposed hybrid FA-DE was analyzed and compared with
existing widely used metaheuristic algorithms such as PSO,
DE, FA, and CS. These algorithms were mainly chosen keep-

179179

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

TABLE 4. Descriptive statistics for the test suite generation using hybrid FA, DE, and FA-DE with fixed population size (30) and varation in the number of

generations(10, 20, 30).

. . Model-based
Generation (Gen)/Population (Pop) [}, ihm Pathl | Path2 | Path3 | Path4
FA 50 2 0 139
Minimum DE 44 117 0 8
FA-DE 35 36 27 16
Cento FA 152 17 12 246
en= Maximum
Pop=30 DE 134 229 44 48
FA-DE 117 102 127 101
FA 102.73 6.66 3.83 186.63
Mean DE 88.1 182.16 776 21.76
FA-DE 742 7516 79.4 71.23
FA 25.36 3.82 336 27.36
Standard DE 21.06 24.87 7.86 9.05
IDeviation
FA-DE 1989 | 1226 | 1759 | 18.61
i FA 166 118 214
mimum
DE 26 443 0 4
FA-DE 11 13 39 127
FA
_ 236 168 39 280
Gen=20 Maximum DE
Pop=30 134 560 19 26
FA-DE 269 263 296 281
FA 192.46. | 149.06. 205 237.96
Mean
DE 51.9 530.26 57 12.03
FA-DE 10323 | 144.16 | 14493 | 20656
Standard FA 1531 10.07 9.24 16.04
Deviation DE 2081 2244 5.06 53
FA-DE 62.57 47.54 54.67 40.23
FA 194 159 8 312
Minimum DE 38 789 0 4
FA-DE 13 28 133 236
om0 FA 314 249 68 461
en= Maximum
Pop—30 DE 88 859 13 19
FA-DE 279 337 380 438
FA 2778 22776 37.43 357
Mean DE 53.53 831.9 5.03 10.53
FA-DE 11196 | 19753 | 25626 | 334.23
FA 26.32 18.34 15.06 39.55
Standard DE
Deviation 12.34 15.36 3.99 435
FA-DE 74.53 83.20 77.07 65.63

179180

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs I E E E ACC@SS

TABLE 5. Test suite generation using hybrid FA, DE, and FA-DE with fixed number of generation (10) and variation in population size (10, 20, 50).

Generation/ Metaheuristic
Population Optimization Pathl Path2 Path3 Path4
lgorithm
IFA 21 15 2 36
Minimum DE 10 67 0 0
FA-DE 3 4 14 29
FA 37 30 7 47
Maximum DE 35 86 4 6
Gen=10 FA-DE 31 33 40 50
Pop=10 FA 30.1 242 41 416
Mean DE 183 77.8 1.5 2.7
FA-DE 14.5 22.8 243 38.4
FA 5.06 4.63 1.96 4.03
Standard
Deviation DE 7.54 6.49 1.43 1.82
FA-DE 9.59 9.46 7.95 9.44
FA 55 28 1 69
Minimum DE 11 132 0 0
FA-DE 9 36 22 54
IFA 82 54 11 103
Gen—10 Maximum DE 54 130 7 10
Pop=20 FA-DE 65 78 64 91
IFA 67.9 43.9 5.8 82.4
Mean DE 32.5 157.3 3.7 6.5
FA-DE 37 51.9 35.2 75.9
FA 7.85 7.85 3.11 10.46
Standard
Deviation DE 13.07 14.05 2.71 3.40
FA-DE 21.35 12.04 13.35 13.14
IFA 129 71 3 182
Minimum DE 50 380 3 6
FA-DE 12 86 40 113
IFA 174 144 34 269
Gen=10 Maximum DE 95 418 17 28
Pop=50 FA-DE 187 221 227 219
FA 159.7 117.7 17.3 208.3
Mean DE 76.1 398.8 10.2 14.9
FA-DE 95.8 140.9 107.8 155.5
FA 12.50 18.64 12.41 24.05
;tanfiaFd DE 1204 | 1445 | 446 6.29
t
cviation FA-DE 59.18 | 47.61 | 6537 | 35.77
ing in mind their popularity as well as successful in various oritization, etc., At the same time, the proposed FA-DE was
fields of complex software engineering problems including also compared with our published hybrid algorithms: PSO-
test data generation, test sequence generation, test case pri- GSA and CS-SA. The performance of these algorithms is

VOLUME 8, 2020 179181

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

Number of test cases for DE

Number of test cases for DE

s Number of test cases for DE 3 2] :
30 T \ T = - -
T —A—PATH 1 —i—l,_m 1
- PATH2 o 2 ~4-paTH2| || $—PATH 2
25 | @ —PATH 3 = —@—PATH 3 = l—@—praTH 3|
PATH 4 —de—PATH 4 (—de—PATH 4
.
g g s 21
Z E =
S] &
= 3 e 15
= & ki
10
y
- s >
" i S, 1 . . 5
4 & L o
2 4 [8 1] 5 1 15 20 25 30
Generations Generations Generations
(a) (b) ©
i Number of test cases for FA B Number of test cases for FA 4 Number of test cases for FA
—d—PATH | |—h—PATH 1 (—A—PATH 1
ok —4—PATH 2 - ~4—PATH2 - —#—PATH 2
o —@—PATH 3 = | =@=1'ATH 3 e —@—PATH 3
4 —h—PATH 4 |—d—PATHA| L —H—PATH 4
z 11l " 20 V s 20 i
H 2 2
= 15} FI= 15 20
Z z 7
E P =
10 ;_N*_*/‘\/‘ 1 B WWL
4
s5f & A 3 s b5 \ 000
e N L N) W e 00 & / []
4 o & L2 bbb s sses ¥ L W R RAAN AWAEFRY (K W,
- e d - v v vV hd vy vTVYVYyYwBw v hd vy - b
2 4 [8 10 s 1 [1] 15 20 5 10 15] 25 3
Generations Generations Generations
(d (e ®
i Number of test cases using FA-DE > Number of test cases using FA-DE Number of test cases using FA-DE
B T T T T J T T T 30
—d—PATH | —de—PATH 1 —d—PATH |
” ~4—raTH2| | il 4—PATH 2 - —§—PATH 2
= ~@—PATH 3 = —8—PATH 3 = —0—PATH 3|]
—%—PATH 4 —de—PATH 4 —de—PATH 4

Test Cases
Test Cases

Generations

Generations

Generations

@

(h)

@

FIGURE 5. Test suite generation using DE (a, b, c), FA (d, e, f) and Hybrid FA-DE (g, h, i) with fixed population size 30 and variations in the

number of generations (10, 20, 30).

compared using descriptive statistics and statistical hypoth-
esis. In this experiment, number of test cases and execu-
tion time metrics were used for the statistical analysis and
comparison. The descriptive statistics used to analysis test
cases for different path of triangle classification problem and
execution time of metaheuristic algorithms include: mini-
mum, maximum, mean, median, mode, standard deviation,
and standard error. In addition, to this single factor ANOVA
is used to verify whether or not the results of the metaheuristic
algorithms, those are significantly different from each other.
Referring to the results in TABLE VI, it is clearly observed
that mean, median; standard deviation values for all three
paths such as Pathl, Path2, and Path4 are nearly closer for

179182

DE and PSO algorithms which mean that both algorithms
symmetrically cover three paths except Path 3. Based on
the standard error it can be justified that DE is more stable
than PSO. Furthermore, DE contains less control parameters
than PSO that makes it quite easy for tuning. Similarly,
by comparing statistical values, it was found that the FA is
more stable and efficient than CS. Execution time in sec-
onds of all mentioned algorithms for triangle classification
problem were given in TABLE X. The statistical minimum,
maximum, mean, median, and mode values of execution time
for all the algorithms showed that PSO takes less time than
all other algorithms. Based on the standard deviation and
standard error values, PSO and DE take low values for all

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

Number of test cases for DE

Number of test cases for DE

[=dbe=PATH |

¢ 4-PATH2 .
z —8—PATH 3 16
——PATH 4
14
p 7
i e
3 o
Z 'f-. 10

Generations

a \llmhl,r of test cases for DE
M T T T

—d—PATH I —d—=PATH |
o] i

{ 2 - *A 3
—#—PATH A 1 ~de=PATH 4

Generations

() (b)

Number of test cases for FA

Number of test cases for FA

()

Number of test cases for FA

10 4r 20 0 -
H —A—ratH 1| | sl —d—PATH 1] | ——PATH 1
- PATH 2 4—PATH2 1_ ~—PATH2
N —e—ratH3ll —e—paTus|{| P |—e—ratus|]
—#—FATH 4 —de—PATH 4 —de—PATH 4
" ?)
s - »
E-' L 2 1 5
8] o
35 z Z
= =
4 L]
3t/
2 ¢ ¢ 4
——— ——¢ * o——0 g s ¢
2 4 6 8 10 2 4 S 10 2 4 6 8 10
Generations Generations Generations
(d) ®
5 “Number of test cases using FA-DE % Number of test eases using FA-DE = Number of test cases using FA-DE
i —de—"ATH | 18 —d—PATH 1 == PATH |
d —4-PATH 2 ~@—-PATH2 | —4—pat2| |
st —0—PATH 3 6 —0—PATH 3 B —0—PATH 3
—H—PATH 4 —#&—PATH 4 ——PATH 4
i » 2
i]
4] o D
3 Y 1e
= =
p . . (
- 7 / b N\ j.
z. @ ¥, \
¥ ¢
2 4 [8 10
Generations Generations Generations
(® ()

FIGURE 6. Test suite generation using DE (a, b, c), FA (d, e, f) and hybrid FA-DE (g, h, i) with fixed number of generation (10) and variations in the

population size (10, 20, 50).

paths coverage in 30 times execution than other algorithms.
Similarly, among FA and CS, FA takes less time than CS.
Therefore DE and FA algorithms were selected for hybridiza-
tion. Statistically, it was concluded that the performance of
DE and FA is better than PSO and CS metaheuristic algo-
rithms. Hence, it motivated us to hybrid FA-DE for better
exploitation and exploration over a wide range of search space
[—10000, 10000]. In order to compare the proposed FA-DE,
our two recent works namely PSO-GSA and CS-SA were
implemented to generate test suite.

The statistical results of test cases for four different paths
were presented in TABLE VII. In which the proposed FA-DE

VOLUME 8, 2020

algorithm was compared with PSO-GSA and CS-SA hybrid
algorithms. The statistical results as mean and median values
of FA-DE for all four paths are thinly closed and balanced
than PSO-GSA and CS-AS closed and balanced than PSO-
GSA and CS-AS algorithms. Similarly, variation of standard
deviation and standard error of the three hybrid algorithms are
very small with respect to individual metaheuristic algorithms
as discussed in TABLE VI and the FA-DE outperforms PSO-
GSA and CS-SA. Furthermore, the execution time of all algo-
rithms discussed here is given in TABLE X. The statistical
results are showing that the standard deviation and standard
error of FA-DE is smaller than other two hybrid algorithms,

179183

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

TABLE 6. Descriptive statistics for the test suite generation using FA, DE, PSO and CS with fixed population size (30) and number of generation (10).

Descriptive Statistics Min Max Mean Median Mode Standard deviation Standard error
Path 1 50 152 102.73 101.5 116 25.36 4.63
FA Path 2 2 17 6.67 6 4 3.82 0.69
Path 3 0 12 3.83 3 3 3.66 0.66
Path 4 139 246 186.63 193 176 27.36 4.99
Path 1 44 134 88.1 85.5 112 21.06 3.84
DE Path 2 117 229 102.16 106 118 24.87 3.54
Path 3 0 44 7.77 7 16 7.86 1.43
Path 4 8 142 91.76 92 134 22.05 3.65
Path 1 41 166 94.7 95 123 27.55 5.03
PSO Path 2 53 229 138.7 136 151 43.55 7.95
Path 3 0 75 26.53 14 5 26.18 4.78
Path 4 12 102 36.73 29.5 28 22.01 4.01
Path 1 15 36 24.56 25 25 5.66 1.03
cs Path 2 26 278 260.93 269 265 44.68 8.15
Path 3 0 6 3 3 2 1.43 0.26
Path 4 1 10 35 3 3 1.92 0.35

i.e. PSO-GSA and CS-SA. In addition, through statistical
hypothesis, it can be verified whether all the algorithms used
in the experiments were performing in similar way or sig-
nificantly different by using the test suites generated by the
respective metaheuristic algorithms for all four paths along
with their execution times. In order to check this hypothesis,
the single factor ANOVA has been used in our experiment.
Initially, a null hypothesis was specified, which states that
Null hypothesis (HO): All algorithms used in this experi-
ment have equally performed without significant difference.
Then, one Alternative hypothesis was defined (H1): states
that the set of algorithms used in the experiments are perfor-
mance wise significantly different. Referring to the results of
TABLE VIII and TABLE IX based on single factor ANOVA
on test case generation and execution time of all algorithms,
the Null hypothesis was rejected using F-critical value (2.14).
The F test statistic (54.07) is greater than F-critical value
(2.14) in TABLE VIII at 5 % level of significance. Hence,
hypothesis (HO) is rejected and the result of test cases for
all paths is significantly different among all algorithms. Also,
another performance metric is execution time and the F test
statistic (2703.15) was obtained using single factor ANOVA
which is greater than F-critical value (2.14) at 5 % level of
significance.

E. DISCUSSION

As the performance of the metaheuristic algorithms is
affected by the improper selection of the control parameters,
in the first experiment, the proposed algorithm was executed
with different combination of control parameters to tune opti-
mal control parameters.

In the second experiment, the performance of the proposed
FA-DE was evaluated and statistically compared to FA and
DE metaheuristic algorithms. The results presented in the
TABLE IV and TABLE V revealed that the performance
of the proposed FA-DE in large search space is superior
over FA and DE. In the third experiment, using TABLE VI,
TABLE VII and TABLE X showed the motivation behind

179184

the selection of the specific two algorithms, FA and DE
for hybridization over other recently popular metaheuristic
algorithms such as PSO and CS. Then, the performance of the
hybrid FA-DE was statistically compared with our recently
published PSO-GSA and CS-SA hybrid algorithms and it was
well established that the proposed algorithm is superior in
terms of generation of balanced test suites and inexpensive
execution time.

Finally, using TABLE VIII and TABLE IX based on test
cases for each paths and execution time of each algorithms
TABLE X, by using single factor ANOVA, the null hypoth-
esis was statistically rejected and alternative hypothesis was
accepted which states that the test suite generated by different
metaheuristic algorithms in the experiments are significantly
different and by descriptive statistics it was showed that
the proposed FA-DE hybrid algorithm can be an alternative
method for test suite generation in object-oriented testing
domain of software testing. From the analysis of experimental
results and computation time, it can be concluded that the
new hybrid FA-DE algorithm has the capability to achieve
promising performance. The proposed hybrid FA-DE method
has the following advantages: (1) the experimental results
indicated that both algorithms indeed add complementary
features results in increasing test suite coverage performance.
(2) As DE algorithm is executed based on selection rate
whenever, a firefly fails to get neighborhood brighter firefly
then DE. Hence, the execution time of the proposed FA-DE
algorithm is slightly higher than the execution time of FA
algorithm. (3) Due to the balanced exploitation and explo-
ration characteristics, the proposed method performs superior
than existing metaheuristic algorithms. (4) Most of time,
it generates test cases symmetrically for all critical paths.
A comparison among all the algorithms is depicted pictorially
in FIGURE 7. The major limitation of the proposed FA-DE
algorithm is that the performance is sensitive to proper tuning
of control parameters.

The proposed framework can be applied for testing
real life problems, i.e. the test suites can be derived

VOLUME 8, 2020

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

TABLE 7. Descriptive statistics for the test suite generation using hybrid PSO-GSA, CS-SA and FA-DE with fixed number of generation (10) and population

size (20).
Descriptive Statistics Min | Max | Mean Median | Mode | Standard deviation Standard error
Path 1 56 79 65.93 67.5 71 5.91 1.08
Path 2 11 124 107.16 110 105 19.52 3.56
PSO-GSA 17 i3 35 | 69 | 53.9 525 49 9.67 176
Path 4 53 90 69.66 68 59 9.85 1.79
Path 1 53 122 76.97 74 66 15.89 2.9
Path 2 75 147 114.5 113.5 106 18.24 3.33
CS-SA Path 3 34 91 61.4 61 61 14.67 2.67
Path 4 18 81 47.13 45.5 48 14.92 2.72
Path 1 35 117 74.2 74 88 19.89 3.63
Path 2 36 102 75.16 76 76 12.26 2.23
FA-DE Path 3 27 | 127 | 794 82.5 83 17.59 3.21
Path 4 16 101 71.23 74 72 18.61 3.39
TABLE 8. Single factor anova results based on test data generation of FA, DE, PSO, CS, PSO-GSA, CS-SA, and FA-DE algorithms.
Source of Variation SS df MS F P-value F- critical
Between Groups 118751.4 6 19791.9 54.07 1.65E-39 2.14
Within Groups 74299.87 203 366.0092
Total 193051.3 209

TABLE 9. Single factor anova results based on execution time of FA, DE, PSO, CS, PSO-GSA, CS-SA, and FA-DE algoritms.

Source of Variation SS df MS F P-value F-critical
Between Groups 459.76 6 76.62 2703.15 1.1E-190 2.14
Within Groups 5.754 203 0.02
Total 465.51 209

TABLE 10. Execution time (in seconds) statistics of FA, DE, PSO, CS, PSO-GSA, CS-SA, and FA-DE algoritms.

Algorithms FA DE PSO Cs PSO-GSA CS-SA FA-DE
Minimum 0.036 0.051 0.041 0.057 0.039 4.079 0.06
Maximum 0.154 0.089 0.06 0.217 0.1 6.58 0.127
Mean 0.055 0.059 0.051 0.07 0.052 4.291 0.069
Median 0.046 0.057 0.051 0.061 0.042 4.199 0.095
Mode 0.044 0.052 0.051 0.06 0.04 4.199 0.095
]S)té‘v';gi‘if)‘l‘l 0.02 0.006 0.004 0.029 0.018 0.443 0.01
ls;rar'(‘)‘:ard 0.0037 0.0016 0.0012 | 0.005 0.003 0.08 0.0018

for testing by following the proposed methodology with-
out any further modifications or improvements. The
software requirement specification document of any prob-
lem statement can be used for designing UML mod-
els and from those models test suits can be derived
by replicating our proposed framework without further
modifications.

VOLUME 8, 2020

VI. CONCLUSION

Automatic test suite generation in object-oriented program-
ming is a challenging task. This paper proposes a novel hybrid
FA-DE framework to generate optimized test suits targeting
path-based coverage criteria of testing. The Firefly algorithm
and Differential Evolution algorithm have proven their effi-
ciency in solving many engineering optimization problems.

179185

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

Our proposed framework has successfully generated optimal
test suites for effective testing of object-oriented programs
using UML state chart model.

The proposed framework is simulated using the benchmark
triangle classification problem. The simulation results of the
hybridized FA-DE algorithms clearly established the hybrid
algorithms efficiency in uniform exploration and exploita-
tion of the solution space, thus generating uniform test suits
for all the feasible paths of the example problem, achiev-
ing full path coverage. Whereas the individual FA and DE
algorithms, efficiently generated test suits for some specific
paths. Therefore, the efficiency of the proposed Framework in
generating uniform test suits for all the four paths of Triangle
Classification problem can be attributed to the exploitation
and exploration capabilities of the hybrid algorithm. This
framework can be further enhanced by using the hybrid ver-
sion of other metaheuristic algorithms and different UML
models, taking into consideration large data sets. In addition
to this the work will be extended by using ensemble strategies
of metaheuristic algorithms [78] for test data generation in
model-based testing of object-oriented programs.

REFERENCES

[1] A.Abdullah, S. Deris, M. S. Mohamadand S. Z. M. Hashim, ““A new hybrid
firefly algorithm for complex and nonlinear problem,” J. Distrib. Comput.
Artif. Intell., vol. 151, no. 9, pp. 673-680, 2012.

[2] A. Kanjilal and S. Bhattacharya, *“Static analysis of object oriented sys-
tems using extended control flow graph,” in Proc. IEEE Region 10 Conf.
TENCON, Nov. 2004, pp. 310-313.

[3] S.Biswas, S. Dash, and S. Acharya, “Firefly algorithm based multilingual
named entity recognition for Indian languages,” in Proc. Int. Conf. Adv.
Inform. Comput. Res. Springer, 2018, pp. 540-552.

[4] A. Canuto, A. F. Neto, H. M. Silva, and J. C. Xavier-Junior, ‘“‘Population-
based bio-inspired algorithms for cluster ensembles optimization,” Natural
Comput., vol. 19, pp. 515-532, Mar. 2018.

[5] S. Dash and A. Abraham, “Kernel based chaotic firefly algorithm for
diagnosing Parkinson’s disease,” in Proc. Int. Conf. Hybrid Intell. Syst.
Shimla, India: Springer, 2018, pp. 176-188.

[6] S. Dash, R. Thulasiram, and P. Thulasiraman, “An enhanced chaos-based

firefly model for Parkinson’s disease diagnosis and classification,” in Proc.

Int. Conf. Inf. Technol. (ICIT), Dec. 2017, pp. 159-164.

S. Dash, R. Thulasiram, and P. Thulasiraman, “Modified firefly algorithm

with chaos theory for feature selection: A predictive model for medi-

cal data,” Int. J. Swarm Intell. Res. (IJSIR), vol. 10, no. 2, pp. 1-20,

2019.

[8] K. G. Dhal, M. Igbal Quraishi, and S. Das, “Development of firefly
algorithm via chaotic sequence and population diversity to enhance the
image contrast,” Natural Comput., vol. 15, no. 2, pp. 307-318, Jun. 2016.

[9] M. K. Azam Atta-ur-Rahman, S. S. Sultan Dash, and N. Khan, “Auto-
mated testcase generation and prioritization using GA and FRBS,” in
Computer and Information Science, vol. 955. Singapore: Springer, 2019,
pp. 571-584.

[10] J. M. Ferrdndez and R. Varela, “Bio-inspired population-based meta-
heuristics for problem solving,” Natural Comput., vol. 16, no. 2,
pp. 187-188, Jun. 2017.

[11] I Fister, I. Fister, X.-S. Yang, and J. Brest, “A comprehensive review of
firefly algorithms,” Swarm Evol. Comput., vol. 13, pp. 34—46, Dec. 2013.

[12] M. Harman and B. F. Jones, “The SEMINAL workshop: Reformulating
software engineering as a metaheuristic search problem,” ACM SIGSOFT
Softw. Eng. Notes, vol. 26, no. 6, pp. 62-66, 2001.

[13] T. Hassanzadeh, K. Faez, and G. Seyfi, “A speech recognition system
based on structure equivalent fuzzy neural network trained by firefly algo-
rithm,” in Proc. Int. Conf. Biomed. Eng. (ICoBE), Feb. 2012, pp. 63-67.

[14] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary opti-
mization with approximate fitness functions,” IEEE Trans. Evol. Comput.,
vol. 6, no. 5, pp. 481-494, Oct. 2002.

[7

179186

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

M. Khari, and P. Kumar, “An effective model-based cuckoo search algo-
rithm for test suite optimization,” Informatica, vol. 41, no. 3, pp. 363-377,
2017.

K. N. Krishnanand and D. Ghose, ‘“Glowworm swarm based optimization
algorithm for multimodal functions with collective robotics applications,”
Multiagent Grid Syst., vol. 2, no. 3, pp. 209-222, Sep. 2006.

S. A. Lee, “K-phase oscillator synchronization for graph coloring,” Math.
Comput. Sci., vol. 3, no. 1, pp. 61-72, Mar. 2010.

J. Luthra and S. K. Pal, ““A hybrid firefly algorithm using genetic operators
for the cryptanalysis of a monoalphabetic substitution cipher,” in Proc.
World Congr. Inf. Commun. Technol., Dec. 2011, pp. 202-206.

M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm Evol.
Comput., vol. 33, pp. 1-17, Apr. 2017.

H. C. Ong, S. L. Tilahun, W. S. Lee and J. M. T. Ngnotchouye, “Com-
parative study of prey predator algorithm and firefly algorithm,” Intell.
Automat. Soft Comput., vol. 23, no. 1, pp. 1-8, Mar. 2017.

S. K. Pal, C. S. Rai, and A. P. Singh, “Comparative study of firefly algo-
rithm and particle swarm optimization for noisy non-linear optimization
problems,” Int. J. Intell. Syst. Appl., vol. 4, no. 10, pp. 50-57, Sep. 2012.
M. Panda and S. Dash, “Test-case generation for model-based testing of
object-oriented programs,” in Proc. Int. Conf. Distrib. Comput. Internet
Technol. Bhubaneswar, India: Springer, Jan. 2020, pp. 53-77.

M. Panda and S. Dash, “Automatic test data generation using bio-inspired
algorithms: A travelogue,” in Handbook of Research on Modelling, Analy-
sis and Application of Nature-Inspired Metaheuristic Algorithms. Hershey,
PA, USA: IGI Global, 2018, pp. 140-159.

M. Panda and S. Dash, ““A framework for testing object oriented programs
using hybrid nature inspired algorithms,” in Proc. Int. Conf. Adv. Inform.
Comput. Res. Singapore: Springer, 2018, pp. 531-539.

M. Panda and P. P. Sarangi, “Performance analysis of test data generation
for path coverage based testing using three meta-heuristic algorithms,” Int.
J. Comput. Sci. Inform., vol. 3, no. 2, pp. 34—41, 2013.

M. Panda, P. P. Sarangi and S. Dash, “Automatic test data generation
using metaheuristic cuckoo search algorithm,” Int. J. Knowl. Discovery
Bioinf. (IJKDB), vol. 5, no. 2, pp. 16-29, 2015.

V. D. Panthi and P. Mohapatra, “Generating prioritized test sequences
using firefly optimization technique,” in Computational Intelligence in
Data Mining, vol. 2. Bhubaneswar, India: Springer, 2015, pp. 627-635.

F. K. H. Phoa, “A swarm intelligence based (SIB) method for optimization
in designs of experiments,” Natural Comput., vol. 16, no. 4, pp. 597-605,
Dec. 2017.

K. V. Price, “Differential evolution,” in Handbook of Optimization. Cham,
Switzerland: Springer, 2013, pp. 187-214.

O. Sahin and B. Akay, “Comparisons of Metaheuristic algorithms and
fitness functions on software test data generation,” Appl. Soft Comput.,
vol. 49, pp. 1202-1214, Dec. 2016.

P.Samual, R. Mall and A. K. Bothra, ““Automatic test case generation using
unified modeling language (UML) state diagrams,” IET Softw., vol. 2,
no. 2, pp. 79-93, 2008.

S. Sarbazfard and A. Jafarian, “A hybrid algorithm based on firefly
algorithm and differential evolution for global optimization,” Int. J. Adv.
Comput. Sci. Appl., vol. 7, no. 6, pp. 95-106, 2016.

C. Sharma, S. Sabharwal, and R. Sibal, “A survey on software testing
techniques using genetic algorithm,” 2014, arXiv:1411.1154. [Online].
Available: http://arxiv.org/abs/1411.1154

M. Shirole and R. Kumar, ‘“UML behavioral model based test case genera-
tion: A survey,” ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp. 1-13,
2013.

R. Soto, B. Crawford, R. Olivares, J. Barraza, 1. Figueroa, F. Johnson,
F. Paredes, and E. Olguin, “Solving the non-unicost set covering problem
by using cuckoo search and black hole optimization,” Natural Comput.,
vol. 16, no. 2, pp. 213-229, Jun. 2017.

S. Srivastava, and S. K. Sahana, “A survey on traffic optimization prob-
lem using biologically inspired techniques,” Natural Comput., vol. 19,
pp. 1-15, Jan. 2019.

P. R. Srivatsava, B. Mallikarjun, and X.-S. Yang, “Optimal test sequence
generation using firefly algorithm,” Swarm Evol. Comput., vol. 8,
pp. 44-53, Feb. 2013.

Y. Tao and L. Zhang, “A multi-population evolution stratagy and its
application in low area/power FSM synthesis,” Natural Comput., vol. 18,
pp. 139-161, Nov. 2017, doi: 10.1007/s11047-017-9659-5.

VOLUME 8, 2020

http://dx.doi.org/10.1007/s11047-017-9659-5

M. Panda et al.: Test Suit Generation for Object Oriented Programs

IEEE Access

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Softw. Test., Verification Rel., vol. 22, no. 5,
pp. 297-312, Aug. 2012.

T. Vantuch, I. Zelinka, A. Adamatzky, and N. Marwan, ‘‘Perturbations and
phase transitions in swarm optimization algorithms,” Natural Comput.,
vol. 18, pp. 579-591, May 2019.

C.-F. Wang and K. Liu, “An improved particle swarm optimization algo-
rithm based on comparative judgment,” Natural Comput., vol. 17, no. 3,
pp. 641-661, Sep. 2018.

H. Wang, L. L. Zuo, J. Liu, W. J. Yi, and B. Niu, “Ensemble particle swarm
optimization and differential evolution with alternative mutation method,”
Natural Comput., to be published, doi: 10.1007/s11047-018-9712-z.

X. S. Yang, Nature-Inspired Metaheuristic Algorithms. London, UK.
Luniver Press, 2010.

X. S. Yang, ““Metaheuristic optimization,” Scholarpedia, vol. 6, no. 8,
p. 11472, 2011.

X.S. Yang, S. Deb, S. Fong, X. He, Y. X. Zhao, “From swarm intelligence
to metaheuristics: Nature-inspired optimization algorithms,” Computer,
vol. 49, no. 9, pp. 52-59, Sep. 2016.

X.-S. Yang and X. He, “Firefly algorithm: Recent
and applications,” 2013, arXiv:1308.3898. [Online].
http://arxiv.org/abs/1308.3898

X.-S. Yang, S. S. Sadat Hosseini, and A. H. Gandomi, “Firefly algorithm
for solving non-convex economic dispatch problems with valve loading
effect,” Appl. Soft Comput., vol. 12, no. 3, pp. 1180-1186, Mar. 2012.

L. Zhang, L. Liu, X.-S. Yang, and Y. Dai, “A novel hybrid firefly algo-
rithm for global optimization,” PLoS ONE, vol. 11, no. 9, Sep. 2016,
Art. no. e0163230.

A. Saeed, S. H. Ab Hamid, and M. B. Mustafa, “The experimental applica-
tions of search-based techniques for model-based testing: Taxonomy and
systematic literature review,” Appl. Soft Comput., vol. 49, pp. 1094-1117,
Dec. 2016.

A. Nayyar and R. Singh, “Ant colony optimization—Computational
swarm intelligence technique,” in Proc. 3rd Int. Conf. Comput. Sus-
tain. Global Develop. (INDIACom), New Delhi, India, Mar. 2016,
pp. 1493-1499.

A.D.N. Nayyar and N. G. Le Nguyen, Advances in Swarm Intelligence for
Optimizing Problems in Computer Science. Boca Raton, FL, USA: CRC
Press, 2018.

A. Nayyar, D. N. Le, and N. G. Nguyen, “Advances in swarm intelligence
and machine learning for optimization problems in image processing and
data analytics,” Recent Patents Comput. Sci., vol. 12, no. 4, pp. 248-249,
2019.

A. Nayyar, S. Garg, D. Gupta, and A. Khanna, “Evolutionary computation:
Theory and algorithms,” in Advances in Swarm Intelligence for Optimizing
Problems in Computer Science. Boca Raton, FL, USA: CRC Press, 2018,
pp. 1-26.

G. K. Durbhaka, B. Selvaraj, and A. Nayyar, “Firefly swarm: Meta-
heuristic swarm intelligence technique for mathematical optimization,” in
Data Management, Analytics and Innovation. Singapore: Springer, 2019,
pp. 457-466.

A. Nayyar and N. G. Nguyen, “Introduction to swarm intelligence,” in
Advances in Swarm Intelligence for Optimizing Problems in Computer
Science. London, U.K.: Taylor & Francis, 2018, pp. 53-78.

C. Diwaker, P. Tomar, A. Solanki, A. Nayyar, N. Z. Jhanjhi,
A. Abdullah, and M. Supramaniam, “A new model for predicting
component-based software reliability using soft computing,” IEEE
Access, vol. 7, pp. 147191-147203, 2019.

M. Gheisari, D. Panwar, P. Tomar, H. Harsh, X. Zhang, A. Solanki,
A. Nayyar, and J. A. Alzubi, “An optimization model for software quality
prediction with case study analysis using MATLAB,” IEEE Access, vol. 7,
pp. 85123-85138, 2019.

A. Nayyar, Instant Approach to Software Testing: Principles, Applications,
Techniques, and Practices. New Delhi, India: BPB Publications, 2019.

T. Yifei, Z. Meng, L. Jingwei, L. Dongbo, and W. Yulin, “Research
on intelligent welding robot path optimization based on GA and
PSO algorithms,” [EEE Access, vol. 6, pp.65397-65404, 2018,
doi: 10.1109/ACCESS.2018.2878615.

X. Hongxin, Y. Bai, H. Hu, T. Xu, and H. Liang, “A novel hybrid model
based on TVIW-PSO-GSA algorithm and support vector machine for
classification problems,” IEEE Access, vol. 7, pp. 27789-27801, 2019.
Q. Al-Tashi, S. J. Abdul Kadir, H. M. Rais, S. Mirjalili, and H. Alhussian,
“Binary optimization using hybrid grey wolf optimization for feature
selection,” IEEE Access, vol. 7, pp. 3949639508, 2019.

advances
Available:

VOLUME 8, 2020

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]
(73]

[74]

[75]

[76]

(77

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

1. Hazim, M. S. Kiran, and M. Gunduz, “A novel candidate solu-
tion generation strategy for fruit fly optimizer,” IEEE Access, vol. 7,
pp. 130903-130921, 2019.

H. Rico-Garcia, J.-L. Sanchez-Romero, A. Jimeno-Morenilla,
H. Migallon-Gomis, H. Mora-Mora, and R. V. Rao, “Comparison of high
performance parallel implementations of TLBO and Jaya optimization
methods on manycore GPU,” IEEE Access, vol. 7, pp. 133822-133831,
2019.

M. I. Abdelwanis, A. Abaza, R. A. El-Sehiemy, M. N. Ibrahim, and
H. Rezk, “Parameter estimation of electric power transformers using coy-
ote optimization algorithm with experimental verification,” IEEE Access,
vol. 8, pp. 50036-50044, 2020.

L. Tong, X. Li, J. Hu, and L. Ren, “A PSO optimization scale-
transformation stochastic-resonance algorithm with stability mutation
operator,” IEEE Access, vol. 6, pp. 1167-1176, 2018.

A. Kumar, P, Srikanth, A., Nayyar, “A novel simulated-annealing
based electric bus system design, simulation, and analysis for
Dehradun Smart City,” IEEE Access, vol. 8, pp. 89395-89424, 2020,
doi: 10.1109/ACCESS.2020.2990190.

0. Riihd, “A survey on search-based software design,” Comput. Sci. Rev.,
vol. 4, no. 4, pp. 203-249, Nov. 2010.

M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global, and hybrid search,” IEEE Trans. Softw. Eng.,
vol. 36, no. 2, pp. 226-247, Mar./Apr. 2010.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in Proc. IEEE Congr. Evol. Comput. (IEEE World
Congr. Comput. Intell.), Jun. 2008, pp. 162—-168.

C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive, evolutionary
search in upstream object-oriented class design,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, pp. 798-816, Nov. 2010.

M. Harman, “The current state and future of search based software
engineering,” in Proc. Future Softw. Eng. (FOSE), vol. 7, May 2007,
pp. 342-357.

A. C. Schultz, J. J. Grefenstette, and K. A. De Jong, “Test and evaluation
by genetic algorithms,” IEEE Expert, vol. 8, no. 5, pp. 9-14, Oct. 1993.
D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989.

J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd, ‘“Refor-
mulating software engineering as a search problem,” IEE Proc. - Softw.,
vol. 150, no. 3, pp. 161-175, Jun. 2003.

J. H. Holland, Adaption in Natural and Artificial Systems. Cambridge, MA,
USA: MIT Press, 1975.

M. Harman, “Automated test data generation using search based software
engineering,” in Proc. 2nd Int. Workshop Automat. Softw. Test (AST),
vol. 7, May 2007.

B. Uzun and B. Tekinerdogan, ‘“Model-driven architecture based testing:
A systematic literature review,” Inf. Softw. Technol., vol. 102, pp. 30-48,
Oct. 2018.

S. Rajvir, “Review of model based approach for automating the test case
generation for Object Oriented Systems,” Int. J. Eng. Comput. Sci., vol. 4,
no. 6, pp. 12774-12780, 2015.

S. Mahesh and R. Kumar, “UML behavioral model based test case genera-
tion: A survey,” ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp. 1-13,
2013.

A. V. K. Shanthi and D. G. M. Kumar, “Automated test cases generation
for object oriented software,” Indian J. Comput. Sci. Eng., vol. 2, no. 4,
pp. 543-546, 2011.

S. Supavita, “Object oriented software and UML-based testing:A sur-
vey report,” CiteSeerX-Sci. Literature Digit. Library Search Engine,
Tech. Rep., 2009.

B. Rumpe, “Model-based testing of object-oriented systems,” in Proc.
Int. Symp. Formal Methods Compon. Objects. Berlin, Germany: Springer,
2002, pp. 380-402, 2002.

G. Wu, R. Mallipeddi, and P. N. Suganthan, “Ensemble strategies for
population-based optimization algorithms—A survey,” Swarm Evol. Com-
put., vol. 44, pp. 695-711, Feb. 2019.

R. K. Sahoo, S. K. Nanda, D. P. Mohapatra, and M. R. Patra, “Model
driven test case optimization of UML combinational diagrams using hybrid
bee colony algorithm,” Int. J. Intell. Syst. Appl., vol. 9, no. 6, pp. 43-54,
Jun. 2017.

Z. Meng, J.-S. Pan, and K.-K. Tseng, “PaDE: An enhanced differential
evolution algorithm with novel control parameter adaptation schemes
for numerical optimization,” Knowl.-Based Syst., vol. 168, pp. 80-99,
Mar. 2019, doi: 10.1016/j.knosys.2019.01.006.

179187

http://dx.doi.org/10.1007/s11047-018-9712-z
http://dx.doi.org/10.1109/ACCESS.2018.2878615
http://dx.doi.org/10.1109/ACCESS.2020.2990190
http://dx.doi.org/10.1016/j.knosys.2019.01.006

IEEE Access

M. Panda et al.: Test Suit Generation for Object Oriented Programs

[86] C.Grosan and A. Abraham, “Hybrid evolutionary algorithms: Methodolo-
gies, architectures, and reviews,” in Studies in Computational Intelligence
(SCI), vol. 75. Berlin, Germany: Springer, 2007, pp. 1-17.

[87] D. Molina, J. Poyatos, J. Del Ser, S. Garcia, A. Hussain, and
F. Herrera, “Comprehensive taxonomies of Nature- and bio-inspired
optimization: Inspiration versus algorithmic behavior, critical analysis
and recommendations,” 2020, arXiv:2002.08136. [Online]. Available:
http://arxiv.org/abs/2002.08136

MADHUMITA PANDA received the M.Tech.
degree in computer science and engineering from
the National Institute of Technology, Rourkela,
India. She is currently pursuing the Ph.D. degree
in CSE and IT with North Orissa University,
Baripada. She has more than ten publications in
various reputed International journals and con-
ferences. Her current research interests include
pattern recognition, software engineering, model-
based optimization, and biometrics.

SUJATA DASH (Member, IEEE) was a Visiting
Professor with the Computer Science Department,
University of Manitoba, Canada. She has been
teaching and guiding students for more than two
and a half decades. She is currently an Associate
Professor of computer science with the Depart-
ment of Computer Science, North Orissa Univer-
sity, Baripada, India. She has published more than
160 technical papers in international journals, pro-
ceedings of international conferences, and edited
book chapters of reputed publishers, such as Springer, Elsevier, the IEEE,
and IGI Global, USA. She holds eight national and international patents and
published many text books, monographs, and edited books. She has visited
many countries and delivered keynotes, invited speech, and chaired many
special sessions with the International conferences in India and abroad. Her
current research interests include machine learning, data mining, big data
analytics, bioinformatics, soft computing, and intelligent agents. She is a
member of the international professional associations, such as ACM, IRSS,
CSI, IMS, OITS, OMS, TACSIT, IST, and the IEEE. She was a recipient of
the Titular Fellowship from the Association of Commonwealth Universities,
U.K. She serves as a member of the editorial board for around ten interna-
tional journals. She also serves as a Reviewer for around 15 international
journals, which include World Scientific, Bioinformatics, Springer, IEEE
Access, Inderscience, and Science Direct publications.

179188

ANAND NAYYAR (Senior Member, IEEE)
received the Ph.D. degree in wireless sensor net-
works (computer science) from Desh Bhagat Uni-
versity, in 2017. He is currently with the Graduate
School, Duy Tan University, Da Nang, Vietnam.
He has published more than 300 research papers in
various national and international conferences and
international journals (Scopus/SCI/SCIE/SSCI
Indexed). He was also an ACM Distinguished
Speaker. He has authored/coauthored cum edited
25 books of computer science. He was associated with more than 400 inter-
national conferences as a programme committee/advisory board/review
board member. He holds two Patents in the Internet of Things and speech
processing. His current research interests include wireless sensor networks,
MANETS, swarm intelligence, cloud computing, the Internet of Things,
blockchain, machine learning, deep learning, cyber security, network sim-
ulation, and wireless communications. He was a Senior Member and a
Life Member of more than 50 Associations. He received several certified
professional with more than 75 Professional certificates from CISCO,
Microsoft, Oracle, Google, Beingcert, EXIN, GAQM, Cyberoam, and so on.
He received more than 20 Awards for the Teaching and Research—Young
Scientist, the Best Scientist, the Young Researcher Award, the Outstanding
Researcher Award, and the Publons-Top 1% Reviewer Award (Computer
Science and Engineering and Cross-Fields). He serves as the Editor-in-Chief
for textitInternational Journal of Smart Vehicles and Smart Transportation
(IJSVST) (IGI-Global), USA.

MUHAMMAD BILAL (Member, IEEE) received
the B.Sc. degree in computer systems engineering
from the University of Engineering and Technol-
ogy, Peshawar, Pakistan, in 2008, the M.S. degree
in computer engineering from Chosun University,
Gwangju, South Korea, in 2012, and the Ph.D.
degree in information and communication net-
work engineering from the School of Electron-
ics and Telecommunications Research Institute
(ETRI), Korea University of Science and Tech-
nology, in 2017. He was a Postdoctoral Research Fellow with the Smart
Quantum Communication Center, Korea University, Seoul, South Korea,
in 2017. He is currently an Assistant Professor with the Division of Computer
and Electronic Systems Engineering, Hankuk University of Foreign Studies,
Yongin, South Korea. His research interests include design and analysis of
network protocols, network architecture, network security, the IoT named
data networking, blockchain, cryptology, and the future internet. He served
as a Reviewer for various international journals, including the IEEE.

RAJA MAJID MEHMOOD (Member, IEEE)
received the B.S. degree in computer science from
Gomal University, Pakistan, in 2004, the M.S.
degree in software technology from Linnaeus Uni-
versity, Sweden, in 2010, and the Ph.D. degree
in computer engineering from the Division of
Computer Science and Engineering, Chonbuk
National University, South Korea, in 2017. From
April 2011 to February 2014, he was a Lecturer
with the Software Engineering Department, King
Saud University, Saudi Arabia. He was also a Research Professor with the
Department of Brain and Cognitive Engineering, Korea University. He is
currently an Assistant Professor with the Information and Communication
Department, School of Electrical and Computer Engineering, Xiamen Uni-
versity Malaysia. His main research interests include affective computing,
brain-computer interfaces, information visualization, image processing, pat-
tern recognition, and multitask scheduling.

VOLUME 8, 2020

