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ABSTRACT Graph edit distance (GED) is a measure for quantifying the similarity between two graphs.
Because of its flexibility and versatility, GED is widely used in many real applications. However, the main
disadvantage of GED is its high computational cost. Many solutions have been proposed to speed up GED
computation, but most of them focus on developing serial algorithms and only very few solutions consider
parallel computing. In this paper, we study a parallel GED computation to elaborate a fast and precise
algorithm. Unlike existing solutions that utilize either a depth-first or a best-first search, we propose a hybrid
approach that combines depth-first and best-first search paradigms. Our approach can quickly find tighter
GED upper bounds, and effectively prune the search space using the upper bounds. Based on the approach,
we develop an efficient parallel GED computation algorithm named HGED. To maximize thread utility,
HGED is also equipped with a novel dynamic load balancing scheme whose main focus is on reducing the
overhead of thread synchronization. Experimental results on widely used real datasets show that, on average,
HGED outperforms the state-of-the art serial algorithm AStar+-LSa by 6 times and the state-of-the parallel
algorithm PGED by 4 times.

INDEX TERMS Graph similarity, graph edit distance, parallel computation, hybrid search, dynamic load
balancing.

I. INTRODUCTION
Graphs have been used in a wide spectrum of applications to
represent entities and relationship/interaction between enti-
ties. The availability a graph similarity measure is a fun-
damental requirement in those applications. To quantify the
similarity between graphs, therefore, various similarity mea-
sures have been developed, such as maximum common sub-
graphs [1], [2], missing edges and features [3], [4], and graph
alignment [5].

Among alternative similarity measures, in this paper,
we focus on graph edit distance (GED) [6]. GED is
considered as one the most flexible and versatile graph
matching models available, and has been widely used
in image analysis, handwritten document analysis, bio-
metric, bio/cheminformatics, knowledge and process man-
agement, malware detection, and other applications [7].
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The GED between two graphs is the minimum number of
edit operations to transform one graph to the other, where
an edit operation is insertion, deletion, or substitution of a
single vertex or edge. The advantage of GED is that it is
very sensitive to differences between graphs. Therefore, it is
mainly used for rather small graphs, where it is crucial to
capture the difference very precisely [7].

GED computation for a pair of graphs is a process to
find an optimal vertex mapping between the pair that incurs
the minimum number of edit operations to make the pair
isomorphic. Since each vertex in one graph can be mapped
to any vertex in the other graph, the number of all possible
vertex mappings is exponential to the number of vertices in
the involved graphs. In fact, the problem of GED computation
has been proved to be NP-hard [10] (see Section II-A for the
details of the vertex mapping and GED problem).

Existing algorithms implicitly organize all the possible ver-
tex mappings into a prefix-shared search tree, where each leaf
node of the tree represents a vertex mapping. Most existing
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TABLE 1. Comparisons of HGED with the existing parallel algorithms.

algorithms adopt the A* search to explore the search tree
(e.g. [11]–[14]), while a few algorithms traverse the search
tree in a depth-first manner (e.g., [15], [16]). The main focus
of existing algorithms is on reducing the search space by
identifying and pruning subtrees whose leaves cannot be an
optimal vertex mapping (see Section II-B for the details of
the search tree and search algorithms).

To the best of our knowledge, only two parallel GED
computation algorithms,PGED [9] andPDFS [8], have been
proposed. These algorithms parallelize GED computation
by dividing the search tree into disjoint subtrees that cover
all leaf nodes, assigning the subtrees into different threads,
and simultaneously exploring the subtrees. They share the
strategy to divide the search tree and take similar approaches
for the subtree assignment. The subtree assignment is also
referred to static load balancing [9]. In contrast to the subtree
assignment, they use different search strategies for subtree
traversals. PGED simultaneously traverses the subtrees in a
best-first (i.e., A*) fashion, while PDFS performs parallel
depth-first traversals on the subtrees. These algorithms utilize
GED upper bounds, which are obtained whenever a leaf
node is found, to reduce the search space. The tighter an
upper bound is, the more the search space is reduced. PDFS
quickly finds upper bounds, but it hardly reduces the search
space because the found upper bounds tend to be very loose.
On the contrary, PGED can find tighter upper bounds. How-
ever, PGED cannot effectively use upper bounds in reducing
search space because it very slowly produces upper bounds.
We will present how a GED upper bound is used to save
computation in both search strategies, and discuss in detail
the limitations of existing solutions in Section III-A.

To address the limitations of the existing solutions, in this
paper, we aim at designing a search strategy that quickly finds
a tight lower bound. To this end, we propose a novel hybrid
search scheme that combines the depth-first and best-first
search paradigms. Based on the proposed scheme, we develop
an efficient parallel GED computation algorithm HGED,
which stands for Hybrid search for parallel GED computa-
tion. In addition to the hybrid search strategy, HGED is also
equipped with a dynamic load balancing to maximize thread
utility. If each thread cannot run independently, the overall
performance significantly degrades due to the synchroniza-
tion overhead. For this reason, PGED do not use a dynamic
load balancing. PDFS uses a simple dynamic load balancing
scheme, but their scheme requires a running thread to be
synchronized for redistributing workload. The load balancing
scheme proposed in this paper ensures that only idle threads
will wait for workload for a short period and running threads

do not need to be synchronized and never wait for other
threads. The comparison of HGED with the existing parallel
algorithms is shown in Table 1.

In summary, the following are the main contributions of
this paper.
• We propose a novel search strategy that combines the
depth-first and best-first search paradigms aiming at
quickly finding a tight GED upper bound.

• We develop a dynamic load balancing technique to max-
imize thread utility. Our load balancing technique ensure
that no running thread wait for synchronization.

• We integrate the proposed search strategy and load
balancing technique into a parallel GED computation
algorithm HGED and implement the algorithm.

• We conduct extensive experiments on real datasets and
show that HGED significantly outperform the state-of-
the art algorithms.

The rest of the paper is organized as follows: Section II
presents preliminaries including the problem formulation
and a brief survey of prior work. Section III describes our
parallel GED computation algorithm HGED focusing on a
novel hybrid two-phase search strategy. Section IV devel-
ops a dynamic load balancing technique that aim at maxi-
mizing thread utility. Section V reports experimental results
and Section VI lists related work. Section VII discusses
the findings and limitations, and Section VIII concludes the
paper.

II. PRELIMINARIES
A. PROBLEM FORMULATION
In this paper, we focus on undirected and labeled simple
graphs, though the proposed technique can be easily extended
other types of graphs. An undirected and labeled simple graph
g is a triple (V (g), E(g), l), where V (g) is a set of vertices,
E(g) ⊆ V (g)× V (g) is a set of edges, and l : V (g)∪ (V (g)×
V (g)) → 6 is a labeling function that maps vertices and
edges to labels, where6 is the label set of vertices and edges.
l(v) and l(u, v) respectively denote the label of a vertex v
and the label of an edge (u, v). If there is no edge between
u and v, l(u, v) returns a unique value λ distinguished from
all other labels. We also define a blank vertex ε such that
l(ε) = l(ε, v) = l(u, ε) = λ. There are no self-loops nor more
than one edge between two vertices. For simplicity, in the
rest of the paper, graph denotes undirected and labeled simple
graph.

Graph edit distance, which is used to measure the
similarity between graphs in this paper, is defined as
follows.
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Definition 1 (Graph Edit Distance): The graph edit dis-
tance (GED) between two graphs g1 and g2, which is denoted
by ged(g1, g2), is the minimum number of edit operations
that transform g1 into g2, where an edit operation is one of
the following:
1) insertion of an isolated labeled vertex
2) deletion of an isolated labeled vertex
3) substitution of the label (i.e., relabeling) of a vertex
4) insertion of a labeled edge
5) deletion of a labeled edge
6) substitution of the label (i.e., relabeling) of an edge.
Example 1: Consider two graphs g1 and g2 in Figure 1.

The following three edit operations on g1 transform g1
into g2: insertion of an edge between u2 and u3, deletion of
the edge between u3 and u4, and substitution of the label of
u4 (from D to A). Therefore, ged(g1, g2) = 3.

FIGURE 1. Example graphs.

To formulate the problem of GED computation, we first
introduce a vertex mapping and edit cost in Definition 2 and
Definition 3.
Definition 2 (Vertex Mapping): A vertexmapping between

two graphs g1 and g2 is a bijection of V (g1) onto V (g2).1

A vertex mapping is represented by an ordered set of mapped
vertex pairs, where the order is imposed by a pre-defined
ordering of V (g2).
Example 2: In Figure 1, consider the vertex ordering of

g2 is (v1, v2, v3, v4). m = {u1 7→ v1, u2 7→ v2, u3 7→ v3, u4 7→ v4}
is a vertex mapping between g1 and g2.
Given a vertex mapping m, g1 can be transformed into g2

by abiding by m as follows. For each mapped vertex pair
u 7→ v ∈ m, we make u and v identical in terms of the
labels of the vertices and the labels and connectivity of their
adjacent edges. The number of edit operations required in this
transformation is called the edit cost of m, which is formally
stated in Definition 3.
Definition 3 (Edit Cost): Let u 7→ v be the last mapped

vertex pair in m, and m′ = m − {u 7→ v}. The edit cost of
m is defined as:

ec(m) = ec(m′)+ d[l(u), l(v)]+
∑

u′ 7→v′∈m′
d[l(u, u′), l(v, v′)],

where ec(∅) = 0 and d[x, y] =

{
0, if x = y
1, otherwise.

The problem of GED computation is defined as follows.

1If |V (g1)| 6= |V (g2)|, ||(V (g1)| − |V (g2)|| copies of a blank vertex ε
are added into V (g1) or V (g2) to make |V (g1)| = |V (g2)|. For the ease of
presentation, we assume |V (g1)| = |V (g2)| in the remainder of the paper.

Definition 4 (GED Computation): Given two graphs g1
and g2, let f (g1, g2) denote the bijection of |V (g1)| onto
|V (g2)|. The graph edit distance between g1 and g2 is com-
puted as:

ged(g1, g2) = min
m∈f (g1,g2)

ec(m).

B. GED COMPUTATION ALGORITHM
This subsection provides a general description of existing
serial GED computation algorithms. As stated in Definition 4,
GED computation is a process to find a vertex mapping hav-
ing a minimum edit cost among all possible vertex mappings
between g1 and g2. To avoid redundant edit cost computation
among vertex mappings that shares a prefix, all possible
vertex mappings can be organized into a prefix tree, which
is called a search tree.
An example search tree for the graphs in Figure 1 is

depicted in Figure 2. In this example, the pre-defined vertex
ordering of g2 is (v1, v2, v3, v4). Each intermediate node n
represents a partial mapping, which is a shared prefix of the
vertex mappings in the leaves of the subtree rooted by n. Let
the ith vertex of g2 be v. A tree node containing a vertex u of
g1 at level i represents a mapping mp ∪ {u 7→ v}, where mp is
the mapping of the parent node, and the mapping of the root
is ∅. In Figure 2, for example, the node indicated by an arrow
corresponds to a partial mapping m = {u1 7→ v1, u2 7→ v2}.
Since a partial mapping uniquely identifies a node in the
search tree, in this paper, a partial mapping is interchange-
ably used with the corresponding tree node if clear from the
context.

FIGURE 2. Search tree for graphs in Figure 1.

Definition 5 (Lower Bound of a Partial Mapping): The
lower bound of a partial mapping m, denoted by lb(m), is a
lower limit of the edit costs of the vertex mappings in the
leaves of the subtree rooted by m.

Given a GED threshold τ , the subtree rooted bym is pruned
if lb(m) > τ . To compute lb(m), each graph g participating in
m is divided into the following three parts:
• The mapped subgraph of g, which is denoted by g|m,
is an induced subgraph of g defined by the vertices of g
participated in m.

• The unmapped subgraph of g, which is denoted by
g\g|m, is an induced subgraph of g defined by the ver-
tices in V (g)\V (g|m).

• The bridges are edges connecting g|m to g\g|m.
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Then, lb(m) is computed as the sum of
1) the edit cost required between g1|m and g2|m, which is

computed as ec(m) in Definition 3;
2) a lower bound of the GED between g1\g1|m and

g2\g2|m, which is computed using the label set-based
lower bound in Definition 6;

3) and a lower bound of the number of edit operations
required to make the bridges of g1 and g2 identical,
which is computed using the bridge lower bound in
Definition 7.

Definition 6 (Label Set-Based Lower Bound [17]): The
label set-based lower bound between two graphs r and s is
defined as:

lbL(r, s) = 0(LV (r),LV (s))+ 0(LE (r),LE (s)),

where LV (g) and LE (g) denotes the label multisets of ver-
tices and edges of a graph g, respectively, and 0(A,B) =
max(|A|, |B|)− |A ∩ B|.
Definition 7 (Bridge Lower Bound [13]): Given a partial

mapping m, the number of edit operations required in the
bridges are at least

B(m) =
∑

u→v∈m

0(Lmbr (u),L
m
br (v)),

where Lmbr (w) denotes the label multiset of the bridges con-
nected to a vertex w.

In summary, the lower bound of m is computed as

lb(m) = ec(m)+ B(m)+ lbL(g1\g1|m, g2\g2|m). (1)

Example 3: Consider a partial mapping m = {u1 7→ v1,
u2 7→ v2} between the two graphs in Figure 1. The mapped
subgraphs, unmapped subgraphs, and bridges of the graphs
are depicted in blue, black, and red lines in the figure,
respectively. The edit cost between g1|m and g2|m is 0 since
ec(m) = 0. There is one difference between the label multiset
of vertices in g1\g1|m, which is {C,D}, and that in g2\g2|m,
which is {C,A}. There is also one difference in the edge labels
of the unmapped subgraphs, because the label multiset of the
edges in g1\g1|m is {a} and that in g2\g2|m is ∅. Therefore,
lbL(g1\g1|m, g2\g2|m) = 2. The bridge lower bound B(m)
is 1 because the bridge label difference between u1 and v1
is 0 and that between u2 and v2 is 1. Therefore, lb(m) = 3.

Existing solutions traverse the search tree in either a
best-first (i.e., A*) or a depth-first manner. Algorithm 1
outlines a unified GED computation framework that can be
used with both A* and depth-first search strategies. It first
determines the order of vertices in g2 (Line 1). A common
intuition behind the vertex ordering is that infrequent vertices
are matched first while preserving the connectivity [13], [14].
After determining the vertex ordering of g2, the algorithm
pushes the initial state, i.e., an empty mapping, which cor-
responds to the root node of the search tree, into the queue
(Lines 2). It also initializes a GED upper bound ub, which
denotes the lowest edit cost found so far (Line 3). In the main
loop, it pops a mapping m from the queue (Line 5). If the

Algorithm 1: GED(g1, g2)
input : g1 and g2 are graphs.
output: ged(g1, g2)

1 O← vertex ordering of V (g2);
2 initialize a priority queue Q with an empty mapping;
3 ub←∞;
4 while Q 6= ∅ do
5 m← Q.pop();
6 if |m| = |V (g1)| ∧ lb(m) < ub then ub← lb(m);
7 if lb(m) < ub then
8 v← next unmapped vertex in V (g2) as per O;
9 foreach u ∈ V (g1) s.t. v 6∈ m do

10 mc← m ∪ {u 7→ v};
11 if lb(mc) < ub then Q.push(mc);

12 return ub;

mapping m popped from the queue is a full mapping (i.e., m
contains all vertices of g1 and g2), it updates ub using the edit
cost of m (Line 6). Note that lb(m) = ec(m) when m contains
all vertices of g1 and g2. If m is a partial mapping and its
lower bound is less than ub (Line 7), it expands the search
tree by mapping the next unmapped vertex v in g2 (Line 6)
to each unmapped vertex u in g1 (Line 7). It pushes each
expanded tree node mc into the queue if the lower bound
of mc is less than ub (Lines 8–10). If the queue is empty,
the algorithm returns ub, which is the lowest edit cost of all
possible mappings between g1 and g2 (Line 12).
The search strategy (i.e. either A* or depth-first) can be

determined by using a different priority of a mapping in the
queue. To use A* search, the algorithm pops from the queue a
mapping that has the minimum lower bound. If there is a tie,
a mapping at a larger level is preferred. We remark that if the
algorithm uses the A* search, it can be terminated as soon
as it finds a full mapping. Because it pops from the queue
a mapping having the smallest lower bound, any mapping
remaining in the queue cannot have a less edit cost.

If a mapping having the largest size is popped from the
queue, the algorithm traverses the search tree in a depth-first
manner. Note that among all mappings in the queue, a map-
ping having the largest size is at the deepest level of the search
tree. If there is a tie, a mapping having a smaller lower bound
is preferred. In the depth-first search case, the priority queue
plays a role of a stack.

C. PARALLEL GED COMPUTATION
This subsection briefly introduces the existing parallel
GED computation algorithms, PDFS [8] and PGED [9].
Existing approaches perform the following steps for parallel
GED computations.

Step 1:Themain thread takes several iterations of the main
loop in Algorithm 1 using A* until the queue contains enough
tree nodes (i.e., partial mappings). For example, PGED runs
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this step until the size of the queue reaches to n× β, where n
is the number of threads and β is a tunable parameter whose
default value is set to 20.

Step 2: The main thread distributes the tree nodes to
worker threads. Existing solutions take a greedy approach
for assigning tree nodes to each thread. For example,
PDFS assigns the tree nodes in the queue to each thread in
the sorted order of their lower bounds. PGED uses a similar
approach for the assignment.

Step 3: Each worker thread traverses the assigned subtrees
using its own queue. PDFS traverses subtrees in a depth-first
manner, while PGED uses A* search in each thread. In this
step, a GED upper bound shared by all threads is used to
maintain the lowest edit cost found so far. The upper bound
is used to reduce the search space as follows. When a thread
traverses a tree node m, the subtree rooted by the node is
pruned if lb(m) is not less than the upper bound.

Step 4: To ensure no thread remains idle, a dynamic load
balancing scheme can be introduced in this step. In PDFS,
if a thread becomes idle, the thread having the heaviest work-
load will be in charge of giving some workload to the idle
thread. PGED does not use a dynamic load balancing.

III. HYBRID SEARCH TECHNIQUE FOR PARALLEL GED
COMPUTATION
This section proposes a novel hybrid search strategy that com-
bines the A* and depth-first search paradigms. Section III-A
first presents themotivation of our work by analyzing existing
search techniques focusing on the GED upper bound. Then,
Section III-B develops our hybrid search algorithm for paral-
lel GED computation.

A. MOTIVATION OF OUR WORK
As described in Algorithm 1 and in Section II-C, the shared
GED upper bound plays an important role to reduce the
search space. In case of the depth-first search in PDFS,
GED upper bounds are frequently found whenever a thread
reaches a leaf node. If the A* search in PGED is used,
however, each thread finds only one upper bound, because
the thread pops all mappings in the queue and terminates its
search as soon as it meets a leaf node. The utilization of the
upper bound in the depth-first search is rather straightfor-
ward. In case of the A* search, however, it is complicated
how the upper bound affects the search space. Hence, before
discussing the limitations of existing solutions and the moti-
vation of our work, we analyze the effect of the upper bound
in case of the A* search.

Figure 3 illustrates a situation where there are three worker
threads, t1, t2, and t3, and t2 has found an upper bound ub2
while t1 and t3 are still traversing their search spaces. Thus,
ub2 is the GED upper bound shared by t1 and t3. Suppose the
upper bounds of t1 and t3 will be ub1 and ub3, respectively,
and ub1 < ub2 < ub3. As shown in the figure, t3 is terminated
without producing an upper bound ub3, as soon as a mapping
m such that lb(m) ≥ ub2 is popped from its queue. This is

FIGURE 3. Example of parallel A* search: red lines denote optimal search
paths; yellow circles denote currently traversed nodes; ci denotes each
child of the current node in t1; and ubi denotes the upper bound of each
thread.

because the lower bounds of all the mappings remaining in
the queue cannot be less than lb(m) in the A* search.

Algorithm 2: lb(m, ub)
1 lb← ec(m);
2 if lb < ub then lb← lb+ B(m);
3 if lb < ub then lb← lb+ lbL(g1\g1|m, g2\g2|m);
4 return lb;

For t1, however, all the mappings popped from its queue
have lower bounds less than the shared upper bound ub2,
since any mapping whose lower bound is greater than ub1
cannot be popped from the queue in the A* search. Therefore,
the search space cannot be reduced by ub2. Nevertheless, the
shared upper bound ub2 can be effectively used to reduce the
computational overhead of t1 as follows. When t1 expands
its child nodes c1, c2, and c3, it computes the lower bounds
of ci’s using Equation 1 in Section II-B. Given an upper
bound ub, Equation 1 can be incrementally computed as
shown in Algorithm 2. Because c1 is on the optimal search
path, its lower bound is obviously less than the shared upper
bound ub2. Hence, it is required to compute ec, B, and lbL
of c1 in Algorithm 2, and computation for c1 cannot be saved.
Using ub2, however, lower bound computation for c2 and c3
can be saved depending on their ec and B values. If ec(c2) ≥
ub2, for example, it is not needed to compute B and lbL of c2.
We remark that A* computes lower bounds of a large amount
of tree nodes that will be never traversed. Hence, an upper
bound can significantly save computation when using the
A* search strategy.

Now, we discuss the limitations of the existing parallel
GED computation techniques. The depth-first search strategy
in PDFS quickly produces an upper bound, but the found
upper bound tends to be very loose. Consider PDFS first
traverses a path in a subtree whose leaf nodes have large edit
costs. It cannot escape from the subtree until it traverses all
the nodes in the subtree. Although it can produce an upper
bound quickly, we hardly expect that the upper bound is tight
considering the majority of leaves have edit costs much larger
than the actual GED.

We can expect that the A* search strategy in PGED pro-
duces a tighter upper bound. However, it can produce an
upper bound after a thread completely traverses its search
space. Therefore, an upper bound tends to be found too late to
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be effectively used in reducing the search overheads of other
threads. If an upper bound happens to be found early, then this
approach should suffer from poor thread utilization because
the thread produced the upper bound becomes idle. We will
empirically show these limitations of existing solutions
in Section V-B2.

To address the limitations of existing search strategies,
we aim at developing a novel search strategy that can quickly
find a tighter upper bound. The following section presents the
details of our search strategy.

B. HGED: HYBRID PARALLEL SEARCH ALGORITHM
This subsection presents our hybrid parallel search algo-
rithm HGED. HGED follows the first two steps of existing
techniques (Section II-C), which are summarized as follows.
HGED first performs the A* search on the search tree until
the priority queue contains enough nodes (i.e., partial map-
pings). Then, it distributes the nodes in the queue into worker
threads. HGED adopts the greedy assignment of PGED for
the distribution.

Now, we discuss how a thread traverses the subtrees rooted
by the assigned nodes. The design objective of our search
strategy is twofold: (i) a thread reaches to a leaf node as fast
as the depth-first search and (ii) an upper bound found in
a leaf node is a tight one. To achieve the goal, we develop
a two-phase search scheme. The proposed scheme traverses
the search tree as follows. In the first phase, it selects a node
having the minimum lower bound from the queue just like the
A* search. In the second phase, it travels as deep as possible to
a leaf node. In each iteration of the second phase, it increases
the level by one and selects a node having the minimum
lower bound at the level. The second phase continues until
either a leaf node is found or all the nodes in the current level
are pruned. Once the second phase is finished, it switches
to the first phase to select a node instead of backtracking.
The intuition behind the two-phase search strategy is that we
increase the chance to obtain a tighter upper bound by starting
the traversal with the most promising node, while we produce
an upper bound quickly by traversing a node in a higher level
of the tree in each step of the traversal. We also improve the
tightness of an upper bound by selecting the most promising
node at the current level when we traverse to a leaf.

The following example demonstrates how our two-phase
search strategy traverses the search tree.
Example 4: Figure 4 shows the search space of a thread.

In the figure, a number inside a node denotes the lower
bound of the node, which is arbitrarily chosen for illustration
purpose. Consider threemappingsm1,m2, andm3 are initially
assigned to the thread. The thread first takes m1, which has
the minimum lower bound among the three mappings, and
expands the tree by generating child mappings m4, m5, and
m6. Then, the thread increases the level by one, chooses m2,
which has the lowest lower bound at the current level, and
generates child mappings m7 and m8. After increasing the
level by one, in the same way, it chooses m7 whose lower
bound is minimum among the nodes available at the current

FIGURE 4. A running example of the hybrid search.

level, and generates m9. It finally reaches to a leaf node m9
and finds a GED upper bound 3. After the thread finds a leaf
node, it restarts the traversal by selecting a node having the
lowest lower bound in the queue, which is m4.

Before we present the details of our two-phase search
algorithm, we describe the implementation of a priority queue
for the algorithm. To support the two-phase search scheme,
we implement a priority queue with multiple min-heaps.
We maintain a heap called a local heap for each level to
find the minimum lower bound mapping in each level, and
use another heap called a global heap to keep track of a
mapping having the minimum lower bound in the entire
search space assigned to a thread. To find such a mapping,
it is enough for the global heap to contains a copy of the
minimum lower bound mapping of each local heap. Figure 5
shows an example priority queue containing the grey-colored
nodes in Figure 4. We note that the level of the root node is 0.

FIGURE 5. Priority queue for Figure 4.

To implement push and pop operations of a priority queue,
heaps in the queue support the following operations.
• insert(m) inserts a mapping into the heap.
• replace(m) replaces the mapping whose size is |m| by
m, and reconstruct the heap. If there is no mapping
whose size is |m|, it inserts m into the heap. This oper-
ation assumes that there is at most one mapping whose
size is |m| in the heap.

• get_min() returns amapping having theminimum lower
bound.

• extract_min() returns a mapping having the minimum
lower bound, and delete the mapping from the heap.

Algorithm 3 shows the push operation. Given a mapping
m, the level lv of m is the number of mapped pairs of vertices
in m, since a pair of vertices mapped at each level (Line 1).
Thus, the algorithm pushes m into heap[lv], which denotes
the local heap for the level lv (Line 2). If m has the minimum
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Algorithm 3: push(m)
input : m is a partial mapping.
output: void

1 lv = |m|;
2 heap[lv].insert(m);
3 if heap[lv].top() = m then heap[global].replace(m);

lower bound in the local heap, it replaces, in the global heap,
the mapping copied from this local heap by m (Line 3).

Algorithm 4: pop(lv)
input : lv is the level of the search tree.
output: void

1 if heap[lv] = ∅ then return nil;
2 m← heap[lv].extract_min();
3 if lv = global then
4 heap[|m|].extract_min(); //delete m
5 m′← heap[|m|].get_min();
6 if m′ 6= nil then heap[global].insert(m′);

7 else
8 m′← heap[lv].get_min();
9 if m′ 6= nil then heap[global].replace(m′);

10 return m;

The pop operation is outlined in Algorithm 4. Given a
level lv, the algorithm basically extracts the minimum map-
ping from heap[lv] (Line 2), and returns the mapping
(Line 10). If the mapping is extracted from the global heap
(i.e., lv = global, Line 3), it also removes the mapping from
its local heap (Line 4), and inserts a copy of the minimum
mapping of the local heap into the global heap (Lines 5–6).
Otherwise, in the global heap, it replaces the extracted map-
ping by the minimum mapping in heap[lv] (Lines 7–9).
The following lemma states our priority queue implemen-

tation does not increase the time complexity compared with
a conventional priority queue structure which is typically
implemented using a single heap.
Lemma 1: The time complexity of a pop or push opera-

tion is O(log n), where n is the number of distinct mappings
in the priority queue.

Proof: insert, replace, and extract_min operations of
a heap requires O(logm) and get_min requires O(1), where
m is the size of the heap and m ≤ n. Since pop and push
perform a constant number of heap operations, the time com-
plexity is O(logm) = O(log n). �
Algorithm 5 encapsulates the proposed two-phase

search. The algorithm first initializes the priority queue with
the givenworkload (Lines 1–2). Then, it repeatedly pops from
the queue amappingm at the current level lv (Line 5), which is
initially set to global (Line 3). If there is nomapping available
at the current level or the lower bound of the mappingm is not
less than the GED upper bound ub, the algorithm switches to

Algorithm 5: TwoPhaseSearch(W , ub)
input : W is the workload.

ub is the shared upper bound.
output: void

1 initialize an empty queue Q;
2 foreach m ∈ W do Q.push(m);

3 lv← global;
4 while Q 6= ∅ do
5 m← Q.pop(lv);
6 if m = nil or lb(m) ≥ ub then lv← global;
7 else if m is a leaf node then
8 if lb(m) < ub then ub← lb(m);
9 if lv = global then return;

10 lv← global;

11 else
12 foreach child node mc of m do
13 if lb(mc) < ub then Q.push(mc);

14 lv← |m| + 1;

the first phase by setting the level lv to global (Line 6). Oth-
erwise, it handles the following two different cases. In case
that m is a leaf node (Line 7), the algorithm synchronously
updates the shared GED upper bound ub (Line 8). Ifm comes
from the global heap (Line 9), the algorithm can immediately
return (see Lemma 2 below). Otherwise, it switches to the first
phase by setting the level lv to global (Line 10). In case that
m is not a leaf (Line 11), the algorithm generates child nodes
of m and push each child into the queue if its lower bound
is less than ub. Then, the algorithm continues to search in
the second phase by increasing the level by one (Line 14).

The two-phase search algorithm obviously traverses the
search tree in a depth-first manner in that it always increases
the level by one. The difference is that it does not backtrack
and it can jump to different subtrees when it goes down to
the tree. The two-phase search algorithm also inherits the
A* algorithm as stated in the following lemma.
Lemma 2: TwoPhaseSearch finds a minimum edit cost

in its search space as soon as it extracts a leaf node from the
queue with the global level, i.e., the global heap.

Proof: Since the global heap contains the minimum
mapping at each level, the mapping popped from the global
mapping has the minimum lower bound among all expanded
mappings. Therefore, no mapping in the queue have a chance
to be extended to a mapping having a lower bound less than
that of the mapping popped from the global heap. �

Algorithm 6 presents our parallel GED computation algo-
rithm HGED that uses TwoPhaseSearch. The algorithm
first divides the search tree into subtrees by running the
serial A* algorithm (Line 1). If the queue size reaches to
β times of the number of threads, it distributes the subtrees
to n threads (Line 2). Like existing solutions, the nodes in
the queue are sorted by their lower bounds and sequentially
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Algorithm 6: HGED(g1, g2, n)
input : g1 and g2 are graphs; n is the number of threads.
output: ged(g1, g2)

1 run A* GED algorithm while |Q| < β × n;
2 assign nodes in Q to W1, . . . ,Wn;

3 ub←∞; //sharedupperbound
4 for i← 1 to n do
5 spawn TwoPhaseSearch(Wi, ub);

6 wait until all threads are terminated;
7 return ub;

assigned to the n threads. After the assignment, it initializes
the shared GED upper bound (Line 3). Then, it spawns n
threads with TwoPhaseSearch (Lines 4-5) and wait until all
threads terminate their search (Line 6). It finally returns the
upper bound, which is the lowest edit cost (i.e. GED) among
all possible mappings. While simultaneously traversing the
search tree, HGED performs a dynamic load balancing if a
thread becomes idle. The details of the dynamic load balanc-
ing will be presented in the following section.

IV. DYNAMIC LOAD BALANCING
This section presents the dynamic load balancing algo-
rithm of HGED. The existing solution PDFS uses a simple
dynamic load balancing scheme that the heaviest thread redis-
tributes its workload to an idle thread.PDFS does not provide
the details of its load balancing scheme, but it requires syn-
chronization among running threads to elect a thread having
the heaviest workload.

In this paper, we develop a novel dynamic load balanc-
ing scheme, which guarantees that no running thread waits
for synchronization. To this end, a shared array consisting
of n elements is maintained, where n is the number of threads.
Each element in the array has two slots named wsize and
requester. Then, the shared array is used for the load balanc-
ing as follows.

• Running thread: In every iteration of
TwoPhaseSearch (i.e., at the beginning of the while
loop in Line 4 of Algorithm 5), each running thread ti
asynchronously accesses the ith element of the shared
array for (i) updating wsize with the size of its current
search space and (2) checking if there is an idle thread
contained in requester. If there is a waiting idle thread,
ti shares its workload to the idle thread, set requester to
nil, and continues its search.

• Idle thread: Each idle thread asynchronously reads all
the wsize’s from the shared array and sorts the thread
ids in a decreasing order of their wsize’s, where the
id of the ith thread is i. Then, the idle thread tries to
lock requester from the heaviest thread to the lightest
one among threads having at least certain amount of
workload. If it obtains a lock, then it waits until the

requester slot becomes nil. After waking up, the idle
thread unlocks the requester and restarts its search. If it
fails to lock any requester, it repeats the process until
either it obtains a lock or all threads become idle.

Example 5: Figure 6 shows an example of matching idle
threads with running threads. In the figure, there are two idle
threads tx and ty among n threads. Each running threads ti
(e.g., t1, t2, t3, and tn in the figure) asynchronously updates
the wsize slot and checks the requester slot of the ith element
of the shared array. The idle threads find target threads as
follows: 1© The idle threads simultaneously read wsize’s and
sort the thread ids by their wsize’s. 2© Both of the idle threads
try to lock the requester slot of the heaviest thread t2 (i.e.,
the second element of the shared array). In this example, tx
happens to obtain the lock while ty fails to lock it. Hence, tx
writes its thread id into the requester. 3© ty has a lock on the
requester slot of the second heaviest thread tn and writes its
thread id into the requester slot of tn.

FIGURE 6. Example of thread matching in our dynamic load balancing
scheme.

Our scheme may not correctly reflect the workload sizes
since wsize’s are read and updated asynchronously. That
is, when an idle thread selects the heaviest running thread,
the selected thread may not be the heaviest as the workloads
of running threads change. Nonetheless, it does not affect the
correctness of our algorithm and the size difference is not
significant. Therefore, our scheme focuses on reducing the
synchronization overhead.

Share in Algorithm 7 outlines the load balancing algo-
rithm for a running thread ti. Share is called at the beginning
of every iteration of the while loop of Algorithm 5. It first
updates the size of the search space of the thread ti (Line 1).
If there exists a waiting thread tj for load balancing
(Lines 2–3), the algorithm shares the workload of ti with tj
(Lines 4–13). For each level lv of the search tree, it retrieves
mappings from the heap of ti at the level, which is denoted
by ti.heap[lv], and distributes the mappings into the two
arrays Hti and Htj (Lines 6–9). Then, it replaces the heaps
of ti and tj at the level lv by Hti and Htj (Lines 10–11). Note
that it is not required to construct the heaps for Hti and Htj
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Algorithm 7: Share(SA, ti) //running thread
input : SA is the shared array; ti is a running thread.
output: void

1 SA[i].wsize← the size of the workload of ti;

2 if SA[i].requester 6= nil then
3 tj← SA[i].requester;
4 foreach search tree level lv do
5 initialize two empty array Hti and Htj ;
6 while ti.heap[lv] 6= ∅ do
7 Hti .append(ti.heap[lv].extract_min());
8 if ti.heap[lv] 6= ∅ then
9 Htj .append(ti.heap[lv].extract_min());

10 replace ti.heap[lv] with Hti ;
11 replace tj.heap[lv] with Htj ;

12 reconstruct ti.heap[global] and tj.heap[global];

13 SA[i].requester← nil;
//wake up the requester

because mappings in Hti and Htj are already sorted by their
lower bound. After the algorithm distributes mappings in all
levels, it reconstructs the global heaps for ti and tj (Line 12).
Finally, it wakes up the waiting thread tj (Line 13).

Algorithm 8: Request(SA, tj) //idle thread
input : SA is the shared array; tj is an idle thread.
output: true if successful, false otherwise.

1 SA[j].wsize← 0;
2 SA[j].requester← nil;
//wake up a requester if any

3 T ← an array of thread ids sorted using SA.wsize;
4 foreach i ∈ T s.t. SA[i].wsize > 0 do
5 if try_lock(SA[i].requester) then
6 SA[i].requester← tj;
7 wait_until(SA[i].requester = nil);
8 unlock(SA[i].requester);
9 return t.Q 6= ∅;

10 return false;

Request in Algorithm 8 shows the load balancing algo-
rithm for an idle thread tj. When the queue becomes empty
in the while loop of Algorithm 5, the Request function is
called instead of terminating the search. Request first sets
the wsize of the idle thread tj to zero, and wakes up a requester
thread if any (Lines 1–2). Then, it sorts thread ids using their
workload sizes (Line 3), and investigates threads from the
heaviest to the lightest one (the foreach loop in Line 4).
The algorithm tries to lock ti (Line 5) and if it acquires the
lock, it sets the requester of ti (Line 6) and waits until ti
shares its workload (Line 7). Then, it unlocks ti and return

(Lines 8–9). If the algorithm fails to lock any running threads,
it returns false (Lines 10).We note that theRequest function
is continuously called until either the queue of the calling
thread is filled or entire threads become idle.

V. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
We conducted experiments on two widely used datasets,
AIDS and PubChem. AIDS is an antiviral screen compound
dataset published by NCI/NIH (https://cactus.nci.nih.gov
/download/nci/AIDS2DA99.sdz). It is a popular benchmark
used inmost graph search techniques. PubChem is a chemical
compound dataset (https://pubchem.ncbi.nlm.nih.gov, Com-
pound_000975001_001000000.sdf). It is a subset of chemi-
cal compounds published by the PubChem Project. Graphs
in the PubChem dataset contain repeating substructures and
have less size and label variations compared with the AIDS
dataset.

TABLE 2. Statistics of datasets.

Table 2 shows statistics of the AIDS and PubChem
datasets. In the table, |D| is the number of graphs in each
dataset, |V |avg and |E|avg is the average numbers of vertices
and edges, σ|V | and σ|E| are the standard deviations of the
numbers of vertices and edges, and nvl and nel are the num-
bers of distinct vertex and edge labels.

To conduct experiments, we generate 6 groups of graph
pairs for the AIDS and PubChem datasets, respectively,
as follows. For each group, we assign a number n of vertices
and collect all graphs in the dataset whose vertex sizes are
within the range of [n− 2, n+ 2]. From the collected graphs,
we then randomly select 30 pairs whose GED is within the
range of [6, 11]. The numbers of vertices assigned to these
groups are 20, 25, 30, 35, 40, and 45, respectively. In the
experiments, we set the default value of the parameter β
to 20 as suggested in [9]. If not stated otherwise, we used
4 threads for parallel computation. The average GED com-
putation time of 30 pairs are reported in the experiments.

We implemented HGED in C++, and compiled it using
GCC with the -O3 flag. In the implementation of HGED,
we used the techniques for incremental lower bound compu-
tation and blank vertex removal in a vertex mapping proposed
in [14]. All queries were evaluated on a machine with an Intel
core i7 and 32GB RAM running a 64-bit Ubuntu OS.

B. EXPERIMENTAL RESULTS
1) COMPARISON WITH THE SERIAL ALGORITHM AStar+-LSa
Wefirst comparedHGEDwith the state-of-the art serial GED
computation algorithm AStar+-LSa [14]. For the compari-
son, we used HGED with a single thread and HGED with
4 threads. Figure 7 shows the results.
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FIGURE 7. Comparisons with AStar+-LSa.

As shown in the figure, HGED with 4 threads was 5 times
faster than AStar+-LSa on average. Interestingly, HGED
with a single thread outperformed AStar+-LSa by about
1.5 times. In a serial computation, the search space of the
A* algorithm is provably minimum. Thus, HGED with a sin-
gle thread cannot further reduce the search space. However,
HGED can reduce the overhead of lower bound computa-
tion by quickly finding tighter GED upper bounds (refer to
Section III-A to see how a GED upper bound can reduce the
overhead of lower bound computation).

2) COMPARISON WITH PARALLEL ALGORITHMS
PDFS AND PGED

We compared HGED with the state-of-the art parallel GED
computation algorithms PDFS [8] and PGED [9]. As PDFS
used an out-dated GED computation technique, we imple-
mented PDFS based on DFS+-LSa [14]. Figure 8 shows the
experimental results.

FIGURE 8. Comparisons with PDFS and PGED.

As shown in the figure, HGED significantly and consis-
tently outperformed existing parallel algorithms. It was about
3.5 times faster than PGED on both datasets. PDFS failed to
complete GED computation for 30 pairs within the time limit
(1 hour) for some groups. This is because the huge search
space of the depth-first search paradigm.

The improvement of HGED can be explained by the pro-
posed hybrid search algorithm TwoPhaseSearch. To see
the efficiency of our hybrid search algorithm, we conducted
the following experiments on 10 pairs of graphs randomly
sampled from the group whose vertex size is 30. For each
pair of graphs, we measured the elapsed time for finding the
first upper bound equivalent to the GED of the pair.2 Figure 9

2We note that the time for finding the first upper bound equivalent to the
GED is different from the GED computation time. Although we have found
the upper bound equivalent to the GED, there will be remaining mappings
whose lower bound is less than GED. GED computation algorithms should
process all of these mappings.

shows the results. On the AIDS dataset in Figure 9(a), HGED
found the upper bounds 700 times faster than PGED and and
7000 times faster than PDFS. Similar results were observed
on the PubChem dataset as shown in Figure 9(b).

FIGURE 9. Elapsed time for finding the first upper bound equivalent to
the GED (y-axis is log-scaled).

To see the change of upper bounds until the tightest one
is found, we select a pair whose GED is 10 from each
dataset, respectively. Figure 10 shows the results. On the
AIDS dataset, the proposed approach could find the tightest
upper bound within 10 milliseconds after finding an upper
bound 12. On the PubChem dataset, our algorithm also found
the tightest upper bound very quickly after finding a few
upper bounds. The experimental results justify that our hybrid
search algorithm can quickly find tighter lower bounds,
which significantly reduces the search space in parallel GED
computation. In serial computation, the tighter bounds also
play an important role of reducing the overhead of lower
bound computation as we demonstrated in Figure 7.

FIGURE 10. The change of upper bounds: Pair 2 for AIDS and Pair 1 for
PubChem (x-axis is log-scaled).

3) EVALUATION OF THE PROPOSED DYNAMIC LOAD
BALANCING
We evaluated the effect of the proposed dynamic load bal-
ancing scheme, and reported the results in Figure 11. In the
figure, HGED+ LB and HGED-LB denote HGED with and
without the load balancing technique, respectively.

On theAIDS dataset, we observed thatHGED+LB consis-
tently outperformed HGED-LB. The improvement was from
1.3 times to 2.3 times. Similar results were observed on the
PubChem dataset, and the improvement was from 1.3 times
to 3 times.

4) EVALUATION ON THE NUMBER OF THREADS
We vary the number of threads in the set {1, 2, 4, 6, 8}, and
report the running times of HGED + LB and HGED-LB
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FIGURE 11. Evaluation of the dynamic load balancing.

in Figure 12. For the experiments, we used the group whose
vertex size is 30 on each dataset.

FIGURE 12. Effect of the number of threads.

From the results, we observed that the performance of
HGED was greatly improved until t = 4, where t is the
number of threads. If the load balancing scheme was not
used, however, the performance was hardly improved for
t ≥ 4. This is because of the poor thread utilization. When
we applied the load balancing scheme, the performance was
gradually improved when t increases from 4 to 8. As noted in
[9], this is mainly because of the overhead of resource alloca-
tion among threads and the cost for accessing and exchanging
data. As the number of threads increases, those overhead and
cost will also grow. Thus, the running time of HGED will not
be reduced proportionally to the number of threads.

VI. RELATED WORK
The most widely used algorithm for GED computation is
A∗-GED [11]. Recently, BLP-GED [18], DF-GED [15],
and CSI_GED [16], [19] have been proposed to improve
the performance of GED computation. BLP-GED formulates
the problem as a binary linear program, and it is faster and
morememory-efficient thanA∗-GED.DF-GED traverses the
search space in a depth first fashion. It has been found tomuch
morememory-efficient thanA∗-GED. In contrast,CSI_GED
proposed an edge-based depth-first search. It also has been
found to be both much faster and more memory-efficient than
A∗-GED. Recently, AStar+-LSa [14] has been proposed
for speeding up GED computation. AStar+-LSa reduces the
search space by removing blank vertices from a vertex map-
ping and utilizing the bridge lower bound. It further speeds
up GED computation by introducing an efficient lower bound
computation technique. Two parallel GED computation algo-
rithms, PGED [9] and PDFS [8], have been proposed. These
algorithms aims at speeding up GED computation through

parallel computing. The major difference is that PGED is
based on AStar+-LSa while PDFS is based on DFGED.
To solve the problem of graph similarity search, which is

to find graphs similar to a given query using GED, efficient
GED computation algorithms have been studied in a slightly
different context. In the graph search problem, the focus is on
finding pairs whose GED is within a given threshold rather
than computing exact GEDs. Most of existing solutions for
graph similarity search are based on the A∗-GED algorithm.
GSimSearch [12], [17] has suggested that the lower bound
computation of A∗-GED be improved by utilizing the label
set differences. This approach is much faster than the bipartite
heuristic used in A∗-GED. Pars [20], [21] has proposed
the extension-based verification which reduces the search
space of GED computation. Inves [13] has introduced a
lower bound estimation technique for bridges, which sub-
stantially reduces the search space. Inves and GSimSearch
also exploited effective vertex orderings for improving the
performance of GED computation.

VII. DISCUSSIONS
HGED aims to reduce the search space by quickly finding a
tight upper bound. The proposed two-phase search algorithm
used in HGED guarantees that it finds an upper bound within
at most h iterations, where h is the height of the search tree.
While traversing to a leaf node, the proposed search algorithm
selects the best node at the current level. Once it meets a
leaf node, the algorithm selects the best node from the entire
search space, which is the start point of the next traversal to
find another leaf. This property makes our algorithm mimic
A* search strategy, and enables it to find a tight upper bound.
We empirically observed from Section V that our algorithm
can quickly find a tight upper bound and thus significantly
reduce the search space. The experimental results justify the
motivation of our work.

The main limitation of parallel GED computation tech-
niques including the proposed one is that the speedup is not
proportional to the number of threads. The dynamic load bal-
ancing scheme inHGED prevents running threads fromwait-
ing for load balancing to increase thread utilization. If there
are a large number of threads, however, more idle threads
compete for workloads of heavy threads, which results in
poor idle thread utilization. We leave it as a future work
to develop a load balancing technique that can significantly
reduce the overhead of thread synchronization so as to maxi-
mize thread utilization.

VIII. CONCLUSION
In this paper, we study the problem of parallel GED computa-
tion. We propose a novel search algorithm HGED for simul-
taneously traversing the search tree. HGED can quickly find
tighter GED upper bounds, which plays an important role of
pruning a large amount of the search space.We also propose a
dynamic load balancing scheme that aims at minimizing the
synchronization overhead. In the proposed scheme, no run-
ning thread waits for synchronization. Experimental results
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demonstrate HGED significantly outperforms existing GED
computation algorithms. HGED was from 4 to 7 times faster
than the state-of-the art serial algorithm AStar+-LSa, and
from 3 to 6 times faster than the state-of-the art parallel
algorithm PGED.
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