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ABSTRACT Real-time classification of internet traffic is critical for the efficient management of networks.
Classification approaches based on machine learning techniques have shown promising results with high
levels of accuracy. In this article, the suitability of packet-level and flow-level features is validated using
stepwise regression and random forest feature selection. Moreover, the optimal percentage of packets con-
sidered within a flow while extracting flow-level features is determined. Several experiments are conducted
using naïve Bayes, support vector machine, k-nearest neighbor, random forest, and artificial neural networks
on the University of Brescia (UNIBS) and the University of New Brunswick (UNB) datasets, which are both
publicly available. The performed experiments show that 60% of flow packets are a good compromise that
ensures high performance in the least processing time. The results of the conducted experiments indicate
that random forest outperforms other algorithms achieving a maximum accuracy of 98.5% and an F-score
of 0.932. Further, and since software-based classifiers cannot meet the anticipated real-time requirements,
we propose a Field-Programmable Gate Array (FPGA) based random forest implementation that utilizes a
highly pipelined architecture to accelerate such a time-consuming task. The proposed design achieves an
average throughput of 163.24 Gbps, exceeding throughputs of reported hardware-based classifiers that use
comparable approaches, which in turn ensures the continuity of real-time traffic classification at congested
data centers.

INDEX TERMS Feature extraction, FPGA, machine learning, random forest, traffic classification.

I. INTRODUCTION
The Internet has been one of the most important inventions of
the twentieth century. To cope with the increasing number of
internet users, companies are constantly working on enhanc-
ing their internet speeds. The prosperity of the internet and
its growing speeds has allowed more traffic to flow in and
out of the average computing device. However, it also opens
doors for potential threats and malicious attacks. Therefore,
researchers have realized the need for proposing several traf-
fic classification techniques that help manage and control the
flow of network traffic to alleviate the risks involved with
potential threats.

Traffic classification is the association of network traffic
with the application or category of applications that generated
them (for example, Skype, HTTP, SMTP, video streaming,
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and so on). Traffic classification is important for several
reasons [1], namely, ensuring the Quality of Service (QoS)
and Service Level Agreement (SLA) and troubleshooting
abnormal network behavior during unexpected downtimes
whereby network administrators could potentially use it to
identify points of failure within the network. Traffic clas-
sification is also used for traffic shaping and bandwidth
allocation which regulates the flow of network packets to
ensure compliance with a specific traffic profile. Lastly,
traffic classification is used in cyber-security since it helps
recognize malicious classes of traffic that include viruses,
trojans, spyware, and many others. Once a specific flow of
traffic has been labeled as malicious, an Intrusion Detection
System (IDS) can then block out the malicious classes before
they reach the user.

Traffic classification techniques are divided into four
main mechanisms; port-based, Deep Packet Inspection (DPI)
based, heuristic-based, and Machine Learning (ML) based
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techniques [2]. Port-based classification techniques are
largely reliant on the port numbers of the transport layer of the
Open System Interconnection (OSI). However, as communi-
cation protocols evolve, applications started varying their port
numbers dynamically to obfuscate any means of traffic clas-
sification. DPI focuses on invasively checking the payload of
the traffic looking for known signatures that relate to specific
applications to categorize it. Nevertheless, it is also one of the
most time and resource consuming techniques since pattern
matching on application signatures requires lots of computing
power besides the time required to compare a signature to a
database of pre-saved signatures for classification purposes.
Also, some people are worried about the privacy of their
communicated data since they do not wish to be monitored.
Consequently, applications started overcoming this mecha-
nism by encrypting the payloads of their packets to protect
their contents. Accordingly, encryption renders DPI com-
pletely impractical. Furthermore, heuristic techniques tend to
consume lesser resources, produce the output in a shorter time
at the expense of sacrificing the classification quality since it
results in very low accuracies [3].

On the other hand, machine learning classifiers do not
need to know the content of a packet to be able to classify
it, rather, the classifier can classify traffic traces by making
use of their important statistical information. The statistical
information consists mainly of flow-level features like packet
interarrival times, average size, maximum size, and many
more [4]. A flow is defined as a series of packets that share the
same source and destination IP addresses, source and destina-
tion port numbers, and protocol. Moreover, machine learning
techniques tend to offer a greater deal of quality results when
compared to heuristic techniques [3]. In Section II, the dif-
ferent machine learning approaches taken by researchers to
implement a traffic classifier are investigated.

II. RELATED WORK
In this section, existing work within the traffic classification
field is examined to study the progress of research within this
area and pinpoint potential room for advancement.

A. SOFTWARE-BASED TRAFFIC CLASSIFIERS
Software-based implementations of traffic classifiers rely
on software programs that are executed on general-purpose
microprocessors. The authors in [5] used two datasets which
consist of 14 different classes including Skype, FileZilla,
Facebook, Torrent, Twitter, and many more. In their work,
the authors were able to extract an initial set of 111 fea-
tures. WEKA was then used to test four different algorithms,
namely J48, Random Forest, k-Nearest Neighbor (KNN), and
Bayes Net. The results of their experiments show that KNN
(k = 1) and Random Forest have the best performances with
accuracies of 93.94% and 93.74% respectively.

Another study proposed a real-time Support Vector
Machine (SVM) traffic classifier that was implemented
using the CoMo project infrastructure [6]. They select eight
different classes to work with, which are web browsing,

peer-to-peer, DNS, email, network operation, encrypted traf-
fic, chat, and attacks. Each class is modeled as a test function
that is used to determine the probability of an instance belong-
ing to this class. The results obtained from their experiments
show that the system can work at speeds reaching up to
600Mbps. A drawback of such a software system is its ineffi-
ciency in handling high throughputs. This becomes a serious
problem at data centers and Internet Service Providers (ISPs)
operating at 10s and 100s of Gbps [3]. This limitation paves
the way for the introduction of hardware accelerators like
GPUs and FPGAs that can be used to perform the compu-
tationally intensive machine learning operations at speeds of
100s of Gbps.

B. HARDWARE-BASED TRAFFIC CLASSIFIERS
Unlike software classifiers, hardware-based implementations
rely on dedicated hardware designs that are used to speed
up the classification process. The hardware traffic classifiers
are usually implemented using FPGA or GPU-based designs.
The system proposed in [7] suggests using eight candidate
features that describe traffic traces. A C4.5 decision tree
algorithm is used which resulted in the best performance
according to their literature review. The authors suggest the
use of two algorithms when implementing the C4.5 decision
tree on the FPGA, namely, Optimized Decision Tree (ODT)
and Divide and Conquer (DQ). To further optimize those
algorithms for FPGA implementation, the authors decide to
use pipelined architectures for both ODT and DQ whereby
at each clock cycle one input is consumed and one output
is generated. However, the authors did not compare their
achieved throughput to that of software.

The study in [8] suggests a different approach to traffic
classification which uses SVM on an FPGA accelerator.
In contrast to the previous paper, the authors demonstrate both
a software and a hardware implementation of their algorithm
using NetFPGA 10G FPGAs that incorporate four network
interfaces at 10 Gbps each. A potential weakness of their
work is the fact that the generated SVM model was stored
inside a Read-Only Memory (ROM) instead of the faster
Random-Access Memory (RAM). This entails incurring a
long time to reconfigure the FPGA in case the SVM model
needed to be retrained when new application types show up
in the network.

Hardware platforms such as FPGAs are used mainly
because of their advantage in accelerating the computation of
certain complex tasks. They are known to be faster than soft-
ware at intricate computations since they avoid the overhead
of unnecessary software calls. Hardware is also faster because
special architectures can be designed to perform a certain task
more efficiently at the physical layer avoiding the need to go
through the time and resource-consuming process of translat-
ing the high-level code into machine language. FPGAs’ inter-
nal architecture supports true parallelization which enables
real parallel execution of instructions that facilitates amassive
improvement to classification speed compared to software-
based classifiers as well as traditional hardware-based ones.
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Nevertheless, FPGAs tend to suffer from some limitations
including the fact that it is much easier to design a software-
based traffic classifier as opposed to an FPGA-based one.
This is because it is usually very complex to program an
FPGA due to its parallel architecture, as well as the use
of hardware description languages like Verilog Hardware
Description Language (HDL) which tend to be difficult [9].
Also, FPGAs may consume more power compared to special
low-power architected microprocessors or microcontrollers.
Therefore, in data centers where power consumption is criti-
cal the use of FPGAs must be of clear advantage.

III. PROBLEM STATEMENT
The reviewed work did not consider a systematic approach
towards choosing the optimal number of packets to be con-
sidered within a flow to extract flow-level features, rather,
the first n packets within a flow are used. Large values of
n enhance the classification at the expense of increasing the
delay, whereas small values of n result in poor classification
accuracies. In this work, we find n that strikes a compromise
between classification and delay. Moreover, additional flow-
level features are considered to study their effect on classifica-
tion performance. Besides, most of the literature in this field
attempt to build classifiers that make use of the port numbers
which are becoming an obsolete way of classifying traffic
since applications try to dynamically disguise their ports
to obfuscate any means of traffic classification. Therefore,
an efficient classifier that does not depend on port numbers is
devised in this article.

The implementations of software-based traffic classifiers
do not cope with the enormous amount of network traffic
and hence the need for hardware-accelerated traffic classi-
fiers. In the literature, almost all papers did not study and
analyze hardware-implemented random forest network traffic
classifiers. One of the main features of the random forest
algorithm is its ability to generalize well and avoid overfit-
ting to the training set when compared to single decision
trees like C4.5. Therefore, in this article, a hardware-based
network traffic classifier using random forests on FPGA is
proposed.

The contributions of this article can be summarized as
follows:

1. The introduction of a novel set of important features
that rely on entropy to effectively classify network
packets.

2. The reviewed literature does not provide any means
of scientifically selecting the value of n for the first n
packets in a flow that must be considered when extract-
ing flow-level features. In this work, the percentage of
packets within a flow that strikes a balance between
high classification performance and short waiting time
before the packets arrive for feature extraction is
methodically determined.

3. To the best of our knowledge, we introduced a
hardware-based pipelined architecture of a random
forest network traffic classifier that has not been

investigated in the literature before. Its superiority and
usefulness in terms of accuracy and throughput are
shown compared to other machine learning algorithms
in time-critical domains such as real-time traffic clas-
sification.

4. At the hardware implementation level, a novel idea
known as the ‘‘effective address’’ is introduced at each
tree level. Effective Address (EA) helps eliminate the
need to duplicate node information at every tree level;
hence reducing the memory requirements of the ran-
dom forest implementation.

IV. DATASETS
This section discusses the two different datasets that were
used in our experiments, the UNIBS and the UNB datasets.

A. THE UNIVERSITY OF BRESCIA DATASET
The dataset in [10], [11] contains several traffic traces and
their associated ground truth information collected using the
Ground Truth (GT) tool [12], which is a tool developed
in 2009 to obtain the ground truth of a traffic trace. The traffic
traces were captured at the edge router of the university’s
campus network on three consecutive days. Twenty worksta-
tions running the GT tool were used to collect the traces. As a
result, the UNIBS dataset was captured in a non-controlled
environment whereby all types of traffic could flow into the
system with almost no restrictions, and then GT was used to
obtain the ground truth of the captured packets. The UNIBS
dataset resulted in traffic traces of around 27 GB of data. The
traffic classes used from the UNIBS dataset in this work are
Browser, Mail, RSS feed, BitTorrent, and Skype. The number
of packets used from the UNIBS dataset is 45541 packets
of which 22249 belong to Browser, 1291 belong to Mail,
279 belong to RSS feed, 946 belong to BitTorrent, and
20776 belong to Skype.

B. THE UNIVERSITY OF NEW BRUNSWICK DATASET
The UNB dataset [13] was captured in 2016 which makes
it quite recent compared to the 2009 UNIBS dataset. The
collection of the UNB traces was conducted in a controlled
environment which ensured that all services except the target
service were shut down before the collection process started.
In capturing the traffic traces, the researchers used packet
analyzers like Wireshark and tcpdump which resulted in total
traffic of 28 GB of data. The traffic classes used from the
UNB dataset in this work are YouTube, Netflix, Spotify,
Torrent, and Skype. The number of packets used from the
UNB dataset is 99818 packets of which 19996 belong to
YouTube, 20000 belong to Netflix, 19885 belong to Spotify,
19986 belong to Torrent, and 19951 belong to Skype.

V. PROPOSED FEATURE EXTRACTION AND SELECTION
In feature extraction, packet-level and flow-level features
are extracted from both datasets [4], [14]. Table 1 shows
a summary of all the 26 extracted features. The flow-level
features that use entropy were not previously discussed
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TABLE 1. Complete list of extracted features.

in the literature. Entropy refers to the average number of
bits needed to represent the outcome of the experiment. It is
defined as −

∑
pi log2 (pi), where pi is the probability of

occurrence of the event i.

FIGURE 1. UNB entropy interarrival time histogram.

The histogram of each feature per traffic class is plotted.
For example, the entropy interarrival time of the UNB dataset
is shown in Fig. 1. The figure highlights the different distribu-
tion of the UNB entropy interarrival time for the Skype class
compared to all other classes. This figure helps in the pre-
liminary analysis which anticipates that entropy interarrival
time will be retained as an important feature after performing
feature selection. Such a feature is useful in distinguishing the
Skype traffic from the rest since it is distinct from the other
classes.

On the other hand, the histograms of other features showed
that they might not be very useful in differentiating classes
due to the overlap between their values. Fig. 2 shows
the histogram of the flow duration of the UNIBS dataset.

FIGURE 2. UNIBS flow duration histogram.

The figure shows very similar distributions of UNIBS flow
duration among the five different classes which suggests that
the feature might be discarded through feature selection as
it does not differentiate well between the different traffic
classes. Therefore, these histograms help in gaining a good
first insight into the distribution of the different features and
their importance to the classification performance. Never-
theless, it is difficult to solely rely on these histograms to
determinewhat features to retain andwhat features to discard.
Hence, feature selection algorithms are used to identify the
most important features.

In this work, two feature selection algorithms are used to
retain the most important features among the 26 extracted
features, namely, Stepwise Regression (SWR) [15] with a
minimum p-value of 0.025 and Random Forest (RF) feature
selection with a threshold of 90%.

Table 2 and Table 3 show the selected features using step-
wise regression from the UNIBS and UNB datasets, respec-
tively, while Table 4 and Table 5 show the selected features
using random forest from the UNIBS and UNB datasets,
respectively.

It is interesting to see that the entropy of interarrival time
is retained by both algorithms whilst the flow duration is
discarded by both. This reassures the initial analysis of the
histograms presented in Fig. 1 and Fig. 2.

VI. SOFTWARE IMPLEMENTATION
In the proposed software implementation of the traffic clas-
sifier, a 10-fold cross-validation experiment is performed
on seven different subsets of features shown in Table 6 to
investigate the effect of using each combination of features
on the performance of the classifiers. Five different classifiers
are built, namely, naïve Bayes, linear SVM, second-order
polynomial SVM, KNN, and random forest. To ensure fair-
ness when comparing the different models, the training and
testing process was done on the same training and testing sets.
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TABLE 2. UNIBS features retained by stepwise regression.

TABLE 3. UNB features retained by stepwise regression.

TABLE 4. UNIBS features retained by random forest.

That is, the same seed in random number generators was used
to recreate the same environment and ensure the comparison
is fair among all algorithms.

The port-less experiments are very important since, in the
worst-case scenario, if port numbers were dynamically
changed by the different applications, they will no longer
influence the classification process. Therefore, one of the
aims of this article is to build classifiers that could counteract
the obfuscation process and still be able to classify traffic
without the need to have fixed port numbers per application.

Also, the software system is required to wait for a number
of packets within a flow to extract flow-level features. In this

TABLE 5. UNB features retained by random forest.

TABLE 6. Feature subsets.

work, the percentage of packets used to extract flow-level
features in every flow is varied such that the packet percent-
age varies from 10% to 100% of the packets in a flow using
the 10-fold cross-validation method. The average wait time
to receive the required percentage of packets is also plotted
against the percentage of packets used from the traffic flow.
As such, the most optimal packet percentage required for
flow-level feature extraction is obtained.

To find out the optimal number of trees within the random
forest that would lead to the best classification performance,
the average out-of-bag error is plotted against the number
of trees within the forest. To do so, the number of trees
is varied from 1 to 500 for both datasets. Consequently,
the optimal number of trees is found to be approximately
50 trees.

VII. HARDWARE IMPLEMENTATION
In the software-based experimental results demonstrated in
Section VIII, it is shown that the random forest algorithm
tends to outperform all other algorithms in terms of classifica-
tion F-score. In this work, the macro-averaged F-score is used
to calculate the arithmetic mean of the per-class F-scores.
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Hence, we choose to design a hardware accelerator based on
a random forest classifier using Verilog HDL to speed up the
classification process using hardware. Therefore, the highly
parallel architecture of FPGAs is exploited to accelerate the
design even further.

In a different implementation domain, authors in [16]
suggested two possible architectures for a random for-
est implementation on hardware, memory-centric and
comparator-centric. The memory-centric approach enables
a quick context switching from one random forest model
to another through simply loading new node information
into the tree level memory. On the contrary, the comparator-
centric approach results in very high consumption of FPGA
comparators, while requiring no memory elements to store
the node information. Keeping in mind the use of two
datasets, this entails the need to incorporate the context
switching feature of the memory-centric architecture. There-
fore, in this article, and with noticeable modifications to the
implementation suggested in [16], the proposed implementa-
tion will follow the memory-centric approach.

In this section, the hardware design of the proposed random
forest classifier is discussed in detail. The DE2-115 devel-
opment board manufactured by Terasic Inc. which features
a Cyclone IV E FPGA chip designed and manufactured by
Altera (now Intel) is used. This work focuses on the random
forest classifier core and assumes the existence of an interface
between the core and the networkmodule used to receive real-
time traffic.

In the proposed implementation, the 26 features are
encoded using binary numbers where each feature is encoded
as a 58-bit fixed-point number. Fixed-point was chosen
instead of floating-point since it usually results in a much
simpler hardware design which tends to be faster than a
floating-point architecture. Each of the 26 features is encoded
such that 30 bits resemble the integer part and 28 bits are used
to describe the fractional part of the number. This results in
an encoding scheme that requires 1508 bits to describe the
26 features of one network packet. Note that only the features
that were retained by random forest feature selection (shown
in Table 4 and Table 5 ), excluding port numbers, were used to
build the final random forest model. Encoding the full feature
set here simply means accounting for the extraction of the full
feature set. Nevertheless, only selected features are used for
classification.

The main objective while designing the random forest
classifier in hardware is to identify independent components
that can work simultaneously without affecting the operation
of one another. The most obvious independent components
are the individual trees within the forest since a test instance is
simply passed down each tree regardless of the output of the
other trees. The structure of the independent trees is shown
in Fig. 3 which offers an overview of the hardware-based
random forest design. The figure shows that the test packet
is registered at an input register which introduces a one-cycle
delay. Once the test instance reaches the trees it goes into the
different levels of the trees. Each tree level will pass on the

packet to the next level within the tree for more checks, along
with the address of the next node in the tree.

FIGURE 3. Hardware-based random forest design overview.

The execution of each level within the tree is also one more
aspect that requires attention. Each tree level examines only
one packet at a time, therefore, instead of treating the entire
tree as one bulky component, pipeline stages are inserted
between the different tree levels. This is yet another aspect
where the proposed design exploits the parallel execution
capabilities of FPGAs since now tree levels can operate
simultaneously and independently with respect to all other
levels within the tree. The output of level m is either the
class label in the case of a majority-based random forest or
class probabilities in the case of a probability-based random
forest. After that, the outputs of all trees are fed into a module
known as ‘‘Class Tally.’’ The Class Tally module will simply
aggregate the results of all trees and will then pass the results
to the ‘‘Voter’’ module. The Voter module will eventually
choose the most occurring class (majority-based) or the class
with the highest probability (probability-based) to be the class
label of the data instance. Lastly, to further add on to the
highly pipelined architecture, an output register is used to
simply register the output class such that it can be displayed
to the user promptly.

One of the contributions of this work is the introduction of
the concept of effective address within the proposed design.
Effective Address (EA) is the address of a node in its respec-
tive tree-level starting from effective address 0 for the first
node in level m. The effective address helps eliminate the
need to duplicate node information at every tree level; hence
reducing the memory requirements of the random forest
implementation. The effective address of a node within level
m can be calculated using (1), where the original address is
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the actual node number within the whole tree.

EA = Original Address − 2m + 1 (1)

FIGURE 4. Tree level architecture.

Fig. 4 shows the hardware components inside a tree level.
Firstly, the effective address is computed using a subtractor
and an adder. The effective address is then used to index the
tree memory which holds the information about all nodes
within the respective tree level. The tree memory will fetch
the feature index which is simply the index of the feature
being checked within this node. As mentioned in Section V,
26 features have been extracted, so feature index is a number
between 0 and 25. The feature index is then used as selection
lines to a multiplexer that will enable the value of only the
feature under inspection to pass through for comparison. The
tree memory will also provide the feature threshold which is
the value against which the feature value is compared. The
comparator checks whether the selected feature is greater
than the feature threshold. The result of the comparison is
then used to calculate the next address.

FIGURE 5. Tree memory design.

Fig. 5 gives a better insight into the design of the tree mem-
ory and shows how the different fields of a node in the tree
are stored in the memory. To exploit the parallel capabilities
of the FPGAs, the on-chip RAM is used to act as the tree
memory and store all the node information. This is due to
the ability of an FPGA to restructure its on-chip memory
on-demand such that each tree level can have simultaneous
access to its tree-level memory without creating a memory
access bottleneck at the other levels of the same tree or even
other trees in the forest. By doing so, all levels in all trees can
fetch their node information at the same time.

FIGURE 6. Class tally module design (probability-based).

The Class Tally module of a probability-based algorithm
finds the sum of probabilities of each class resulting from the
probabilities obtained from each decision tree. Fig. 6 shows
that each class has a dedicated adder to calculate the sum of
the probabilities of the corresponding class. The output of the
Class Tally module is the sum of all probabilities for each
class.

Fig. 7 shows the architecture of the Voter module of a
probability-based model.

FIGURE 7. Voter module architecture (probability-based).

The Voter module selects the class with the highest sum
of probabilities. The k probabilities are simply compared and
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the class with the highest probability is chosen. The values
of class 1 probability and class 2 probability are compared
using a comparator. The result of the comparison is used
as a selection line to a multiplexer that routes the class
with a higher probability for further comparisons. To keep
track of which class count was routed through the multi-
plexer, the CLASS_LABEL, which is a number from 1 to
k that represents the class, is concatenated with the class
probability corresponding to it. Hence, Count k consists of
{CLASS_LABEL, Class k Probability}. This process repeats
until the last multiplexer routes the CLASS_LABEL with
the highest probability declaring it as the traffic class of the
current packet.

VIII. EXPERIMENTAL RESULTS
In this section, the results obtained using the various exper-
iments described in Sections VI and VII are discussed. This
section discusses the software-based classifier performance
followed by the FPGA implementation and results.

TABLE 7. UNIBS F-scores of the 10-fold cross-validation experiment.

A. SOFTWARE-BASED CLASSIFIER PERFORMANCE
Table 7 and Fig. 8 show the F-scores of the different classi-
fiers in a 10-fold cross-validation experiment on the UNIBS
dataset using the scikit-learn library in Python. The UNB
F-scores tend to show similar trends, hence only the UNIBS
results are shown for brevity. The experiments are repeated
using the different feature subsets reported in Table 6. Note
that, the feature subsets denoted with ∗ are the ones without
port numbers. F-score results tend to highlight the difference
in performance between random forest and all other classi-
fiers. This is obvious in the port-less cases where random
forest is always above 0.9 whereas other classifiers are almost
always below 0.8. Besides, such a high F-score suggests
that random forests are not overfitting to the training data.
Another observation is that the features selected by the ran-
dom forest feature selection algorithm yield a higher F-score
than the ‘‘all features without port numbers’’ case using a ran-
dom forest classifier. This is when feature selection boosts the
classification performance after removing irrelevant features.
Also, RF features tend to provide slightly better results when
compared to the SWR features.

To further investigate the performance of the random forest
classifier, the best performer, its behavior is examined in
terms of false positive, false negative, precision, and recall.

FIGURE 8. UNIBS f-score.

FIGURE 9. Random forest confusion matrix.

Precision is the percentage of packets that were labeled posi-
tive and are originally positive, while recall is the percentage
of positive packets that were labeled positive. Fig. 9 shows
the confusionmatrix resulting from the 10-fold random forest
cross-validation experiment using the UNIBS dataset. In this
experiment, the features retained by the random forest fea-
ture selection algorithm without port numbers were used.
Table 8 summarizes these key performance measures. The
table shows that the random forest model has a very high
probability of classifying most of the packets correctly. Nev-
ertheless, the recall results indicate that themodel is weaker at
classifyingMail and RSS packets sincemany positive packets
were mislabeled compared to other classes. This could be
explained by the class imbalance problem of the UNIBS
dataset resulting in slightly poorer performance on classes
with a lower number of packets.

To ensure that the previously mentioned cross-validation
results were not obtained through chance the Student’s t-test
for dependent samples is performed between the different
folds to verify whether they have similar average values. If so,
this would suggest that the obtained results could generalize
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TABLE 8. Random forest performance measures.

well on future unseen network packets. The null hypothesis
of the t-test states that the mean values of the different folds
are identical. The selected significance level (alpha) is 0.05.
The results prove that the p-values of all features across all
the folds are considerably larger than the significance level.
This implies that the null hypothesis that the mean values
are identical cannot be rejected which further strengthens the
claim that the results can generalize well to future unseen
network packets.

The algorithms examined so far are traditional machine
learning algorithms. To study a different dimension of the
problem, the performance of more sophisticated systems
such as Artificial Neural Networks (ANN) is investigated.
Therefore, the UNIBS dataset was used to build a Multilayer
Perceptron (MLP) artificial neural network using the features
retained by random forest without port numbers. The ANN
optimizes the log-loss function using a stochastic gradient-
based optimizer where the activation function used is the
logistic function and the number of hidden layers is one.
The number of neurons in the hidden layer is the average of
the number of input neurons and output neurons since it is
common to use this average in the case of one hidden layer.
Moreover, the dataset was normalized before feeding it into
the ANN to avoid the oscillation of the learning process. The
obtained classification accuracy is 92.9%, and the F-score
is 0.644. These results fall behind the random forest model
which further supports the claim that random forest classifiers
are the best performers among the tested algorithms in the
domain of network traffic classification.

FIGURE 10. UNIBS all features (without ports) – f-score vs. percentage of
considered packets within a flow.

Furthermore, Fig. 10 shows clearly that as the percentage
of packets considered for flow-level feature extraction is
increased, the accuracy of the classification increases. It is
obvious that random forest starts with an F-score of almost
0.74 at 10% of flow packets, but it eventually reaches around
0.93 at 100% of packets. This plot also shows the wide gap of
performance between random forest and its next competitor,
KNN. It is also noticeable from this figure that the F-scores
of the best performers, random forest and KNN, saturate
at almost 60% of packets in a flow with KNN reaching an
F-score of about 0.75 and random forest reaching an F-score
of approximately 0.91. Therefore, it seems reasonable to
choose 60% of the packets within a flow to be able to classify
the flow with high accuracy and F-scores.

FIGURE 11. Average flow duration vs. percentage of considered packets
within a flow.

To investigate the effect of packet percentage within a flow
on the waiting time required to obtain the necessary packets
prior to classifying a network flow, the average flow duration
is plotted against the percentage of considered packets within
a flow as shown in Fig. 11. It is found that the average required
time to wait for 60% of the flow packets is around 21ms using
the UNIBS dataset. On the other hand, the reported results
using the UNB dataset looks more like two flat straight lines
with a very minor jump in between. Therefore, this endorses
the previous arguments that the behavior of a real network
cannot be accurately simulated using the UNB dataset since
it was collected in a controlled environment.

B. HARDWARE-BASED CLASSIFIER PERFORMANCE
The scikit-learn library in Python was used to train the
random forest classifier offline using both a majority-based
model and a probability-based model. Unfortunately, the
scikit-learn library does not produce complete trees, there-
fore, some levels in the trees might be missing nodes since
leaf nodes appear at an earlier level of the tree. This is
problematic with the hardware design since all trees need to
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have the same number of levels and the levels need to be
complete to ease the hardware design. Therefore, a Python
script was developed to train a random forest classifier while
making sure that the produced trees are complete.

Fitting the entire random forest on the FPGA chip will
be very difficult due to memory limitations and the limited
number of Configurable Logic Blocks (CLBs) available on
the chip. As a result, an experiment is conducted whereby
the number of trees in the forest is varied from 1 to 50 trees
(the optimal number of trees according to the previous exper-
iments). Meanwhile, the maximum number of levels per tree
that the FPGA chip can sustain is observed. After that, the
classification F-score of the generated model is checked to
find out the combination of trees and levels that yield the best
classification performance when implemented in hardware.

FIGURE 12. UNIBS f-score – effect of the number of trees and levels on
f-score.

FIGURE 13. UNB f-score - effect of the number of trees and levels on
f-score.

Fig. 12 and Fig. 13 show the F-score for the UNIBS and
UNB datasets respectively, using the respective test sets.
Upon inspecting the graphs, it is confirmed that when the
number of levels in a tree reduces the classification perfor-
mance drops. Therefore, the graphs show that fitting a greater

TABLE 9. FPGA model vs. software optimal model for the UNIBS dataset.

number of trees on the FPGA chip means that the number of
levels in each tree must be reduced which results in lower
classification accuracy. Therefore, one of the objectives of
this work is to find the optimal combination of the number
of trees and the number of levels that yield the best classifi-
cation performance. The graphs show that the F-score peaks
at 2 trees each tree having 14 tree levels using the UNIBS
dataset and 9 trees each with 12 tree levels using the UNB
dataset.

Table 9 shows the comparison in terms of classification
accuracy, F-score, Cohen’s kappa statistic, and Area Under
the Curve (AUC) of the Receiver Operating Characteris-
tic (ROC) between the hardware-based models and the opti-
mal software-based models obtained using Python for the
UNIBS dataset. By default, ROC is defined for binary classi-
fication problems and is not suitable for multi-class problems
like the problem in hand. Therefore, to expand it to multi-
class problems the network traffic classification problem is
binarized using the one-vs-one approach, and the weighted
average mechanism is used to report a single ROC value to
account for class imbalance. However, the AUC ROC cannot
be reported as a single number for multi-class problems that
use a majority-based classification. Hence N/A was inserted
in the place of theAUCROC formajority-basedmodels. In all
cases the probability-based (prob.) random forest models
outperform the majority-based models. Even though going
from software to hardware the number of trees reduced from
50 (optimal number of trees) to 20 and the number of levels
reduced from 32 to 10, the changes in the performance mea-
sures were insignificant.

Table 10 shows the comparison between the hardware
model (20-trees, 10-levels), the pruned software model
(20-trees, 10-levels), and the fully-grown software model
(20-trees, fully grown) using the UNIBS dataset. The hard-
ware results are identical to the pruned software results due
to the precision of the Python script in converting the trained
softwaremodel to its hardware counterpart. Also, the compar-
ison between the hardware performance and the fully-grown
software performance reassures that not much performance
is lost when using a pruned tree.

It is also essential to perform a timing analysis of the syn-
thesized circuit to ensure that it meets all timing requirements.
The maximum frequency at which the proposed random for-
est design can operate is found to be approximately 35 MHz.
Hence, the period is calculated as 28.571 ns. As a result of
using a highly pipelined architecture, one classification can
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FIGURE 14. Logic analyzer’s waveform.

TABLE 10. FPGA model vs. pruned software model vs. fully-grown
software model for the UNIBS dataset.

be obtained every clock cycle once the pipeline is full. This
means that one packet is classified every 28.571 ns. On the
other hand, the average time taken to classify a packet in
software was found to be 2.6469 µs and 1.3624 µs using
the UNIBS and UNB datasets, respectively. The difference
in classification time results from the different structures of
the random forest trees built using the two datasets. These
numbers reflect the enormous speedup obtained using the
hardware acceleration of the random forest algorithm. The
speedup can be defined as the increase in execution speed
when using one system in place of another. Mathematically,
the speedup can be calculated using (2):

Speedup =
Software− Based Classification Time
Hardware− Based Classification Time

(2)

UNIBS Speedup = 2.6469 µ s / 28.571 ns = 92.64
UNB Speedup = 1.3624 µ s / 28.571 ns = 47.68
Therefore, compared to the software implementation of a

random forest algorithm, the hardware accelerator can be up
to 92 times faster when classifying a packet in the UNIBS
dataset, and 47 times faster when classifying a packet in
the UNB dataset. This is an encouraging result since the
objective is to deploy such an accelerator at data centers that
handle millions of network packets per second. To find out
the average throughput achieved by the design, the average
packet size of the UNIBS and UNB datasets was found to be
626 bytes per packet using Wireshark. Using a 35 MHz clock
means that approximately 35million packets can be classified
per second. This results in a total throughput of 35M (packets
classified per second) multiplied by 626 (average packet size)
which translates to a throughput of 163.24 Gbps. Hence, the
average throughput achieved by the proposed random forest
design is 163.24 Gbps.

To further verify the operation of the random forest classi-
fier, the Tektronix LA6401 logic analyzer is used to inspect
the signals of the random forest module on the FPGA. This
helps analyze, test, and debug the circuit in case of any
misbehavior. To do so, the important signals of the ran-

dom forest module are projected onto the GPIO pins of the
DE2-115 board. Those signals include the master clock,
the reset, and the class label signals. After that, the logic
analyzer’s probes are connected to the GPIO pins to
record the behavior of those signals. Note that, the pack-
ets used are known to be of classes 1, 2, 3, 4, and 5,
respectively.

Fig. 14 shows the waveform obtained using the logic ana-
lyzer where the clock signal runs at 35 MHz. After hitting
the reset signal, the first packet is passed to the random forest
classifier at the first negative edge of the clock. After 12 clock
cycles, which is the time it takes the packet to pass through
all pipeline stages in the design, the module starts producing
the class label of the first packet followed by the successive
classes. Notice that, the output during the first 12 clock cycles
is treated as a ‘‘do not care.’’ Table 11 shows a summary of the
FPGA resource utilization after implementing the (20-trees,
10-levels) random forest model.

TABLE 11. FPGA resource utilization.

Fig. 15 shows the final prototype of the random forest
network traffic classifier implemented on the DE2-115 board.
The seven-segment display is used to output the current
packet’s traffic class to the user. In this figure, it is observed
that the current packet is of class 5 (Skype).

Table 12 shows a summary of the obtained accuracies and
F-scores from the literature compared to the ones obtained
in our experiments. Note that some of the reviewed work did
not report the F-score results, which made the comparison
slightly more difficult as two papers surpassed the obtained
F-score, while one paper fell behind. On the other hand,
the proposed design surpasses all the reviewed work in terms
of classification accuracy.
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FIGURE 15. Class 5 on the DE2-115 board.

TABLE 12. Summary of accuracies and F-scores in the literature.

TABLE 13. Summary of throughputs in the literature.

The maximum throughput achieved due to implementing
the random forest algorithm on an FPGA is also examined.
Although this work, to the best of our knowledge, is the first
attempt to accelerate a random forest-based network traffic
classifier on an FPGA, nonetheless, the achieved throughput
is compared to that of the other implementations including
C4.5 decision tree and SVMbased classifiers. Table 13 shows
a summary of the obtained throughputs from the literature.
The maximum throughput achieved by the proposed random
forest accelerator is 163.24 Gbps. This is more than twice as
fast as the maximum reported throughput in Table 13.

C. DISCUSSION OF RESULTS
Traffic classification is a non-linearly separable problem
since it is very difficult to linearly differentiate between
packets that travel across the network; therefore, a non-linear
classifier was needed. This is the reason why naïve Bayes,
which leads to a linear decision boundary in most cases,
is the worst among all tested classifiers. The second worst

performer is linear SVM, another linear classifier, which
tries to determine yet another linear decision boundary that
separates between the classes under investigation. Mov-
ing from linear SVM to just second-order polynomial
SVM enhances the performance significantly which further
endorses the previously mentioned claim. The same justifica-
tion applies to KNN which attempts to find a complex non-
linear decision boundary to distinguish the different classes.
That is why the results of KNN are comparable to 2nd order
polynomial SVM.

As the design moves away from linear classifiers and
towards non-linear ones, the classification performance is
improved significantly. Decision trees are known to be very
suitable for non-linearly separable domains. Hence, many
researchers proposed the use of decision tree-based classi-
fiers like C4.5 [7]. Nevertheless, one of the main features
of the random forest algorithm is its ability to generalize
well and avoid overfitting to the training set when com-
pared to single decision trees like C4.5. Moreover, ran-
dom forests are less influenced by outliers than the previ-
ously mentioned algorithms. Additionally, random forests
do not make any assumptions about the distribution of the
extracted features, and hence they handle possible collinear-
ity between the features. This in turn enables random forests
to build more predictive models that are not impacted by such
collinearity.

To the best of our knowledge, researchers have not investi-
gated a random forest-based network classifier on FPGAs,
hence this was a great opportunity to add to the literature
body. Furthermore, the fact that the structure of random forest
trees relies heavily on parallelism since each decision tree
within the forest operates independently and in parallel with
the other trees, was a very intriguing idea in conjunction with
the ability of FPGAs to support highly parallel architectures.
Therefore, FPGAs are the most suitable accelerators for ran-
dom forests since they both have the idea of parallelism at
their core structures.

On the other hand, ANN and deep learning models are
very powerful, yet they are not suitable for every application.
Deep learning is usually superior at handling more complex
problems that contain lots of unstructured data such as image
processing, natural language processing, speech recognition,
and many others. However, well-defined problems like traffic
classification which consist of structured data (features are
organized in packet headers) do not need a complex feature
engineering process. Hence, it is more likely that traditional
machine learning algorithms will perform better and will
certainly consume fewer resources and time compared to
deep learning ones.

IX. CONCLUSION
In this article, several experiments were conducted on two
publicly available datasets, UNIBS and UNB, whereby
the traffic traces were run through several machine learn-
ing algorithms like naïve Bayes, linear SVM, polynomial
SVM, KNN, random forest, and artificial neural networks.

175648 VOLUME 8, 2020



M. Elnawawy et al.: FPGA-Based Network Traffic Classification Using ML

The suitability of the extracted feature variables was vali-
dated using stepwise regression and random forest feature
selection. Random forest resulted in the highest classifica-
tion accuracy of 98.5% and an F-score of 0.932. It was
proved that the most optimal percentage of packets within
a flow that needs to be considered when extracting flow-
level features is around 60% which required a waiting time
of about 21 ms using the UNIBS dataset. Moreover, a ran-
dom forest network traffic classifier hardware accelerator
was designed on the DE2-115 FPGA board that consists
of 20 trees each having 10 tree levels. Results show that
the FPGA-based random forest traffic classifier achieves
96.5% accuracy and 0.834 F-score. Furthermore, the speedup
obtained using hardware acceleration compared to software
reaches 92.64 and 47.68 on the UNIBS and UNB datasets,
respectively, while boosting the classification speed signif-
icantly resulting in average throughput of 163.24 Gbps.
The achieved throughput enables the real-life deployment
of the proposed design at data centers operating at 10s
and 100s of Gbps.
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