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ABSTRACT Initial condition-relied extreme multistability has been recently found in many continuous
dynamical systems. However, such a specific phenomenon has not yet been discovered in a discrete
iterative map. To investigate this phenomenon, this paper proposes a two-dimensional conservative map
only with one sine nonlinearity. The proposed simple discrete map is area-preserving in the phase space and
displays the coexistence of infinite chaotic and quasi-periodic orbits caused by infinite fixed points. Multiple
numerical results indicate that the area-preserving chaotic and quasi-periodic orbits have the initial condition-
relied quasi-periodic route to chaos and initial condition-boosting bifurcation dynamics, which allow the
simple area-preserving map to emerge the complex phenomenon of extreme multistability. Furthermore,
a microcontroller-based hardware platform is developed to implement the initial condition-boosting chaotic
signals.

INDEX TERMS Area-preserving map, initial condition, extreme multistability, quasi-periodic route.

I. INTRODUCTION
Discrete iterative maps are closely associated with
continuous-time dynamical flows arisen in physical probl-
ems [1]–[3]. In fact, discrete iterative map is a spe-
cific dynamical system with instant states described by
continuous-time variables, which can seize the essential
behavior of the dynamical flow. Despite the greater simplicity
in their mathematical models, discrete iterative maps can also
display chaotic behaviors [4]–[6], which are attracting much
attention due to their engineering application merits [7]–[9].

Multistability has been revealed in physical and experi-
mental dynamical systems as well as in pure mathematical
models [10]. Multiple self-excited or hidden coexisting
attractors with respective basins of attraction can be
found in a variety of continuous ordinary differential sys-
tems [11], [12]. Recently, by designing the special equilib-
rium curves, several interesting multi-stable systems were
developed and their coexisting convergent attractors were
uncovered by Sambas et al. in [13]. Importantly, when the
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number of coexisting multiple attractors goes to infin-
ity, such a coexistence phenomenon is defined as extreme
multistability, which is closely relied on the initial con-
ditions and has been reported in many continuous-time
dynamical systems [14], [15]. Similarly, the phenomenon
of multistability can be also observed in numerous discrete
iterative maps of difference equations, including the kicked
rotor map [2], bistable Hénon map [16], nonlinear hyper-
chaotic map [17], three-degree-of-freedom vibro-impact sys-
tem [18], two-dimensional sine map with initials-boosted
coexisting chaos [19], and two-dimensional memristive
hyperchaotic maps [20]. However, such an initial condition-
relied extreme multistability has not yet been found in a
discrete iterative map.

Extreme multistability can be often encountered is some
specific continuous-time dynamical systems. Because of the
multi-stable line or plane equilibrium aroused by mem-
ristors, initial condition-relied extreme multistability with
complex bifurcation routes was emerged in memristor-
based chaotic circuits and systems [21]. By contrast, due
to the infinitely many isolated equilibria caused by periodic
nonlinearities, initial condition-boosting infinite attractors
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were found in some periodic function-based offset-boostable
dynamical systems [22], [23]. Furthermore, by introduc-
ing a memristor with periodic memductance into an offset-
boostable linear system, a new memristive chaotic system
was presented [24], [25], from which extreme multista-
bility with the initial condition-relied bifurcation route to
chaos and boosting bifurcation dynamics were disclosed.
Recently, a simple two-dimensional hyperchaotic discrete
map was constructed by inducting sine nonlinearity, from
which the initial condition-boosting bifurcation dynamics
was reported [26]. Then, how to implement the initial
condition-relied extreme multistabili-ty in a simple dis-
crete iterative map? This paper will propose a simple area-
preserving map, which can serve to exemplify the initial
condition-relied extreme multistability.

Many important physical problems can be simplified into
the solutions of conservative systems with two degrees of
freedom, i.e. the solutions of discrete area-preserving maps
of a two-dimensional domain onto itself [27]. Beyond their
theoretical appeal, the discrete area-preserving maps play an
important role in numerous engineering fields [28]. Thus,
the understanding and interpretation is warranted to gain
deeper insight into the fundamental natures of the considered
phenomena. For the proposed simple area-preserving map,
this paper will focus on its initial condition-relied bifurcation
behaviors, involving the quasi-periodic route to chaos and
boosting bifurcation dynamics.

The rest of this paper is structured as follows. Section II
proposes a simple area-preserving map, and investigates its
stability of infinite fixed points and parameter-dependent
bifurcation behaviors. Section III studies extreme multista-
bility with boosting bifurcation dynamics, including the ini-
tial condition-relied quasi-periodic route to chaos and initial
condition-boosting bifurcation behaviors. Section IV devel-
ops a microcontroller-based hardware platform to imple-
ment the initial condition-boosting chaotic signals. Finally,
Section V presents some conclusions.

II. PROPOSED SIMPLE AREA-PRESERVING MAP
This section proposes a simple area-preserving map, which
is a two-dimensional discrete conservative chaotic map. The
stability of infinite fixed points is analyzed. And then the
parameter-dependent bifurcation behaviors are investigated.

A. MODEL DESCRIPTIONS
The simple area-preserving map is simplified from the
Poincaré Map associated with the rotator state in the motion
of a kicked rotator when the pivot is frictionless and only one
periodic kick is considered [1], [2].Without loss of generality,
the proposed simple area-preserving map is mathematically
modeled by {

xn+1 = xn + a sin(xn + yn)
yn+1 = xn + yn

(1)

where xn and yn represent two variables at discrete time n, and
a is the only nonzero parameter. Thus, there is only one sine

nonlinearity in the proposed map model. Besides, because
of the odd symmetry of sine nonlinearity, the proposed map
model has reflection symmetry (x, y)→ (–x, –y), i.e. reflec-
tion about the origin (0, 0).

The map in (1) is area-preserving for any value of the
nonzero parameter a, which can be proved by the determinant
of its Jacobian matrix. The Jacobian matrix of the proposed
map can be derived from (1) as

J =
[
1+ a cos(xn + yn) a cos(xn + yn)

1 1

]
(2)

Obviously, the determinant of the above matrix can be
obtained by

det(J) = 1 (3)

Consequently, the dynamics of the proposed map is area-
preserving [29], [30] and its phase space decreases to the sur-
face of a torus [1], completely different from the dissipative
map [26], [31].

B. INFINITE FIXED POINTS AND STABILITY
The stability of a discrete map involves its fixed point. The
fixed point, denoted as P = (x∗, y∗), of the simple area-
preserving map in (1) is the real solution of the following
equations {

x∗ = x∗ + a sin(x∗ + y∗)
y∗ = x∗ + y∗

(4)

Clearly, the fixed point can be expressed as

P = (x∗, y∗) = (0,mπ ) (5)

where m is an integer number. Hence, the simple area-
preserving map has the infinite fixed points with period π .

Substituting x∗ = 0 and y∗ = mπ into (2), the Jacobian
matrix of the simple area-preserving map (1) at P is given by

J =
[
1+ a cosmπ a cosmπ

1 1

]
(6)

Then, the corresponding characteristic polynomial is yielded
as

det(1λ− J) = λ2 − (2+ a cosmπ )λ+ 1 (7)

The stability of P is analyzed by evaluating the eigenvalues
of (7). Denote λ1 and λ2 as the two eigenvalues. If |λ1| < 1
and |λ2| < 1, the fixed point is asymptotically stable, whereas
if |λ1| > 1 or (and) |λ2| > 1, the fixed point is unstable. From
(7), the two eigenvalues are calculated as

λ1 = 1+ 0.5a cosmπ +
√
(1+ 0.5a cosmπ )2 − 1

λ2 = 1+ 0.5a cosmπ −
√
(1+ 0.5a cosmπ )2 − 1 (8)

Clearly, two cases appear in (8), as follows:
Case I: m = 2k (k is an integer).
There yields cos(mπ) = 1. The absolute values of two

eigenvalues λ1 and λ2 related to the parameter a can be
plotted in Fig. 1 (left). As can be observed, for −4 ≤ a ≤ 0,
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FIGURE 1. The absolute values of two eigenvalues λ1 and λ2 versus the
parameter a.

the two eigenvalues λ1 and λ2 are always on the unit circle,
i.e. |λ1| = |λ2| = 1, indicating that the fixed points are
in critical states; for a < −4 and a > 0, one of the two
eigenvalues λ1 and λ2 is always outside the unit circle, i.e.
|λ1| > 1 or |λ2| > 1, resulting in that the fixed points are
unstable.
Case II: m = 2k + 1 (k is an integer).
There obtains cos(mπ) = −1. The absolute values of

two eigenvalues λ1 and λ2 related to the parameter a can
be plotted in Fig. 1 (right). As can be seen, for 0 ≤ a ≤ 4,
the two eigenvalues λ1 and λ2 are always on the unit circle,
i.e. |λ1| = |λ2| = 1, implying that the fixed points are
in critical states; for a < 0 and a > 4, one of the two
eigenvalues λ1 and λ2 is always outside the unit circle, i.e.
|λ1| > 1 or |λ2| > 1, leading to that the fixed points are
unstable.

Consequently, the proposed simple area-preserving map
owns the infinite fixed points consisting of the critical points
and unstable points.

C. QUASI-PERIODIC ROUTE TO CHAOS
Based on the discrete model of simple area-preserving map,
the parameter-dependent bifurcation behaviors can be studied
using the bifurcation diagrams, finite-time Lyapunov expo-
nent (LE) spectra and phase portraits. Note that the finite-time
LE spectra are calculated by employing the Wolf’s Jacobian-
based algorithm.

The first set of initial conditions and parameter interval
are determined as (x0, y0) = (−1, 0.8) and a ∈ [−4, −0.5].
The bifurcation diagrams and finite-time LEs (LE1, LE2)
are simulated, as shown in Fig. 2(a), where the pink and
dark-green trajectories in Fig. 2(a) (bottom) represent the
bifurcation diagrams of the variables x and y respectively.
As can be clearly seen, the largest LE1 is positive in the
parameter interval [−2.3184, −2.2625] and the sum of two
LEs is equal to zero, well demonstrating the existence of
chaos and the conservation of map (1) [32].

The second set of initial conditions and parameter interval
are conditionally selected as (x0, y0) = (−1, 0.8−π) and a ∈
[0.5, 4]. Similarly, the bifurcation diagrams and finite-time
LEs are simulated, as shown in Fig. 2(b), where the purple
and regent-blue trajectories in Fig. 2(b) (bottom) stand for
the bifurcation diagrams of the variables x and y respectively.
Besides, the largest LE1 is positive in the interval [2.2625,
2.3184] and the sum of two LEs equals zero. In particular,

FIGURE 2. For two sets of initial conditions and parameter intervals,
parameter-dependent bifurcation diagrams (bottom) and finite-time LEs
(top) with the variations of the parameter a, where the partial enlarged
drawings are embedded. (a) First set of (x0, y0) = (−1, 0.8) and a ∈ [−4,
−0.5], (b) second set of (x0, y0) = (−1, 0.8−π) and a ∈ [0.5, 4].

the bifurcation behaviors disclosed in Fig. 2 have a nice
symmetry in two symmetric parameter intervals, which just
correspond to the two cases of infinite fixed points given
in Fig. 1 as two sets of specific initial conditions are con-
sidered. But the difference is that the bifurcation diagram of
the variable y in Fig. 2(b) is boosted by a −π offset along
the y-axis due to the occurrence of the−π offset in the initial
condition y0.

The well-known Hénon map [33] undergoes the period-
doubling route to chaos as its control parameters are changed,
which is usually encountered in nonlinear continuous and
discrete dynamical systems [34], [35]. In contrast, the min-
imal quadratic map reported by [36] goes through the quasi-
periodic route to chaos with the increase of two control
parameters. Therefore, similar to the results in [17], [36],
the area-preserving chaotic orbit considered here is obtained
from a quasi-periodic bifurcation scenario. Therefore, the
proposed simple area-preserving map has a specific bifurca-
tion route.

Based on the results in Fig. 2, the representative phase
portraits of the simple area-preserving map for different sym-
metric parameters are simulated and depicted in Fig. 3, where
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FIGURE 3. Representative phase portraits of simple area-preserving map
for different symmetric parameters with two sets of initial conditions (−1,
0.8) (left) and (−1, 0.8−π) (right). (a) Quasi-period at a = −3.9 (left) and
3.9 (right), (b) quasi-period at a = −3.3 (left) and 3.3 (right), (c) chaos at
a = −2.3 (left) and 2.3 (right), (d) quasi-period at a = −1 (left) and 1
(right).

the left and right drawings have the same topologies but with
the −π offset along the y-axis for the symmetric parameters.
Here, Fig. 3(a) displays a quasi-periodic orbit with eight
closed curves, Fig. 3(b) shows a quasi-periodic orbit with
three closed curves, Fig. 3(c) reveals a chaotic orbit with com-
plex fractal structure, and Fig. 3(d) exhibits a quasi-periodic
orbit with one closed curve. Thus, the simple area-preserving
map has only chaotic and quasi-periodic behaviors.

III. EXTREME MULTISTABILITY WITH
BOOSTING BIFURCATIONS
Recently, there were many reports on the studies of
extreme multistability closely related to the initial conditions.
Memristor-based dynamical circuits and systems owning
line or plane equilibrium can easily display the infinite coex-
isting attractors’ behaviors of extreme multistability [14],
[15], [37]. Therefore, to implement extreme multistability in
discrete iterative maps is attracting. However, such discrete
iterative maps were not reported previously.

FIGURE 4. For fixed parameter a = −2.3, initial condition-relied
bifurcation diagrams (bottom) and finite-time LEs (top) with the
variations of the initial conditions, demonstrating the coexisting
behaviors of infinite chaotic and quasi-periodic orbits. (a) x0 ∈ [−2.15,
0.5] with fixed y0 = 0.8, (b) y0 ∈ [−0.1, 1.1] with fixed x0 = −1.

A. COEXISTENCE OF INFINITE CHAOTIC AND
QUASI-PERIODIC ORBITS
The map parameter is kept unchanged as a = −2.3. This sub-
section reveals the coexisting behaviors of infinite chaotic
and quasi-periodic orbits by altering the initial conditions
of map (1). Then, extreme multistability in the simple area-
preserving map can be readily discussed.

Firstly, for fixed initial condition y0 = 0.8, the initial
condition x0 is taken as a bifurcation parameter and varied
in the initial interval [−2.15, 0.5]. The bifurcation diagram
of the variable y and finite-time LEs are plotted in Fig. 4(a).
Secondly, for fixed initial condition x0 = −1, the initial
condition y0 is regarded as another bifurcation parameter and
changed in the initial interval [−0.1, 1.1]. The bifurcation
diagram of the variable y and finite-time LEs are depicted
in Fig. 4(b). As can be seen, the specific quasi-periodic
routes to chaos are observed as the two initial conditions x0
and y0 singly increase, leading to the coexistence of infi-
nite chaotic and quasi-periodic orbits, i.e. the emergence of
extreme multistability.

According to the bifurcation behaviors shown in Fig. 4,
the striking phenomenon of extreme multistability can be
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FIGURE 5. Descriptions of the coexisting chaotic and quasi-periodic
orbits with different types, topologies and sizes. (a) Ten kinds of
coexisting motions under different values of initial condition x0 with
fixed y0 = 0.8, (b) six kinds of coexisting motions under different values
of initial condition y0 with fixed x0 = −1.

intuitively demonstrated by some phase portraits of the coex-
isting chaotic and quasi-periodic orbits along the x0- and
y0-axes. When ten values of initial condition x0 are chosen,
the phase portraits are together drawn in Fig. 5(a). By con-
trast, when six values of initial condition y0 are determined,
the phase portraits are together depicted in Fig. 5(b). Thus,
the coexistence of infinite chaotic and quasi- periodic orbits
with different types, topologies and sizes can be uncovered
in such a simple area-preserving map. Note that in the phase
portraits of Fig. 5, the seemingly discrete points and line
segments are actually some independently closed tori with
tiny sizes.

The Wolf’s algorithm-based finite-time largest LE is an
effectively indicator of chaos for a nonlinear dynamical sys-
tem [19]. A colorful kinetic map can be depicted in the two-
dimensional plane of initial conditions by computing the
finite-time largest LE values of the simple area-preserving
map, as shown in Fig. 6. The regions of initial conditions
generating the trajectories with different largest LE values are
painted by different colors. Magenta, red and yellow colors
with positive values of largest LE refer to chaos regions,
black with zero LE refers to quasi-period region, and white
refers to the region at infinity. As can be observed from
Fig. 6(a), the distribution image of chaos region resembles
the representative chaotic orbit given in Fig. 5.

To further demonstrate the extreme multistability phenom-
enon, two sets of initial condition y0-relied bifurcation

FIGURE 6. Kinetic maps in the x0–y0 initial plane that depicted by
computing the finite-time largest LE values. (a) Full map in x0 × y0 ∈ [–3,
3]×[−2, 2], (b) local map in x0 × y0 ∈ [0.8, 1.2]×[−1.2, −0.8].

diagrams are supplemented in Fig. 7(a) through referring to
the dynamical distributions in Fig. 6. Correspondingly, for
the case in Fig. 7(a) (bottom) where x0 = 0, when thir-
teen values of initial condition y0 are determined, the phase
portraits are concurrently drawn in Fig. 7(b), from which
more unusual coexisting chaotic and quasi-periodic orbits are
exhibited.

As shown in Fig. 4, the proposed simple area-preserving
map possesses the specific quasi-periodic route to chaos
closely relied on the initial conditions. And, most of all,
it exhibits complex dynamical distribution in the x0–y0 initial
plane given in Fig. 6. Therefore, it can be concluded that
extreme multistability, i.e. the coexistence of infinite chaotic
and quasi-periodic orbits, is emerged in the simple area-
preserving map.

B. INITIAL CONDITION-BOOSTING DYNAMICS
Since the sine nonlinearity appeared in (1) is periodic with
period 2π , the linear transformation (x, y)→ (x, y+ 2kπ ) (k
is an integer) does not alter the map dynamics but gives rise
to offset boosting along the y-axis with offset 2π [24], [38].
Thus, the proposed simple area-preserving map is an offset-
boostable dynamical system, which allows the coexisting
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FIGURE 7. Initial condition-relied bifurcation diagrams as well as
coexisting chaotic and quasi-periodic orbits. (a) The bifurcation diagrams
versus the initial condition y0 with fixed x0 = 0 and x0 = 0.5, (b) thirteen
kinds of coexisting motions under different values of initial condition y0
with fixed x0 = 0.

bifurcation behaviors to be boosted by the initial condition
y0 along the y-axis [26].
Firstly, consider four values of initial condition y0 as y0 =

0.8+2kπ (k = −1, 0, 1, 2). When the initial condition x0
is varied in the initial interval [−2.15, 0.5], the bifurcation
diagrams of the variable y are plotted in Fig. 8(a). Here,
the colored trajectories are initiated from different values of
initial condition y0. Certainly, it can be found that the four
bifurcation diagrams have an identical bifurcation structure,
but each of them is boosted by a 2kπ offset along the y-axis.
Secondly, take the value of initial condition x0 as x0 = −1.

When the initial condition y0 is varied in the respective
initial intervals [−0.1+2kπ , 1.1+2kπ ] (k = −1, 0, 1,
2), the bifurca-tion diagrams of the variable y are plotted
in Fig. 8(b). Here, the colored trajectories are initiated from
different intervals of initial condition y0. Thus, the four bifur-
cation diagrams in different initial intervals unfold the same
bifurcation structure, but each of them can be boosted by the
2kπ offset along the y-axis as well.

Corresponding to the results in Fig. 8, the coexisting kinetic
maps boosted by the initial condition y0 along the y-axis can
be illustrated in Fig. 9(a), which well demonstrate that the
initial condition-boosting bifurcation behaviors do exist in the
proposed simple area-preserving map, similar to the initial-
boosting plane bifurcation behaviors [24] but different from
the initial-switched boosting attractors’ behaviors [26].

FIGURE 8. Initial condition y0-boosted coexisting bifurcation behaviors
along the y-axis. (a) For fixed y0 = 0.8+2kπ (k = −1, 0, 1, 2), bifurcation
diagrams as the initial condition x0 increases in initial interval [−2.15,
0.5], (b) for fixed x0 = −1, bifurcation diagrams as the initial condition y0
increases in four respective intervals [−0.1+2kπ , 1.1+2kπ ]
(k = −1, 0, 1, 2).

In addition, four groups of initial condition settings are
determined as x0 = −1 and y0 = 0.8+2kπ (k = −1,
0, 1, 2). The initial condition y0-boosting chaotic sequences
along the y-axis can be measured, as shown in Fig. 9(b). The
results manifest that the chaotic sequences can be boosted
in the dynamic amplitudes by the initial condition y0 with
period 2π , leading to the initial condition-boosting chaotic
sequences.

The dynamical performances for the initial condition-
boosting chaotic sequences of the simple area-preserving
map can be evaluated through computing the largest finite-
time LE1, permutation entropy (PE) [39], spectral entropy
(SE) [40], and Kaplan-Yorke dimension (DKY) [19]. Thus,
the numerical results for these four groups of chaotic
sequences given in Fig. 9(b) are summarized in Table 1.
Consequently, except for two sets of SEs for (−1, 0.8) and
(−1, 0.8+2π ) slightly lower than those for (−1, 0.8−2π)
and (−1, 0.8+4π ), the initial condition-boosting chaotic
sequences have nearly the same performance indicators,
indicating that the initial condition-boosting dynamics can
implement the controllability of the oscillating amplitudes of
chaotic sequences.
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FIGURE 9. Initial condition y0-boosted coexisting kinetic maps and
chaotic sequences along the y-axis. (a) Coexisting kinetic maps in the
x0–y0 initial plane, (b) coexisting chaotic sequences for fixed
x0 = −1 and y0 = 0.8+2kπ (k = −1, 0, 1, 2).

TABLE 1. Performance evaluation for four groups of chaotic sequences.

IV. HARDWARE PLATFORM FOR BOOSTING
CHAOTIC SIGNALS
Based on a microcontroller, a programmable hardware exper-
iment platform is developed. It mainly consists of MCU
MSP430F149 (16-bit), D/A converter TLV5638 (12-bit), and
peripheral circuit. Themicrocontroller implements the simple
area-preserving map and two D/A converters generate four-
channel analog voltage signals.

The parameter and initial conditions of the simple area-
preserving map are assigned as a = −2.3, x0 = −1 and
y0 = 0.8+2kπ (k = −1, 0, 1, 2). Preloading the parameter
and initial conditions in the hardware device and running
the map program using C language in the microcontroller,

FIGURE 10. Hardware platform for generating multiple channel chaotic
signals. (a) Hardware experimental prototype with the displayed chaotic
signals, (b) four-channel initial condition-boosting chaotic signals
captured from the hardware platform.

four-channel chaotic signals of the simple area-preserving
map can be synchronously outputted and displayed on the
digital oscilloscope.

The hardware experimental prototype is snapshot
in Fig. 10(a) and the four-channel initial condition-boosting
chaotic signals are captured in Fig. 10(b). The experimen-
tal results show that four-channel initial condition-boosting
chaotic signals synchronously output in the fixed amplitude
ranges but with offset 2π , indicating the feasibility of the
hardware implementation.

V. CONCLUSION
The coexistence phenomenon of extreme multistability relied
on the initial conditions has been reported in many con-
tinuous dynamical systems. To study extreme multistability
coexisted in a discrete iterative map, this paper proposed a
simple area-preserving map. The area-preserving chaotic and
quasi-periodic orbits have the initial condition-relied quasi-
periodic route to chaos and initial condition-boosting bifurca-
tion dynamics. These two characteristics allow the proposed
simple area-preserving map to emerge extreme multistability.
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The proposed simple area-preserving map had infinite
fixed points consisting of the critical points and unsta-
ble points. The specific quasi-periodic route to chaos was
explored through investigating the parameter and initial
condition-relied dynamical behaviors. Particularly, the ini-
tial condition-relied extreme multistability with boosting
bifurcation dynamics was uncovered using multiple numer-
ical methods, and the initial condition-boosting chaotic
sequences were thereby generated and captured from the
microcontroller-based hardware platform. Of course, the
simple area-preserving map could be applied to designing
pseudorandom number generator with integrated circuit [41],
which deserves further study.
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