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ABSTRACT As a major challenge and opportunity for traditional manufacturing, intelligent manufacturing
is facing the needs of sustainable development in future. Sustainability assessment undoubtedly plays a
pivotal role for future development of intelligent manufacturing. Aiming at this, the paper presents the digital
twin driven information architecture of sustainability assessment oriented for dynamic evolution under the
whole life cycle based on the classic digital twin mapping system. The sustainability assessment method
segment of the architecture includes indicator system building, indicator value determination, indicator
importance degree determination and intelligent manufacturing project assessing. A novel approach for
treating the ambiguity of expert’ judgment in indicator value determination by introducing trapezoidal
fuzzy number into analytic hierarchy process is proposed, while the complexity of the influence relationship
among the indicators is processed by the integration of complex networks modeling and PROMETHEE II
for the indicator importance degree determination. A two-stage evidence combination model based on
evidence theory is built for intelligent manufacturing project assessing lastly. The presented digital-twin-
driven information architecture and the sustainability assessment method is tested and validated on a study
of sustainability assessment of 8 intelligent manufacturing projects of an air conditioning enterprise. The
results of the presented method were validated by comparing them with the results of the fuzzy and rough
extension of the PROMETHEE II, TOPSIS and VIKOR methods, indicator importance degree determining
method by entropy and indicator value determining method by accurate expert scoring.

INDEX TERMS Digital twin, sustainability, intelligent manufacturing, fuzzy number, analytic hierarchy
process, complex networks, PROMETHEE II, evidence theory.

I. INTRODUCTION

There are many definitions of sustainable development,
among which the widely accepted definition is given by
the World Commission on Environment and Develop-
ment (WCED) in its report “our common future” published
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in 1987: development that meets the needs of contemporary
people and does not harm the ability of future generations
to meet their needs [1]. The report takes economic growth,
social development and environmental protection as the three
pillars of sustainable development. Agenda 21, adopted by
the United Nations at the Rio Conference on environment and
development in 1992, marks that the concept of sustainable
development has been recognized by all countries in the
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world [2]. As the main pillar of human civilized life style,
manufacturing industry will play an important role on the
road of sustainable development. The manufacturing indus-
try not only makes the world economy get unprecedented
growth and development, but also leads to the serious envi-
ronment deterioration. The global environmental cost caused
by production activities is as high as 4.7 trillion US dollars
every year [3], [4]. The consumption of natural resources and
ecological services is more than 50% of ecosystem regen-
eration capacity, and with the increase of population and
per capita consumption level, it will face greater ecosystem
pressure [5]-[7]. Hence, the sustainability of manufacturing
industry is the key to achieve sustainable development.

While facing severe environmental challenges, the world
undertakes the responsibility of promoting economic
development and meeting the growing population and its
material and cultural needs. Therefore, it is urgent to incor-
porate sustainable development strategy into production and
manufacturing [7], [8]. In recent years, the fourth industrial
revolution with intelligent manufacturing as its main fea-
ture is influencing the world economy with unprecedented
depth, breadth and speed, which is likely to further deepen
the development gap existing in different countries, regions
or strata. At the same time, intelligent manufacturing also
causes people to worry about the social impact of ““replacing
workers with machine”, such as unemployment, shortage of
senior talents, and the coming ““singularity” of environmental
impact [9]-[12].

The sustainability of intelligent manufacturing is a
new concept brought about by the implementation of
sustainable development in the field of intelligent manufac-
turing [11], [12]. Faced with more and more severe environ-
mental constraints and pressures, in order to avoid the adverse
effects of intelligent manufacturing in the future and promote
the development towards sustainable intelligent manufactur-
ing, enterprises must consider the feasibility from the per-
spective of sustainability, and the sustainability assessment
of intelligent manufacturing (SAoIM) plays an indispensable
role.

At the product level, sustainability of intelligent manu-
facturing transcends the concept of 3R (reduce, reuse and
recycle) of greenness of intelligent manufacturing to the con-
cept of 6R (reduce, reuse, recycle, recovery, redesign and
remanufacture) [8], [13], [14]. At the production level, tech-
nical improvements, such as process planning optimization
and surface modification, are needed to reduce energy and
resource consumption, toxic waste, occupational hazards, etc.
[13], [14]. At the system level, the consideration of all aspects
of the whole supply chain are needed as well as the inte-
gration the supply chain into the enterprise business model,
resources and innovation strategy [8], [13]. As the market
moves towards a demand driven supply chain, it is necessary
to consider not only the relevance of consumers to product
design and retail, but also the impact of customer choice.
The sustainability of intelligent manufacturing is compared
with other related features as shown in Fig. 1. It can be
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FIGURE 1. Comparison between sustainability and other related features
of intelligent manufacturing in the implementation of 6R [8], [13], [14].

seen that other related features (tradition, lean and greenness)
are only oriented towards part of the ‘R’ problems and the
sustainability of intelligent manufacturing is oriented towards
all ‘R’ problems and committed to achieve 6R.

In general, the sustainability of intelligent manufacturing
is more comprehensive than other features, and its assess-
ment needs to start from the perspective of the whole life
cycle. In SAoIM, intelligent manufacturing project should be
considered and assessed from the perspective of large-scale
dynamic evolution system oriented to the whole life cycle.
Hence, establishing information fusion architecture for the
environmental and social impacts generated in the whole life
cycle is very necessary.

Digital twin is considered to be the key technology in the
future and has been widely concerned [15]-[18]. By digital
twin, the virtual model of physical entity is created in a digital
way and the behavior of physical entity is simulated by means
of data. New capabilities are added or expanded for physical
entities by means of virtual reality interaction feedback, data
fusion analysis and decision iterative optimization. The con-
cept of digital twin was first proposed by Professor Grieves of
the University of Michigan in his product lifecycle manage-
ment course. Then, the academic community has carried out
relevant research on the modeling of digital twin [19], inter-
action and collaboration [20] and service application [21].
At present, scholars have carried out a lot of research on
digital workshop/factory, and put forward many valuable the-
ories and technologies. Sderberg et al. [22] applied digital
twin to product production process control, thus guiding the
production mode of enterprises from mass production to
personalized production. Tao et al. [23], [24] summarized the
progress in the application and theoretical research of digital
twin in enterprises, put forward a five dimension structure
model of digital twin and six application criteria of digital
twin driving, and explored 14 types of key problems and
technologies needed to be solved in the process of application
conceiving and implementing driven by digital twin. In the
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aspect of digital twin framework research, Zhang et al. [25]
proposed the optimal state control (OsC) method to help
synchronized production operation system (SPOS) keep in
an optimal state when uncertainties affect the system and
designed a digital twin-based control framework (DTCF)
for getting the full element information needed for deci-
sion making. Li et al. [26] proposed a digital twin-driven
framework to enhance the optimization of product-service
system (PSS) scheme selection. The framework is divided
into a digital twin layer, an information layer, and an approach
layer.

Digital twin can build a real-time complete model of
the physical layer in the virtual layer, which provides
a suitable information framework. Based on the prior
researches [25], [26], the benchmarks of digital twin frame-
work are abstracted as follows. The framework can mainly
be divided into two layers: physical object layer and virtual
decision/control layer.

o Physical object layer. It is an objective entity set.
It receives decision-making task instructions issued
by various information systems. The information can
be collecting, sensing, processing and transmitted to
provide basic data support for virtual control/control
layer. There are two sub-layers in physical object
layer: (1) Resource sets layer: various resource enti-
ties; (2) Information processing layer: making the
resources intelligent, integrating and pre-processing the
information.

« Virtual decision/control layer. All decisions and control
can be complete in this layer. The control instructions
are fed back to the physical layer through cyber-physical
system (CPS). Based on the multi-dimensional or
multi-granularity heterogeneous static model and
real-time data collected by the physical object layer,
the physical execution units of the physical layer are
mapped to the virtual layer by the twin modeling tech-
nology. According to the relationship corresponding to
the physical layer, a virtual system is formed in the vir-
tual layer, and the process of the physical layer is system-
atically and accurately mapped. The decision/control
mechanism should be imported to this layer at the
same time, which makes the dynamical decision/control
possible.

Aiming at the problem that production execution
information and machine tool operation information have
different sources, and the integration of the two types of
information is difficult, Coronado ef al. [25] proposed a new
manufacturing execution system, which uses data to build a
digital twin workshop for production control and optimiza-
tion. Banerjee et al. [26] combined knowledge learning with
digital twin, and proposed a method to extract and infer
knowledge from large-scale production line data and improve
manufacturing process management through reasoning abil-
ity. These studies provide theoretical and methodological
references for the further application of digital twins in the
future.

174990

Although the digital twin technology has formed an
effective management mode and technical framework for the
digital modeling and interactive control of physical objects,
its application scope is mostly limited to independent objects
and the researches on overall associated twinning and col-
laborative decision-making of large-scale dynamic evolution
system oriented to the whole life cycle are few. In SAoIM,
intelligent manufacturing project involves many related envi-
ronmental and social factors in the dynamic evolution of its
whole life cycle. Therefore, how to extend the digital twin
model to the whole life cycle system of intelligent manufac-
turing project dynamic evolution and realize the assessment
of many related factors is an urgent problem to be solved.
Oriented for dynamic evolution under the whole life cycle of
intelligent manufacturing, building digital-twin-driven infor-
mation architecture of sustainability assessment based on the
classic digital twin mapping system is a feasible solution.

Sustainability — assessment method for intelligent
manufacturing project is the core of the digital-twin-driven
information architecture of sustainability assessment. Sus-
tainability assessment problem can be considered as a
complex multi-criteria decision-making (MCDM) problem,
which concerns many factors ranging from environmental
effects to social effects. To the best of our knowledge, there
is no systematic research for the sustainability assessment
of intelligent manufacturing project. However, there are
enough similar MCDM research which can serve as refer-
ence and guidance for this work, for example, an extended
Complex Proportional Assessment (COPRAS) model for
web-based hotel evaluation and selection [27], an extension
of the Combinative Distance-Based Assessment (CODAS)
approach using interval-valued intuitionistic fuzzy set for
sustainable material selection in construction projects [28],
a rough strength relational Decision Making Trial and Eval-
uation Laboratory (DEMATEL) model for analyzing the key
success factors of hospital service quality [29], a rough ana-
lytic hierarchy process (AHP) based multi-attributive border
approximation area comparison approach for evaluation and
selection of medical tourism sites [30], a modifica-
tion approach of the Best-Worst Method (BWM) and
Multi-Attributive Border Approximation Area Compari-
son (MABAC) method: based on interval-valued fuzzy-
rough numbers [31] and a hybrid group MCDM model
based on DEMATEL, Analytic Network Process (ANP)
and Multi Attributive Ideal-Real Comparative Analysis
(MAIRCA) [32]. Wu et al. [33] proposed an integrated
approach of the interval type-2 fuzzy best-worst and
extended VlIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR) for green supplier selection. Based on
improved supplementary regulation and operational laws
Xiao et al. [34] constructed a novel hesitant fuzzy linguistic
multi-attribute group decision making method. Li ef al. [35]
built a conjunctive MCDM approach for cloud service sup-
plier selection based on neural network, fuzzy AHP, Criteria
Importance through Inter-criteria Correlation (CRITIC) and
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Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS).

Dealing with crisp data or fuzzy information, the above-
mentioned papers mainly studied one or several stages of
the MCDM process and could not cover the whole process
generally including indicator value solving, indicator weight
determining and object evaluation. Therefore, there is lack of
a systematic method or model.

Thus, this research paper seeks answers to the following
questions:

(1) How to build digital-twin-driven information architec-
ture of sustainability assessment of intelligent manufacturing
project?

(2) How to design a systematic method or model for sus-
tainability assessment of intelligent manufacturing project
cover the whole MCDM process?

To fill up this gap, this paper attempts to develop a
digital-twin-driven information architecture based on the
classic digital twin mapping system is a feasible solution
for sustainability assessment of intelligent manufacturing
project. This architecture orients for dynamic evolution under
the whole life cycle and extends the classical digital twin
mapping system to a digital twin control system which meets
the requirements of dynamic evaluation of all factors. Fur-
thermore, a systematic sustainability assessment method for
intelligent manufacturing project is designed based on the
fuzzy perception of experts about indicator value and indica-
tor importance degree. This systematic method includes three
parts: (1) Indicator value solving. Fuzzy number can better
reflect the uncertainty of expert’s judgment compared with
accurate number [35]-[38]. Using fuzzy number to express
expert’s judgment is more reasonable when evaluating the
performance of intelligent manufacturing project alternatives.
(2) Indicator importance degree (weight) determination. The
determination of indicator importance degree is similar to
the evaluation of node importance in complex networks.
In the complex networks of indicators, the nodes in the net-
work represent the indicators, and the connection between
the nodes reflects the relationship between the indicators.
At present there are many researches and applications on node
importance evaluation in complex networks [39]-[42]. This
paper considers the multi-type centrality attribute of nodes
and introduces preference ranking organization methods for
enrichment evaluations II (PROMETHEE 1II) [43]-[45] to
determine the indicator importance degree. Considering the
relationship among multiple indicators, the network attributes
are used to analyze the interaction among indicators, which
is more objective. PROMETHEE II considers the preference
of decision makers in the evaluation process. This com-
bination of subjective and objective can make up for the
shortcomings of previous researches. (3) Object evaluation.
Dempster Shafer theory (D-S theory) [46]-[48] can directly
express uncertainty, which provides an effective method for
the expression and synthesis of uncertain information. This
paper creatively applies D-S theory to assessment prob-
lem. Based on D-S theory, a discrimination framework for
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sustainability assessment of intelligent manufacturing project
can be established by treating indicator information as
evidence. Through evidence combination the sustainability
assessment of intelligent manufacturing project is achieved.

This paper is organized into six sections. After the intro-
ductory section, the second section presents the digital-twin-
driven information architecture of SAoIM. The sustainability
assessment method is presented under the expert assessment
framework in the third section. Then it is tested and verified in
the fourth by means of a case study in which the sustainability
of eight intelligent manufacturing project alternatives in an
air conditioning enterprise are assessed. The discussions of
the results and validation of the proposed method are given
in the fifth section. Lastly, the sixth section presents conclud-
ing considerations with a special emphasis on directions for
further research.

Il. DIGITAL-TWIN-DRIVEN INFORMATION
ARCHITECTURE

In order to eliminate or reduce the influence of static assess-
ment and one-sided assessment, the sustainability assessment
of intelligent manufacturing requires comprehensively con-
sidering the related environmental and social factors that
evolve dynamically with the whole life cycle, so as to realize
effective assessment.

By extending the classical digital twin mapping
system [22]-[26] to a digital twin control system which
meets the requirements of dynamic evaluation of all factors,
we build the digital-twin-driven information architecture of
sustainability assessment oriented for dynamic evolution
under the whole life cycle as shown in Fig. 2. Based on
dynamic state perception of all elements, the virtual mapping
technology and intelligent assessment method are adopted to
provide basic information and service support for the sustain-
ability assessment of intelligent manufacturing. The informa-
tion architecture includes three layers: physical object layer,
virtual model layer and application layer.

The details of the three layers are as follows.

A. PHYSICAL OBJECT LAYER

Mainly through radio frequency identification (RFID), quick
response (QR) code tags, sensors, wireless sensor network
(WSN), global positioning system (GPS) and other intelligent
sensing and positioning technologies, the real-time dynamic
state perception and monitoring of the multi-source hetero-
geneous information related to the environmental and social
effects in the whole life cycle of intelligent manufacturing is
carried out. Based on this, the intelligent perception and inter-
connection, real-time interaction and control, and intelligent
cooperation and integration of the dynamic evolution process
of intelligent manufacturing project are realized.

B. VIRTUAL MODEL LAYER

Based on the multi-dimensional and multi-granularity het-
erogeneous static model data and dynamic running data col-
lected by the physical object layer in the actual evolution
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FIGURE 2. Digital-twin-driven information architecture of SAoIM oriented for dynamic evolution under the whole life cycle.

process of intelligent manufacturing project, the physical
layer is mapped into a virtual execution unit which can reflect
the real-time running state through digital twin modeling
technology in the virtual layer and a virtual environment
and social influence factor evolution model is formed in the
virtual layer according to the dynamic evolution of intel-
ligent manufacturing projects in the physical layer. Thus,
the dynamic evolution of intelligent manufacturing project in
physical layer is systematically precisely mapped and dynam-
ically feedback-controlled.

C. APPLICATION LAYER
Based on the accurate identification and monitoring of the
dynamic evolution of environmental and social impacts in

174992

the whole life cycle of intelligent manufacturing, the sus-
tainability of intelligent manufacturing is assessed under
the expert assessment framework based on a novel MCDM
method. In the proposed MCDM method, trapezoidal fuzzy
number (TFN) is introduced into AHP for the determination
of indicator value, which is abbreviated as TFN-AHP; the
indicator importance degree is determined by the integration
of complex networks modeling and PROMETHEE II; the sus-
tainability of intelligent manufacturing projects are assessed
by two-stage evidence combination based on evidence theory
finally. In addition, the sustainability assessment of intelli-
gent manufacturing is encapsulated in the customized inter-
active intelligent application system of the physical layer in
the form of application service, so as to realize the interaction
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and feedback of information decision-making and physical
execution.

Ill. SUSTAINABILITY ASSESSMENT METHOD

By introducing the multi-phase model as shown in Fig. 3, this
paper presents a sustainability assessment method under the
digital-twin-driven information architecture of SAoIM shown
in Section II. The indicator system of SAoIM including three
dimensions and nine indicators is built firstly.

TFN is used to deal with uncertainty of expert judgment
in the group decision making process, while AHP is used to
integrate the judgments of multiple experts. Phase 1 includes
the expert judgment of assessment indicator value by apply-
ing the TFN-AHP model, which results in the creation of
input data required for the two-stage evidence combination
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model (Phase 3). In phase 2, whether the influence rela-
tionship among the indicators exists or not is evaluated by
multiple experts and the evaluation result is used to build the
indicator network, and then the indicator importance degree
is determined by PROMETHEE II based on multiple net-
work properties. The output data of phase 2 is the indicator
importance degree which is the input data of phase 3. The
discernment frame for SAoIM based on evidence theory is
defined in phase 3. According to the two-tier indicator system
of SAolM, the sustainability of intelligent manufacturing
projects is assessed by two-stage evidence combination tak-
ing indicator value (phase 1) and indicator importance degree
(phase 2) as input data.

The following four sub-sections deal with the algorithms
for the multi-phase model.
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A. INDICATOR SYSTEM

The influence factors of SAoIM mainly include general
environmental effect, social effect on employees and social
effect on users based on the summary of the existing
research. Different from the energy consumption and water
consumption, environmental effect can directly, compre-
hensively and objectively reflect the actual effect on the
ecological environment and human health. In the current
critical period of manufacturing transformation and upgrad-
ing, the analysis of employee effect has more important sig-
nificance and different focus. In these studies, social effect
assessment is carried out by selecting social effect indexes
independently and setting scoring standards. Therefore, this
paper mainly combines the actual situation of intelligent man-
ufacturing and related research to build the indicator system
of SAoIM, which is a concise two-tier architecture including
three dimensions and nine indicators as shown in Fig. 4.

( Indicator system of
SCAoIM

—| General environmental effect |

Exhaustion of resources and energy ]

—

Destruction of ecological environment

Hazards to human health ]

—| Social effect on employees

—[ Physical health effects ]
—[ Mental health effects ]

—[ Impact on employee development ]

—| Social effect on users

—[ Physical health effects ]

FIGURE 4. The indicator system of SAolM.

From the perspective of dimension, the indicator system of
SAoIM includes three dimensions, which are general envi-
ronmental effect (dimension D1), social effect on employees
(dimension D2) and social effect on users (dimension D3).
In each dimension there are several corresponding indicators.
Based on the indicator system shown in Fig. 3, the method-
ology of SAoIM supported by digital twin is presented with
three steps as follows.

B. TFN-AHP

Based on the digital-twin-driven information architecture
(Fig. 2), in the virtual model layer the dynamic evolu-
tion of intelligent manufacturing project in physical layer is

174994

systematically precisely mapped and dynamically feedback-
controlled. Experts can comprehensively master the complete
information in the digital-twin model in the virtual model
layer and make a relatively objective judgment based on their
experience and wisdom.

The group experience and wisdom of expert can be fully
used by judgment opinion integration of multiple experts.
Therefore we adopt this train of thought in the indicator value
determination of SAoIM. However, when an expert evaluates
the performance of two intelligent manufacturing projects on
an indicator, his judgment opinion depends on the personal
experience and wisdom of him, so it is unreasonable to
express the judgment opinion with accurate numbers. Com-
pared with accurate number, fuzzy number can reflect the
internal uncertainty of expert’s judgment opinion [27]-[31].
The commonly used fuzzy numbers include triangular fuzzy
numbers and trapezoidal fuzzy numbers. As for membership
function, trapezoidal fuzzy number is more complex than tri-
angular fuzzy number. Compared to triangular fuzzy number,
trapezoidal fuzzy number can better express and describe the
vagueness and uncertainty in nature of expert’s judgment.
Therefore, trapezoidal fuzzy number is integrated into the
MCDM process.

Some definitions about fuzzy number are as follows.

Definition 1 (Trapezoid Fuzzy Number (TFN) [37], [38]):
If fours real numbers satisfya < b <c <d,e = (a,b,c,d)
can be defined as a TFN. Here, a is the upper bound of ¢ while
b is the lower bound of ¢. Especially, if b = c, ¢ is a triangular
fuzzy number; while if a = b = ¢ = d, ¢ is a real number.

Definition 2 (Membership Function (MF) [37], [38]): The
MF of TFN ¢ = (a, b, ¢, d) is defined as f(x) : R — [0, 1].
Whena < x < b,f(x) = (x —a)/(b — a) is named as left
MF fL(x), which is a strictly increasing function; when b <
x <c¢ f(x)=1;whenc <x <d,f(x) =x—c0c)/(d—c)
is named as right MF fR(x), which is a strictly reducing
function; else, f(x) = 0. The inverse functions of f“(x) and
FR(x) are as follows.

gl =d+(c—dy

where 0 <y < 1.

Definition 3 (Desired Value (DV) [37], [38]): For TEN &
its left DV is D) = [ g“(dy = (a + b)/2, while its
right DV is DR(¢) = [ gR(»)dy = (¢ +d)/2. The DV of
is defined as follows.

D(¢e) = aD"(s) + BDR(¢) ()

where « and § are the optimistic coefficient and pessimism
coefficient respectively,« > 0,8 > 0,0 + 8 = 1.
Definition 4 (Gravity Center [37], [38]): For TEN ¢ its
gravity center is defined as follows.
(P +d?>+cd)? — (a® + b* + ab)*
N 3c+d—a—Db)
For any two TFNs &1 = (a1,b1,c1,dy) and &0 =
(az, by, c2, dy) which satisfy ¢y > 0, e > Oand x > O,

G(e) 3)

VOLUME 8, 2020



L. Li et al.: Sustainability Assessment of Intelligent Manufacturing Supported by Digital Twin

IEEE Access

the arithmetic operation rules are as follows.

e1+é& =(ar+a, by +by,c1+c2,di+dy)  (4)

€162 = (a1az, b1by, cic2, didp) (5
xé1r = (xai, xbi, xci, xdi) (6)
) =/di, 1/e1l/bi, 1]a) @)
e1/e2 = (a1/da, bi[c2,c1 /by, di [a2) 3

According to the MF of TFN, natural numbers (1 to 9) can
be transformed into corresponding TFNs as shown in Table 1.

TABLE 1. The TFNs corresponding to natural numbers.

Natural number TFN
(1,1,3/2,2)
(1,3/2,5/2,3)
(2,5/2,7/2,4))
(3,7/2,9/2,5)
(4,9/2,11/2,6)
(5,11/2,13/2,7)
(6,13/2,15/2,8)
(7,15/2,17/2,8)
(8,17/2,9,9)

O 00 3 O L AW N —

In the traditional comparison judgment matrix, the value
of each element generally adopts the nine-level comparison
scale method. Because the judgment thinking of experts is
subjective and uncertain, it is unreasonable to use the accu-
rate nine-level comparison scale. In view of this defect of
traditional nine-level comparison scale method, we modify
it by replacing the accurate scale with TFN. According to
the arithmetic operation rules of TEN, the modified nine-level
comparison scale method can be shown in Table 2.

According the above definitions about TFN and the trans-
formations from traditional nine-level comparison scale to
modified nine-level comparison scale by TFN, the TFN-
AHP approach for indicator value determination of SAoIM
is presented as follow.

There are m alternatives of intelligent manufacturing
project and s experts to evaluate the sustainability of them on
each indicator shown in Fig. 3. It is assumed that all experts
are equal.

Taking indicator I; (1 < j < n) as an instance, the solution
process of indicator values is illustrated. On indicator I},
s experts separately carry out the pairwise comparison of
the capability of m alternatives based on the modified nine-
level comparison scale method (Table 2). The TEN reciprocal
judgment matrix (TFN-RJM) is given by each of s experts,
respectively. To expert p (1 < p < s), his TFN-RJM is as
follows.

EUP = [82,‘{’7)] 9)

nxn

where agl’f ) — (a(.{}{p ), bg}cp ), cg}cp ), dg,;p )) is a TEN and stands

l
for the capability of alternative i relative to alternative k on
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indicator /; judged by expertp, 1 <i <m,1 < k < mand
G.p) _ G.p)
&l = l/si’k .
Consistency test will be carried out for TEN-RIM EUP),
Firstly, EV'P) is mapped into a real number matrix DV V") =
[DV(SE{]’CP) ] where DV(eg}cp)) is the DV of sgf,’(p) just as

) nxn
follows.

DV (el = aD" (%) + BDR () (10)

Here, let @ = B = 0.5, which means staying neutral. The
DV of 8;{}? ) is obtained as follows.

G.p) G.p) G.p) G.p)
. a’y’ + b’ + 4+ d;
DV(SE{]’(p)) _ i,k i,k 7 i,k i,k (11)
Then the consistency ratio of DV U-?) is obtained as follows.
; CI(DV P
CR(DVYP) = aovr) (12)
RI(DVU:P))
where CI(DVUP) = (Amax — n)/(n — 1) is the consis-

tency index, Amax is the largest eigenvalue of DVU-P); while
RI(DVU-P)) is the average random consistency index related
to order n.

When CR(DV ")) < 0.1, TEN-RIM EU-P) pass the consis-
tency test and could be used for decision-making. Else, expert
p should adjust his judgment matrix.

The preference information of each expert is integrated into
a preference information integration matrix as follows.

i,k

EO = [s?/)] (13)
nxn
where
O _ O O 0O S0 0 _ § G.p)
ik = @ bigs i dig), iy = szl ajg /s,
M _ N L0 » _N  Gp
biy = szl by /s, ¢ = Zp=1 ik /5
() $ (.p)
) = Z,,:1 ds.
By the conversion based on gravity-center formula of

TEN (Formula (3)), E¥) can be converted into gravity-center
matrix as follows.

B0 =[a0] (14)
dnxn
where 29 is the it ter of &)
Eik gravity center of &;/; .
To EV, the eigenvector corresponding to its largest eigen-
value is obtained as follows.

S(ED) = [81(EV), 2(EVy, ..., 8,(ENT  (15)

The indicator value of alternative i on indicator /; is
obtained as follows.
SiI(ED)
Xij = ml—A (16)
Zizl (Si (E (]))
The indicator values of m alternatives on other indicators
can be obtained by same way. At last, we get the indicator

value matrix as X = [xi, j]mxn'
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TABLE 2. The transformations from traditional nine-level comparison scale to modified nine-level comparison scale by TFN.

Comparison relationship of two objects

Traditional scale

Modified scale Corresponding TFN

Extremely inferior
Strong inferior
Obviously inferior
Slightly inferior
Identical
Slightly superior
Obviously superior
Strongly superior
Extremely superior

—

O 0 1 &N L A W N

1/9 (1/9,1/9,3/17,1/4)
2/8 (1/9,3/17,1/3,3/7)
3/7 (1/4,1/3,7/13,2/3)
4/6 (3/7,7/13,9/11,1)
5/5 (1L,1,1,1)

6/4 (1,11/9,13/7,7/3)
7/3 (3/2,13/7.3.,4)
8/2 (7/3,3,17/3.9)
9/1 (4,17/3.9.9)

C. INTEGRATION OF COMPLEX NETWORKS MODELING
AND PROMETHEE Ii

There’s a relationship between the indicators of SAoIM.
For example, destruction of ecological environment
(indicator I in dimension D1) affects physical health effects
(indicator I4 in dimension D2) and physical health effects
(indicator /7 in dimension D3), so there is a relationship
between I and /4, while there is also a relationship between
I and I. In view of this, by treating indicators as nodes a
network of the indicators of SAoIM can be constructed based
on the relationship between them. Then the indicator impor-
tance in the architecture (Fig. 3) is transformed into the node
importance in the network. Whether the relationship between
two indicators exists or not is evaluated by multiple experts,
and an undirected network named indicator network (IndN)
is constructed based on the evaluation result.

In the constructed IndN, the node set is defined as
{11, I, ..., I,} where node I; stands for indicator /;. Accord-
ing to the complex networks theory [39]-[42], centrality is
used to measure node importance in a network. Generally,
centrality can be distributed into five types as follows.

1) ‘DEGREE’ (cen') [39]-[42]

It means the number of edges connecting to each node. The
‘degree’ centrality type is based on the number of edges
connecting to each node, and a self-loop counts as two edges
connecting to the node. If there are 6; nodes that directly
connect to node /; in IndN, the degree of node ; is:

1 _ g,
cen; = 0;

; a7

2) ‘CLOSENESS’ (cen?) [39]-[42]

The ‘closeness’ centrality type uses the inverse sum of the

distance from a node to all other nodes in the network. If not

all nodes are reachable, then the centrality of node /; is:
S ol

2 _
cen; _(n—l 5

where ¢; is the number of reachable nodes from node /; (not
counting /;) and &; is the sum of distances from node /; to all

(13)
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reachable nodes. If no nodes are reachable from node /;, then
cenj2 is zero.
3) ‘BETWEENNESS’ (cen®) [39]-[42]
The ‘betweenness’ centrality type measures how often each
node appears on a shortest path between two nodes in the
network. Since there can be several shortest paths between
two nodes s and t node I, and /;, the centrality of node /; is:
o
3 ut
cen; = —
J Zu,t;ﬁj ﬁu "
where 19{;1 is the number of shortest paths from 7, to I; that
pass through node I;, and 1, is the total number of shortest
paths from /,, to ;. If the network is undirected, then the paths
from I, to I; and from I; to I, count only as one path (divide
the formula by two).

19)

4) ‘PAGERANK’ (cen*) [39]-[42]

The ‘pagerank’ centrality type results from a random walk
of the network. At each node in the network, the next node
is chosen with a certain probability from the set of succes-
sors of the current node (neighbors for the undirected case).
Otherwise, or when a node has no successors, the next node
is chosen from all nodes. The ‘pagerank’ centrality score
(pagj) is the average time spent at each node during the
random walk. If a node has a self-loop, then there is a chance
that the algorithm traverses it. Therefore self-loops increase
the ‘pagerank’ centrality score of the node they attach to.
In networks with multiple edges between the same two nodes,
nodes with multiple edges are more likely to be chosen.

5) ‘EIGENVECTOR’ (cen®) [39]-[42]
The ‘eigenvector’ centrality type uses the eigenvector corre-
sponding to the largest eigenvalue of the network adjacency
matrix. The scores are normalized such that the sum of all
centrality scores is one. The ‘eigenvector’ centrality score
(eig)) of disconnected nodes is 1/n.

The properties (‘degree’, ‘closeness’, ‘betweenness’,
‘pagerank’ and ‘eigenvector’) of a node describe its impor-
tance in the network from different perspectives according to
complex networks theory.
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The traditional methods (such as AHP [30] and
DEMATEL [29]) have decision compensation in the evalua-
tion, that is, the high value of one attribute can make up for the
low value of other attributes. The core idea of PROMETHEE
II is outranking method [31], [32], [47], [48]. The preference
function is used to compare two objects one by one, and
the preference order of all objects is finally determined,
thus avoiding the influence of compensation on the decision
results. In addition, PROMETHEE II does not need nondi-
mensionalized and normalized processing of the attribute
value, which reasonably avoids the information deviation
in data processing. This paper adopts PROMETHEE II to
determine the importance degrees of all nodes in IndN, which
indicate the importance degrees of the indicators shown
in Fig. 3.

Here, Gaussian preference function (GPF) is chosen
because of its nonlinear feature, which is more reasonable to
the realistic decision-making situation of this study.

For the ‘degree’ centrality type, the GPF of node /; relative
to node I, is obtained as follows.

0, cen} — ceni <0
_ (zren} 7c'enll, )2 (20)

1—e¢ w2 cen]1 — cen; >0

1
GPF}, =

where 7 is a constant that generally is 0.2.

Similarly, for the ‘closeness’, ‘betweenness’, ‘pagerank’
and ‘eigenvector’ centrality type, the GPFs GPF ﬁu, GPFﬁu,
GPFﬁu and GPF ﬁu of node J; relative to index node /, can be
obtained by same way.

The total preference ranking index (PRI) [43]-[45] of node
I; relative to node /,,, which indicates the importance degree
of node I; over node I, considering all five centrality types is
obtained as follows.

PRI, = 22:1

where p,(1 < g < 5)is a coefficient, p, > 0 and
23:1 pg = 1.

The outflow of node /; indicates the importance degree of
node /; over all other indicators, while the inflow of node /;
indicates the importance degree of all other indicators over
node I;. Then the net flow of node I; reflects the whole
importance degree of node ;. The outflow, inflow and net
flow of node /; are obtained as follows.

quPFj‘{u 21)

n
Outj = Y PRI, (22)
u=1
n
Inj = Z PRI, (23)
u=1
Netj = Outj — Il’lj (24)

If a node has a greater net flow, it means this node has a
greater importance degree in IndN. However, the net flow of
some nodes may be negative, and normalizing the net flows
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of all nodes is necessary. After normalizing, the importance
degree of node /; is obtained as follows.

norNet;

e — 25
>_j—1 norNet; (25)

wj =
where norNet; is the normalized form of Net;. Because node
I; in IndN indicates indicator /; in the indicator system shown
in Fig. 3, the importance degree vector of all indicators is
obtained as w = [wy, wa, . .., wy]T.

D. TWO-STAGE EVIDENCE COMBINATION

According to evidence theory [46]-[48], m alternatives of
intelligent manufacturing project in the sustainability assess-
ment problem are treated as the elements in the discernment
frame. Therefore, the discernment frame is defined as fol-
lows.

D ={o1, 02, Om} (26)

where ¢; stands for alternative i.

The most basic information carrier in evidence theory is
called basic probability assignment (BPA) [46]-[48]. In the
discernment frame, BPA is a function named as mass func-
tion, which satisfies mass(¥) = 0 and Z¢gd> mass(p) = 1.
Here, mass(¢) means the supportiveness for ¢ of the evi-
dence. When mass(p) > 0, ¢ is a focal element. To ¢ C D,
the combination rule of / mass functions is as follows.

1
- e
mass1020..01(¢) = 1 > oI, .nph—y ISP )

x mass2(¢P) .. .massi(?)  (27)

where “©”is the symbol of combination of multiple mass
functions and (p(l), ¢(2), e, <p<1) C &.
Here, K is the normalization constant as follows.

= Q) 2
K= Z¢(l)ﬂ<p(2)ﬁ..,ﬁ¢<1)7&@ mass1 (" )massz(¢*”)

...mass; (") (28)

Intelligent manufacturing project assessing by evidence
theory is a two-stage evidence combination process as shown
in Fig. 5. Its details are as follows.

Based on the indicator value and indicator importance
degree, the mass function values of all focal elements
(contain m alternatives and special focal element &) on
indicator /; are standardized. Then the standardized mass
functions of all focal elements on indicator I; are obtained
as follows.

i
Wi PFED

w — massj(g;) = D iy Xij (29)
1 —wj, pi=2

According to the indicator system shown in Fig. 4, for the
indicators in dimension D1, the standardized mass functions
of m alternatives are treated as evidence and combined based
on the combination rule shown in Formula (27), thus the mass
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Evidence combination phase

Evidence combination phase 2

Dimension ||
3 [ W-mass, H massp, ]—> importance -3 w-massp,
3 degree |!
Indicator V| w-mass, | |
value ‘| Dimension | :
—> il | !
- ' | w-mass. H massp, = importance e[ w-mass, H mass ] :
Indicator : [ > 2 ]—e D ' n :
. b ; degree | :
|| 1mportance || ' ' !
‘ i | w-massg : ;
degree : : :
?
Dimension ||
‘ degree || —

L | w-massgy

FIGURE 5. The two-stage evidence combination.

function massp; of all focal elements on dimension D1 can
be obtained as follows.

1
massp1(¢) = —

6]
w — mass
K Z(p(l>m<p(2>m(p(3>:¢ 1(e*)

W — maSS2(<p(2)) W — maSS3(<P(3)) (30)

By the same way, the mass functions massp; and massp3
of all focal elements on dimension D1 and dimension D2 can
also be obtained.

Subsequently, the standardization of mass function masspi
of all focal elements is carried out. Here, special focal element
® is treated as a general focal element. The standardized
mass function w-massp; of all focal elements is obtained as
follows.

wp1masspi(¢;), i =
w — massp1(g;) =
1 —wp1 + wpimassp1(®), ¢i =&
(31

where wpi is the importance degree of dimension DI,
wpl = w1 +wy + ws.

By the same way, the standardized mass functions of all
focal elements on dimension D2 and dimension D3 can also
be obtained as w-masspy and w-massp3.

The standardized mass functions on dimensions DI,
D2 and D3 of m alternatives are treated as evidence and com-
bined based on the combination rule shown in Formula (27),
thus the mass function of all focal elements under total goal
can be obtained as follows.

1
- — _ (D1)
mass(p) = & Zw<D”ﬂ<p(D2)ﬂw<D3)=w w = masspi(¢™"")

-w — masspo(¢®P?) - w — massp3(e®P)  (32)

On discernment frame ® = {¢q, ¢2, ..., ¢n}, mass func-
tion mass(¢;) means the supportiveness to focal element ¢;

174998

(i.e. alternative i) of all evidences (i.e. standardized mass
functions of all focal elements obtained by Formula (29)).
Therefore, the sustainability of intelligent manufacturing
projects is assessed and the ranking result of m alterna-
tives of intelligent manufacturing project can be obtained by
sorting mass functions mass(¢1), mass(¢z), . . ., mass(¢y,) in
descending order.

IV. CASE STUDY

An air conditioning enterprise in China provides cloud intel-
ligent remote operation and maintenance service project,
including real-time remote monitoring of unit operation,
automatic prompt of unit abnormality, automatic analysis of
big data, construction of the best energy-saving operation
scheme, etc. What it faces first in the design phase of intelli-
gent manufacturing implementation is how to select the opti-
mal intelligent manufacturing project in multiple alternatives.
The enterprise will carry out SAoIM and select the project
with the highest sustainability. It has built a digital twin
control structure in its business activities. Therefore, experts
can master the digital twin information comprehensively and
make a judgment accordingly.

There are eight alternatives (alt. 1: quiet series, alt. 2:
sterilization series, alt. 3: energy saving series, alt. 4: intel-
ligent series, alt. 5: humidification series, alt. 6: portable
series, alt. 7: large area series and alt. 8: artistic series) of
intelligent manufacturing project and four experts to evaluate
the sustainability of them on each indicator shown in Fig. 3.
All experts are equal.

On indicator /1, four experts separately carry out the pair-
wise comparison of the performance of eight alternatives
based on the modified nine-level comparison scale method
(Table 2). The TEN-RIMs E1-D g2 E(1.3) apg gU-H
are given respectively as shown by Tables 3, 4, 5 and 6.
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TABLE 3. TEN-RIM E(1:1) (pairwise comparison on indicator /; given by

expert 1).
Alt. 1 2 3 4 5 6 7 8
1 5/5 2/8 3/7 4/6 5/5 5/5 6/4 73
2 - 5/5 6/4 6/4 7/3 73 73 812
3 - - 5/5 6/4 6/4 6/4 73 73
4 - - - 5/5 5/5 6/4 7/3 6/4
5 - - - - 5/5 5/5 6/4 6/4
6 - - - - - 5/5 6/4 6/4
7 - - - - - - 5/5  6/4
8 - - - - - - - 5/5

TABLE 6. TEN-RIM E(1:4) (pairwise comparison on indicator /; given by

expert 4).
Alt. 1 2 3 4 5 6 7 8
1 5/5 6/4 6/4 5/5 5/5 4/6 2/8 3/7
2 - 5/5 5/5 4/6 5/5 3/7 2/8 3/7
3 - - 5/5 5/5 4/6 3/7 2/8 2/8
4 - - - 5/5 5/5 4/6 3/7 4/6
5 - - - - 5/5 4/6  3/7 3/7
6 - - - - - 5/I5 218 377
7 - - - - - - 5/5 6/4
8 - - - - - - - 5/5

TABLE 4. TFN-RIM E(1-2) (pairwise comparison on indicator I, given by

expert 2).

Alt. 1 2 3 4 5 6 7 8
1 5/5 5/5 5/5 6/4 6/4 7/3 82 9/1
2 - 5/5 5/5 5/5 6/4 6/4 6/4 6/4
3 - - 5/5 6/4 5/5 5/5 82 173
4 - - - 5/5 5/5 6/4 9/1 82
5 - - - - 5/5 713 5/5 6/4
6 - - - - - 5/5 6/4 13
7 - - - - - - 5/5  6/4
8 - - - - - - - 5/5
TABLE 5. TFN-RIM E(153) (pairwise comparison on indicator I, given by
expert 3).
Alt. 1 2 3 4 5 6 7 8
1 55 73 73 6/4 5/5 4/6 3/7 1/9
2 - 5/5 5/5 4/6 4/6 4/6 4/6 3/7
3 - - 5/5 5/5 4/6 4/6 4/6 3/7
4 - - - 5/5 5/5 5/5 4/6 4/6
5 - - - - 5/5 4/6 5/5 3/7
6 - - - - - 5/5 4/6 3/7
7 - - - - - - 5/5  3/7
8 - - - - - - - 5/5

For example, expert 1 gave his judgment opinion of the per-
formance of alt. 2 relative to alt. 1 on indicator /] as “‘strong
inferior”, which is expressed as ““2/8”” as shown in the second
column of the first row of E4-D (Table 3).

Then consistency test is carried out. ELD g2 pd.3)
and E1* are mapped into real number matrices DV1-D,
Dv1D pya3) and pvd . Their consistency ratios are
obtained as: CR(DV-D)y = 0.06, CR(DV1-2) = 0.09,
CR(DVY1-3) = 0.08 and CR(DV) = 0.07, while all of
them pass the consistency test since their consistency ratios
are less than 0.1.
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The preference information of each expert is integrated
into a preference information integration matrix as shown
in Tables 7 and 8.

By the conversion based on gravity-center formula of TEN,
EW is converted into gravity-center matrix EM as shown
in Table 9.

The eigenvector of EM corresponding to its largest
eigenvalue is obtained as §(E(") = [0.3847, 0.3528, 0.3285,
0.3630, 0.2659, 0.3022, 0.4069, 0.4003]T. Therefore, the
indicator value of the eight alternatives on indicator
I is obtained as [0.1372,0.1258,0.1171, 0.1294, 0.0948,
0.1078,0.1451, 0.1428]". By same way the indicator values
of eight alternatives on other indicators is obtained and the
indicator value matrix is shown in Table 10.

After determining the indicator value by TFN-AHP,
the indicator importance degree will be determined by com-
plex networks and PROMETHEE 1I as follows.

Multiple experts evaluate whether the relationship between
two indicators exists or not. If more than half of the experts
think that there is a relationship between two indicators,
the two indicators are related and a connection between
two corresponding nodes in IndN is added. Finally IndN is
obtained and its adjacency matrix is shown by Table 11 in
which “1”” stands for there is a connection between two nodes
while “0” stands for there is no connection between two
nodes.

According to the definitions and explanations of ‘degree’,
‘closeness’, ‘betweenness’, ‘pagerank’ and ‘eigenvector’,
the five types of centrality property of the nodes in IndN is
shown in Table 12.

For the ‘degree’ centrality type (cen'), the GPF of one node
relative to another node is obtained according to Formula (20)
and is shown in Table 13. Similarly, for the ‘closeness’
centrality type (cen?), ‘betweenness’ centrality type (cen?),
‘pagerank’ centrality type (cen*) and ‘eigenvector’ centrality
type (cen’), the GPF of one node relative to another node is
shown in Tables 14, 15, 16 and 17 respectively.

The PRI of one node relative to another node is obtained
according to Formula (21) and is shown in Table 18. Here,
pg=1 / 5 (i.e. the five types of centrality property are treated
equally).

174999



IEEE Access

L. Li et al.: Sustainability Assessment of Intelligent Manufacturing Supported by Digital Twin

TABLE 7. Preference information integration matrix E(!) (columns 1-4).

3

4

Alt. 1 2

1 (1,1,1,1) (0.9028,1.0640,1.5476,1.9405)
5 (1.0030,1.2179,2.0058,2.9167) (LLLD)

5 (0.7946,0.9322,1.3392,1.6667)  (0.8571,0.8846,0.9545,1.0000)
4 (0.7143,0.8248,1.1234,1.3333)  (0.8571,0.9957,1.3831,1.6667)
5 (0.8571,0.8846,0.9545,1.0000) ~ (0.6696,0.7735,1.0534,1.2500)
¢ (0.8125,0.9444,13132,1.5833)  (0.7946,0.9878,1.5534,2.0000)
7 (1.0933,1.3930,2.4545,3.6071)  (1.0030,1.2735,2.2201,3.2500)
g (1.4653,1.9921,3.1787,3.4792)  (0.8849,1.1073,1.7879,2.3571)

(0.9375,1.1032,1.5989,2.0000)
(1.0000,1.0556,1.2143,1.3333)
(1,1,1,1)
(0.7143,0.7692,0.9091,1.0000)
(0.8571,0.9957,1.3831,1.6667)
(0.9821,1.1545,1.6688,2.0833)
(0.9236,1.1830,2.0989,3.1071)
(1.0833,1.3810,2.4359,3.5833)

(0.8571,0.9957,1.3831,1.6667)
(0.7143,0.8248,1.1234,1.3333)

(1.0000,1.1111,1.4286,1.6667)

(1,L,1,1)
(1.0000,1.0000,1.0000,1.0000)

(0.7143,0.8248,1.1234,1.3333)
(0.7153,0.8810,1.3930,1.8125)
(0.6349,0.7898,1.2165,1.5238)

TABLE 8. Preference information integration matrix E () (columns 5-8).

7

8

Alt. 5 6

1 (1.0000,1.0556,1.2143,1.3333)  (0.8393,0.9835,1.4091,1.7500)
2 (0.9821,1.1545,1.6688,2.0833)  (0.7946,0.9878,1.5534,2.0000)
3 (0.7143,0.8248,1.1234,1.3333)  (0.6696,0.7735,1.0534,1.2500)
4 (1.00,1.00,1.00,1.00) (0.8571,0.9957,1.3831,1.6667)
5 (L1,1,1) (0.8393,0.9835,1.4091,1.7500)
6 (0.8125,0.9444,1.3132,1.5833) (L1,1,1)

7 (0.9821,1.0989,1.4545,1.7500)  (1.0476,1.3248,2.2900,3.3333)
8 (0.9643,1.1978,1.9091,2.5000)  (0.9196,1.1465,1.8392,2.4167)

(0.9236,1.1830,2.0989,3.1071)
(0.7599,0.9486,1.5022,1.9405)
(1.0933,1.3930,2.4545,3.6071)
(1.5446,2.0989,3.3392,3.6667)
(0.8125,0.8889,1.0989,1.2500)
(0.6349,0.7898,1.2165,1.5238)

(LLLD
(0.6964.0.8681,1.3636,1.7500)

(1.4653,1.9921,3.1787,3.4792)
(0.9583,1.2222,2.1502,3.1667)
(0.8403,1.0560,1.7179,2.2738)
(1.0476,1.3248,2.2900,3.3333)
(0.6250,0.7778,1.1978,1.5000)
(0.7500,0.9365,1.4835,1.9167)

(0.8125,1.0000,1.5275,1.9167)
ALLLT)

TABLE 9. Gravity-center matrix E(1),

TABLE 10. Indicator value matrix X = [x,-’j]

=

1

2 3 4

5 6 7

8

0NN N AW —

1
1.8100 1
1.1889
1.0018
0.9246
1.1674
2.1659
2.5239

1.3707 1.4170  1.2299
1.1527 1.0018
0.9246 1 1.3053
1.2299  0.8492 1

0.9393  1.2299  1.0000
1.3416 1.4795 1.0018
1.9624 1.8537 1.2081
1.5449  2.1497 1.0457

1.1527 1.2514  1.8537
1.4795 13416 1.2953
1.0018 0.9393  2.1659
1.0000 1.2299 2.6574
1 12514 1.0148
1.1674 1 1.0457
1.3269  2.0249 1
1.6537  1.5912  1.1760

2.5239
1.9000
1.4825
2.0249
1.0295
1.2791
1.3201

8x9’

I

=

[2 I‘s 14

Is I Iy

Iy

0.1372
0.1258
0.1171
0.1294
0.0948
0.1078
0.1451
0.1428

0NN AW —

0.1550 0.1788  0.0358
0.2083  0.2223  0.0456
0.1096 02546 0.2371
0.1919 02581  0.2668
0.0908 0.0189 0.0421
0.1532  0.1584 0.3396
02752  0.3452  0.1510
0.4477 0.1916  0.3436

0.1586
0.1940
0.2270
0.1123
0.2562
0.3004
0.3158
0.1252

0.1219  0.0484  0.0598
0.2046  0.2470  0.1804
0.1670  0.0207  0.2225
0.1907  0.1000 0.2214
0.2338  0.1933  0.3513
0.0744 03229 0.2116
0.2731  0.1205 0.0636
0.3725 0.1951 0.2785

0.1548
0.0452
0.3068
0.0132
0.0144
0.2718
0.2487
0.3986

As shown in Table 19, the outflow, inflow, net flow of a
node in IndN are obtained according to Formulas (22)-(24),
then the net flow of all nodes are normalized and lastly the
importance degree of the indicator corresponding to each
node is obtained according to Formula (25).

Based on the indicator value shown in Table 10 and indi-
cator importance degree shown in Table 19, the two-stage
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evidence combination (Fig. 4) is carried out for the assess-
ment of intelligent manufacturing projects. According to
Formula (29), the standardized mass functions of all focal
elements on each indicator are obtained as shown in
Table 20.

Then evidence combination phase 1 is performed accord-
ing to Formula (30) and the mass functions of all focal
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TABLE 11. The adjacency matrix of IndN. TABLE 15. The GPF value for the ‘betweenness’ centrality type (cen®).
h b L L L5 Lk L L b L b B I s I I Is b

L - 0o 0 0 1 1 0 1 1
L o0 - 1 ) L ) ) LH 0 0 0 1 0756 0756 1 0.7506 0.7506
L 0 1 - 1 1 1 1 1 1 L1 0 0 1 1 L. 1 1
L 0 1 1 - 1 1 0 0 0 L 1 0 0 1 1 11 1 1

1 1 1 1 - 1 0 0 O
L1 1 11 1 - 0 0 0 .. 0 0 O O 0 0 0 0 0
L 0 1 1 0 0 0 - 1 1 E 0 0 0 1 0 0 1 0 0

Iy 1 1 1 0 0o o 1 - 1
L1 | L 0 0 o 1 . s 0 0 0 1 0 0 1 0 0
r 0 0 0 0 0 0 0 0 0
TABLE 12. The five types of centrality property of the nodes in IndN. s 00 0 1 0 0 1 0 0
b 0 0 0 1 0 0 1 0 0

cen' cen® cen’ cen* cen’

7, 0.5000 0.0833 1.3333 0.0909 0.0820
L, 08750 0.1111 3.8333 0.1467 0.1455
I, 08750 0.1111 3.8333  0.1467 0.1455

TABLE 16. The GPF value for the ‘pagerank’ centrality type (cen?).

)i L I Ls Is Is I Is I
I, 0.5000 0.0833 0 0.0894  0.0958 I 0 0 0 0 0 0 0 0 0
I 0.6250  0.0909 1 0.1092  0.1088 L 00382 0 0 00402 00174 00174 0.0402 00174 0.0174
I, 06250 0.0909 1 0.1092 0.1088 Iz 00382 0 0 0.0402 0.0174 0.0174 0.0402 0.0174 0.0174
,, 05000 00833 0 00894 0.0958 o 0000 0 0 0 0 0
00042 0 0 00049 0 0 0.0049 0 0
Iy 0.6250  0.0909 1 0.1092 0.1088
T 00042 0 0 00049 0 0 0.0049 0 0
I, 0.6250  0.0909 1 0.1092  0.1088 b 0 0 0 0 0 0 0 0 0
s 00042 0 0 00049 0 0 0.0049 0 0
TABLE 13. The GPF value for the ‘degree’ centrality type (cen'). L 00022 0 0 00049 0 0 0.0049 0 0
L L I L Is I L Iy Iy
I 0 0 0 0 0 0 0 0 0 TABLE 17. The GPF value for the ‘eigenvector’ centrality type (cen®).
L, 08276 0 0 08276 05422 05422 0.8276 0.5422 05422
5, 08276 0 0 08276 05422 05422 0.8276 0.5422 05422 L L L I Is Is I Is I
L0 0 0 0 0 0 0 0 0 I 0 U 0 0 0 0 0 0
L 01774 0 0 01774 0 0 0.1774 0 0 L 00492 0 0 0.0304 0.0167 0.0167 0.0304 0.0167 0.0167
L, 01774 0 0 0.1774 0 0 0.1774 0 0 I 00492 0 0 0.0304 0.0167 0.0167 0.0304 0.0167 0.0167
I 0 0 0 0 0 0 0 0 0 I 00024 0 0 0 0 0 0 0 0
01774 0 0 01774 0 0 01774 0 0 I 0.00% 0 0 0.0021 0 0 00021 0 0
5, 01774 0 0 0.1774 0 0 0.1774 0 0 Ir 00090 0 0 0.0021 0 0 0.0021 0 0
L 00024 0 0 0 0 0 0 0 0
s 0009 0 0 00021 0 0 0.0021 0 0
TABLE 14. The GPF value for the ‘closeness’ centrality type (cen?). b 0009 0 0 00021 0 0 0.0021 0 0
I L L L Is Is I Iy Iy
I 0 0 0 0 0 0 0 0 0 TABLE 18. The PRI value.
L, 0009 0 0 0.009 00051 00051 0.009 0.0051 0.0051
5, 0009 0 0 0.0096 00051 0.0051 0.0096 0.0051 0.0051 LL L I Ie L I I
I 0 0 0 0 0 0 0 0 0 I 0 0 0 1 0.7506  0.7506 1 0.7506  0.7506
Is 00007 0 0 0.0007 0 0 0.0007 0 0 5, 19246 0 0 19078 15814 1.5814 1.9078 15814 1.5814
J; 0.0007 0 0 0.0007 0 0 0.0007 0 0 L 19246 0 0 19078 15814 1.5814 19078 15814 1.5814
A 0 0 0 0 0 0 0 0 0 I, 00024 0 0 0 0 0 0 0 0
Iy 0.0007 0 0 0.0007 0 0 0.0007 0 0 I 01913 0 0 11851 0 0 1.1851 0 0
I, 00007 0 0 0.0007 0 0 0.0007 0 0 7, 01913 0 0 11851 0 0 1.1851 0 0
5, 00024 0 0 0 0 0 0 0 0
J 01913 0 0 11851 0 0 1.1851 0 0
elements on dimensions D1, D2 and D3 are obtained as L 01913 0 0 1181 0 0 L8t 0 0
shown in Table 21.
According to Formula (31), the standardizations of mass
functions massp;, massp> and massps are carried out At last evidence combination phase 2 is performed accord-
respectively and the standardized mass functions are shown ing to Formula (32) and the mass function of all focal ele-
in Table 22. ments under total goal is obtained as shown in Table 23.
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TABLE 19. The outflow, inflow, net flow, normalized net flow and
importance degree.

Qut; In; Net, Normalized Net; Importance degree w;
I, 50026  4.6190  0.3837 0.4677 0.1146
L 12.0656 0 12.0656 0.9000 0.2205
I 12.0656 0 12.0656 0.9000 0.2205
I, 00024 95560 -9.5536 0.1000 0.0245
I 25615 39134 -1.3519 0.4035 0.0989
I, 25615 39134 -1.3519 0.4035 0.0989
L 00024 95560 -9.5536 0.1000 0.0245
I 25615 39134 -1.3519 0.4035 0.0989
I, 25615 39134 -1.3519 0.4035 0.0989

The ranking result of eight alternatives of intelligent
manufacturing project can be obtained by sorting mass
functions mass(¢1), mass(¢2), ..., mass(eg) in descending
order. Therefore, the SAoIM result of this case is: alt. &,
alt. 7, alt. 4, alt. 2, alt. 3, alt. 6, alt. 1, and alt. 5 as shown
in Table 23. Alt. 8 is the optimal alternative of intelligent
manufacturing project. From the SAoIM result, alt. 8 ranks
first with alt. 7 ranking second, while alt. 5 ranks first-last
with alt. 1 ranking second-last. In terms of the indicator
value shown in Table 10, alt. 8 ranks first in four indicators
(I, 14, I and Iy) and ranks second in two indica-
tors (I; and Ig), while alt. 7 ranks first in three indicators
(11, Iz and I5) and ranks second in two indicators (/> and I¢);
alt. 5 ranks first-last in three indicators (/;, I» and I3) and
ranks second-last in two indicators (/4 and Iy), while alt.
1 ranks first-last in two indicators (I and I3) and ranks
second-last in two indicators (/g and /7). This is consistent
with the SAoIM result, which can prove its validity.

V. DISCUSSIONS

A. COMPARING THE RANKS OF DIFFERENT MODELS

The reliability of the result obtained by the proposed model
should be assessed for a final selection of the optimal alter-
natives. The most common means of assessing the reli-
ability of the result is to compare it with other similar
models.

The discussion of the results is presented using the
comparison of three models (PROMETHEE II [43]-[45],
TOPSIS [37] and VIKOR [33]). These methods were chosen
because they have so far given stable and reliable results.
PROMETHEE II, TOPSIS and VIKOR methods were mod-
ified using the indicator value and the indicator importance
degree obtained by the proposed methods in this paper, which
are called M’PROMETHEE II, M’TOPSIS and M’VIKOR.
These three models are compared with the proposed model.

The comparison of the ranks of the eight alternatives of
intelligent manufacturing project according to the proposed
model, M’"PROMETHEE 1I, M’TOPSIS and M’VIKOR is
shown in Table 24.

Ranking of the eight alternatives of intelligent manufac-
turing project according to the models used in order to assess
of the reliability of the results shows that alt. 8 remained in
first place for the majority of the model (the proposed model,
M’PROMETHEE II and M’TOPSIS), while alt. 8 and alt. 7
are the top two alternatives and alt. 1 and alt. 5 are the last
two alternatives.

In order to establish the connection between the results
obtained using four different models (Tables 24), Spearman’s
correlation coefficient (SCC) [32], [31] was used. SCC of
ranks is a useful and important indicator for determining
the link between the results obtained by different models.
Additionally, the case in this study has ordinal variables
or ranked variables, while SCC is suitable for use in this
situation. In this paper, SCC was used to define the statistical
significance of the difference between the ranks obtained by
different models. The results of the comparison of ranks using
SCC are shown in Tables 25.

The SCC values from Table 25, which are with the aver-
age values of 0.8730, show a high correlation between the
ranks among the models examined. When SCC values are
greater than 0.8 an extremely high correlation is shown [49].
In our case, most of the SCC values are also significantly
greater than 0.8 and only the SCC value between the proposed
model and M’PROMETHEE II and the SCC value between
M’PROMETHEE II and M’VIKOR are 0.7857 (very close
to 0.8). Therefore, we can conclude that there is a very high
correlation between the proposed model and the other related
models.

TABLE 20. The standardized mass functions of all focal elements on each indicator.

W-massi W-1Mass2 wW-masss W-1Mass4 W-1Masss wW-1masse w-massz W-1Masss W-1Mass9
» 0.0677 0.0902 0.1043 0.0026 0.0400 0.0317 0.0041 0.0160 0.0454
o 0.0621 0.1213 0.1297 0.0033 0.0489 0.0532 0.0209 0.0484 0.0133
»3 0.0578 0.0638 0.1486 0.0171 0.0573 0.0434 0.0018 0.0597 0.0899
04 0.0639 0.1117 0.1506 0.0193 0.0283 0.0496 0.0085 0.0594 0.0039
s 0.0468 0.0529 0.0110 0.0030 0.0646 0.0608 0.0164 0.0942 0.0042
%6 0.0532 0.0892 0.0924 0.0245 0.0758 0.0194 0.0273 0.0567 0.0797
v 0.0716 0.1602 0.2014 0.0109 0.0796 0.0710 0.0102 0.0171 0.0729
08 0.0705 0.2607 0.1118 0.0248 0.0316 0.0969 0.0165 0.0747 0.1169
o) 0.5063 0.0500 0.0500 0.8944 0.5739 0.5739 0.8944 0.5739 0.5739
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TABLE 21. The mass functions of all focal elements on each dimension.

Mmasspi masspy Massps
» 0.0883 0.0491 0.0424
0 0.1284 0.0707 0.0502
03 0.0908 0.0764 0.1038
04 0.1363 0.0611 0.0451
05 0.0175 0.0872 0.0721
v 0.0777 0.0751 0.1075
» 0.2316 0.1097 0.0645
05 0.2193 0.0993 0.1431
1)) 0.0100 0.3714 0.3713

TABLE 22. The standardized mass functions of all focal elements on each
dimension.

W-masspi W-massp: W-massps
» 0.0490 0.0109 0.0094
P 0.0713 0.0157 0.0112
03 0.0505 0.0170 0.0231
04 0.0757 0.0136 0.0100
s 0.0097 0.0194 0.0160
%6 0.0432 0.0167 0.0239
. 0.1287 0.0244 0.0143
s 0.1219 0.0221 0.0318
P 0.4500 0.9841 0.9840

TABLE 23. The mass functions of all focal elements under total goal and
the ranking result.

mass Rank
0.0517 7

1 (alt. 1)

pi(alt. 7y 01319

ps(alt. 8)  0.1336
@ 0.3913

pa(alt. 2)  0.0745 4
ps(alt. 3)  0.0618 5
p4(alt. 4)  0.0769 3
ps(alt. 5)  0.0229 8
pe(alt. 6)  0.0554 6
2
1
/

B. COMPARING THE RANKS USING INDICATOR
IMPORTANCE DEGREES DETERMINED BY DIFFERENT
METHODS
In order to analyse the effectiveness of the proposed indi-
cator importance degree calculation method, according to
the indicator value matrix shown in Table 10, the indicator
importance degree determined by entropy method (a typical
weighting method [37], [40]) is shown in Table 26.

The indicator importance degree of entropy type is com-
pared with the indicator importance degree determined by the
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0.2500
0.2000

0.1500

0.1000
0.0500 I
I L I I Is Iy I Iy Iy

0.0000

W Indicator importance degree by entropy method
Indicator importance degree by proposed method

FIGURE 6. The comparison of the indicator importance degree
determined by different method.

proposed method (integration of complex networks modeling
and PROMETHEE 1II), and the results are shown in Fig. 6.

According to the indicator importance degree of entropy
type, the eight alternatives of intelligent manufacturing
project are ranked by the proposed two-stage evidence com-
bination approach, and the result is shown in Table 27.

By comparing the mass function values and the ranking
results of alternatives obtained in Tables 23 and 27, it can be
seen that when the proposed two-stage evidence combination
approach is used, through different importance degree types
(the proposed integration of complex networks modeling and
PROMETHEE II, entropy method) the two ranking results
have slightly difference. Among them, the ranking results of
alt. 3 and alt. 6 are different.

It can be seen from Table 26 and Fig. 5 that in the process
of calculating the indicator importance degree by entropy
method, the importance degrees of all indicators are relatively
average. Among them, the importance degrees of /1 and /s are
given larger values (0.1192 and 0.1162), while the importance
degrees of I7 and Iy are relatively small (0.1077 and 0.0998).

However, by the proposed method the importance degrees
(Table 19) of I, and I3 are given larger values (both are
0.2205), while the importance degrees of 14 and I7 are rel-
atively small (both are 0.0245). As can be intuitively seen
from the adjacency matrix of IndN (Table 11), all indicators
except I| were affected by /> and I3. Because the indicators
I and I5 are closely related to other indicators, the proposed
method gives them a larger importance degree. However, the
entropy method does not take into account the interaction
between indicators, resulting in unreasonable and inaccurate
importance degree value.

From Fig. 5, we can see that the importance degrees of
other indicators calculated by the two methods are also dif-
ferent. The indicator importance degree calculated by entropy
method is completely based on indicator value information.
The larger the dispersion of the indicator value, the smaller
the entropy value and the smaller the importance degree given
to the indicator. Traditional entropy method is only based
on indicator data information, and establishes mathematical
deduction to calculate objective importance degree. Although
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TABLE 24. The ranks of the eight alternatives of intelligent manufacturing project by different models.

Al Proposed model M’PROMETHEE I M’TOPSIS M’VIKOR
) P Netflow Rank  Closeness Rank Composite value  Rank
1 7 -0.7293 7 0.1780 7 1.0001 7
2 4 -0.2842 5 0.3607 5 0.6576 3
3 5 0.0406 3 0.3753 4 0.8724 5
4 3 -0.3119 6 0.3852 3 0.7037 4
5 8 -1.0187 8 0.0901 8 2.0000 8
6 6 -0.0455 4 0.2570 6 0.9369 6
7 2 0.7311 2 0.7581 2 0.0303 1
8 1 1.6178 1 0.8708 1 0.1637 2
TABLE 25. The results of the comparison of ranks using SCC.
Proposed model M’PROMETHEE Il M’TOPSIS M’VIKOR

Proposed model 1 0.7857 0.9762 0.9524

M’PROMETHEE II / 1 0.8333 0.7857

M’TOPSIS / / 1 0.9048

M’VIKOR / / / 1

TABLE 26. The indicator importance degree determined by entropy
method.

Importance degree w;

I 0.1192
A 0.1126
I 0.1126
I 0.1048
Ik 0.1162
Ie 0.1145
L 0.1077
Is 0.1126
I 0.0998

this method can effectively transfer the data difference of
the indicators, it ignores the interaction between the indica-
tors. In the integration of complex networks modeling and
PROMETHEE II, complex networks modeling is used to
calculate the centrality of five types, which comprehensively
considers the interaction between the indicators. I, and I3
are key factors of normal operation of intelligent manufac-
turing project considering environmental effects. Therefore,
they are given greater importance degree, which is more in
line with the actual situation of the design, development and
evaluation of intelligent manufacturing project. Considering
the relationship between the indicators, the proposed method
of determining the indicator importance degree is more rea-
sonable.

C. COMPARING THE RANKS USING INDICATOR VALUES
DETERMINED BY DIFFERENT METHODS

To clarify the effectiveness of the proposed TFN-AHP
method, the result of the proposed model (using TFN-AHP
method) and the result of the compared model (using accurate
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TABLE 27. The SAolIM result using the indicator importance degree by
entropy method.

mass___ Rank

o (alt. 1) 0.0529 7
pa(alt.2)  0.0750 4
ps(alt. 3)  0.0656 6
pa(alt. 4)  0.0764 3
ps(alt. 5y 0.0376 8
pe(alt. 6)  0.0741 5
ps(alt. 7)  0.1257 2
ps(alt. 8)  0.1456 1

@ 03471/

scoring) are analyzed. In the compared model the natural
numbers shown in Table 1 are adopted to express the judg-
ment of expert and the data in Tables 3, 4, 5 and 6 will be
changed accordingly. Based on the changed data, the result
using the obtained indicator importance degree (Table 19) and
the two-stage evidence combination model (Fig. 4) is shown
in Table 28.

As can be seen from Table 23 (ranks using indicator value
determined by the proposed TFN-AHP) and Table 28 (ranks
using indicator value determined by accurate expert scoring),
there is a difference between the two ranks. The compared
model is contrary to the proposed model on the ranking of
alt. 2 and alt. 4, the ranking of alt. 3 and alt. 6 and the ranking
of alt. 1 and alt. 5. The main reason for this difference is
the existence of qualitative indicators in the indicator system
(Fig. 4). These qualitative indicators are often difficult to
be accurate. The error of accurate scoring method is large,
which cannot truly reflect the judgment intention of the expert
group. In the proposed TFN-AHP method, trapezoidal fuzzy
number is used to reflect the fuzzy information of expert
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TABLE 28. The mass functions of all focal elements under total goal and
the ranking result using indicator value determined by accurate expert
scoring.

mass Rank

o (alt. 1) 0.0488 8
pa(alt. 2)  0.0865 3
ps(alt. 3)  0.0603 6
pq(alt. 4)  0.0813 4
ps(alt. 5)  0.0574 7
pe(alt. 6) 00711 5
pr(alt. 7)  0.1269 2
pg(alt. 8)  0.1296 1

o 0.3381 /

group in the evaluation process, which makes up for the
problem of large error in the accurate scoring method, better
expresses the judgment intention of the expert group, and is
more in line with the actual decision-making environment.
Therefore, the proposed TFN-AHP method is more suitable
for the actual situation and the evaluation result will be more
reasonable.

VI. CONCLUSIONS

Intelligent manufacturing is a major challenge and oppor-
tunity for traditional manufacturing enterprise. Taking into
account the sustainable development in the future, there is
no doubt that SAoIM can play a major role and it is there-
fore essential to have criteria according to which the opti-
mal intelligent manufacturing project is selected. However,
the incompleteness of basic data source, the complexity and
ambiguity of real indicators, as well as imprecision in the
human cognitive process exist in SAoIM process. Aiming
at these problems, this paper presents a SAoIM framework
based on the digital twin system of whole life cycle of intel-
ligent manufacturing to solve the incompleteness of basic
data source. In the presented SAoIM framework, a novel
TFEN-AHP approach for treating the ambiguity of expert’
judgment in indicator value determination by introducing
TEN into AHP is proposed, while the complexity of the influ-
ence relationship among the indicators is processed by com-
plex networks theory which is integrated into PROMETHEE
IT for the indicator importance degree determination. Based
on the indicator value and the indicator importance degree,
evidence theory is used to build a two-stage evidence combi-
nation model for intelligent manufacturing project assessing.
In case study section, the proposed SAoIM supported by
digital twin tested and validated on a study of the intelli-
gent manufacturing project assessment of an air conditioning
enterprise in China.

The basic idea of applying algorithms in the decision
making process of indicator value determination includes the
application of TEN for presenting the judgment of experts.
The advantages of applying TFN are numerous. TFN-AHP

VOLUME 8, 2020

facilitates the decision making process exclusively by using
TEN for presenting the cognitive ambiguity of experts.
In such a way both the complexity and ambiguity that may
affect the indicator value and final assessment of alterna-
tives are eliminated. Considering the five types of network
properties of each assessment indicator, PROMETHEE II
is introduces to determine the importance degree of each
indicator. On the one hand, the relationship among multi-
ple indicators is considered synthetically, and the interaction
among indicators is analyzed through network properties,
which is more objective. On the other hand, PROMETHEE II
considers the preference of experts in the evaluation process.
This integration can make up for the shortcomings of the
previous related research. Additionally, mapping the com-
prehensive assessment into the two-stage evidence combi-
nation model considers the two-tier hierarchy of indicator
system and fuses both indicator value and indicator impor-
tance degree, which can make full use of the advantages of
evidence theory in carrying out reliability reasoning based on
uncertain information. The contributions of the study towards
advances in manufacturing research are as follows. (1) Identi-
fication of potential aspects/criteria of intelligent manufactur-
ing project selection, assessing the relative importance under
fuzzy information, and finally, the evaluation followed by
the selection of the most favorable intelligent manufacturing
project(s) against those criteria under uncertain environment.
(2) The proposed framework opens valuable insights and
actionable points, helps the management (intelligent man-
ufacturing operator/stakeholders) in paying attention to the
key factors, and advance critical issues in order to stay com-
petitive and perform better in the intelligent manufacturing
industry.

Since this novel framework and the methodology in it
are still underrepresented in the literature related to both
digital twin system and MCDM, future research should be
based on the following aspects. The future development of
intelligent manufacturing will focus more on its impact on
human, and the final analysis is to explore whether it can
provide a good life for human. Therefore, it is necessary to
research the sustainability of intelligent manufacturing ori-
ented for people, such as the chronic and cumulative impact
of intelligent manufacturing on human. In addition, the data
collection based on digital twin system in the whole life
cycle of intelligent manufacturing should be carried out by
using the new information computing technology such as
internet of things and cloud computing. Because this paper
only presents a simple framework for SAoIM, in future the
deep research may include: (1) The collection, transmission
and analysis of multi-source big data in the whole life cycle
of intelligent manufacturing based on digital twin framework
will be studied. (2) Based on the decision-making support
from the sustainability assessment a sustainability maturity
model of intelligent manufacturing in the whole life cycle
will be built. (3) The assessment data modeling in the digital
twin driven information architecture could be considered to
provide a detailed information analyzing methodology. More
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data and cases should be used to improve the approach’s
feasibility and practicality.
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