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ABSTRACT Concept Factorization (CF) improves Nonnegative matrix factorization (NMF), which can be
only performed in the original data space, by conducting factorization within proper kernel space where the
structure of data becomemuch clear than the original data space. CF-basedmethods have beenwidely applied
and yielded impressive results in optimal data representation and clustering tasks. However, CF methods
still face with the problem of proper kernel function design or selection in practice. Most existing Multiple
Kernel Clustering (MKC) algorithms do not sufficiently consider the intrinsic neighborhood structure of base
kernels. In this paper, we propose a novel Discriminative Multiple Kernel Concept Factorization method
for data representation and clustering. We first extend the original kernel concept factorization with the
integration of multiple kernel clustering framework to alleviate the problem of kernel selection. For each
base kernel, we extract the local discriminant structure of data via the local discriminant models with
global integration. Moreover, we further linearly combine all these kernel-level local discriminant models
to obtain an integrated consensus characterization of the intrinsic structure across base kernels. In this way,
it is expected that our method can achieve better results by more compact data reconstruction and more
faithful local structure preserving. An iterative algorithm with convergence guarantee is also developed to
find the optimal solution. Extensive experiments on benchmark datasets further show that the proposed
method outperforms many state-of-the-art algorithms.

INDEX TERMS Concept factorization, multiple kernel clustering, local discriminant regularization, data
representation.

I. INTRODUCTION
Data representation is a fundamental topic in machine learn-
ing, pattern recognition and data mining. Previous studies
have shown that the performance of many learning tasks,
such as clustering and classification, can be largely improved
with more faithful and compact representation. Matrix fac-
torization techniques have been widely used to obtain low
dimensional representations. Several methods have also been
developed such as Singular Value Decomposition (SVD),
Principle Component Analysis (PCA), Non-negative Matrix
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Factorization (NMF) [1]–[3]. By keeping the two latent fac-
tors be non-negative, NMF leads to thewell known part-based
representation, which not only provides better performance
in face recognition and document clustering but also enables
better semantic interpretation. However, NMF only works in
the original non-negative space. As one of the most important
extension of NMF, Concept Factorization (CF) [4] inherits
the merit of non-negative representation and conducts fac-
torization in any data space such as the Reproducing Kernel
Hilbert space (RKHS). It has also been pointed out that the
structure of data within proper kernel space may become
much clear than in the original feature space [5]. Therefore,
concept factorization can discover more meaningful concepts
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and lead to better learning performance compared with NMF
[4]. That is also the primary advantage of CF over NMF.

In recent years, various concept factorization methods
have been further developed. Graph regularized concept
factorization methods [6]–[11] extracts the concepts of data
which are consistent with the manifold geometry by exploit-
ing the graph Laplacian as additional regularization terms
for smoothness. Sparse concepts can also be obtained with
the locality-constraints [12], [13]. Semi-supervised concept
factorization methods [14]–[18] have also been proposed
by using the available supervised information to guild the
factorization process. Most recently, multi-view concept
factorization methods [19], [20] have also been proposed
to handle the complementary information from multiple
views. Most of existing works on CF only handle data with
single kernel. However, CFs methods still face with the
problem of the design or selection of proper kernel function
in practice. By leveraging a predefined set of candidates
kernels from different functions or views, the Multiple Ker-
nel Clustering (MKC) methods are with great potential to
alleviate the effort for kernel designing or integrating com-
plementary information [21]. It is natural to extend existing
single kernel clustering methods into multiple kernel sce-
nario. The typical methods include K-means based [21]–[27],
self-organizing map (SOM) [28], maximum margin clus-
tering based [29]–[31], local learning-based [32], spectral
clustering based [33]–[40] and subspace clustering based
[41]–[45] algorithms. Compared with the single kernel coun-
terpart, MKC should take special effort to handle the addi-
tional data problems such as noisy and incomplete kernels
[24], [27], [44], [46]–[51]. Moreover, only a few efforts [45],
[52], [53] have been taken to incorporate the local geometric
structure of data for MKC. In addition, It has been shown that
the disciminant information is also important for the learning
tasks [54], [55].

To alleviate the effort for kernel designing and make
full use of complementary information, it is imperative to
learn an appropriate kernel efficiently to make the perfor-
mance of concept factorization more stable or even better
across multiple different kernels. In this paper, we present
the novel Discriminative Multiple Kernel Concept Factor-
ization (DMKCF) for data representation. To achieve this,
we first combine multiple base kernels with linear weights
to approximate the unknown proper kernel matrix. We then
replace the data matrix in kernelized CF with the combined
kernel matrix and get the multiple kernel concept factoriza-
tion (MKCF). Specifically speaking, for each data point in
each base kernel, we construct a local clique comprising this
data point and its neighboring data points identified by the
base kernel. We use a local discriminant model for each local
clique from each base kernel to evaluate the representation
performance of samples within the local clique. We then inte-
grate the local models of all the local cliques from all the base
kernels into a global model to approximate the underlying
local and discriminant structure of data. We incorporate the
induced Multiple Kernel Local Discriminative regularization

on orthogonal non-negative low-dimensional representation
into the above MKCF learning procedure. We then derive the
correspondingmultiplicative update rules to reduce the objec-
tive functionmonotonically and obtain the unique solution for
the proposed DMKCF model. Extensive experimental results
on benchmark data sets well demonstrate the effectiveness
of the proposed method over state-of-the-art multiple kernel
learning algorithms.

It is worthwhile to highlight several properties of the pro-
posed DMKCF method.

• The proposed method avoids the problem of kernel
selection in concept factorization by integrating multi-
ple candidate kernels under the framework of multiple
kernel clustering.

• The proposed method globally integrates the local dis-
criminant models from all the local cliques and all the
base kernels to approximate the underlying local and dis-
criminant structure of multiple kernels, which is further
used to regulate the procedure of concept factorization.
The proposed method extracts the concepts with respect
to the local structure and thus data samples associated
with the same concept can be well clustered.

• We propose an effective iterative strategy with multi-
plicative updating rules to obtain the optimal unique
solution, and provide the proof of rigorous convergence
and correctness analysis of our method.

The rest of the paper is organized as follows. The pre-
liminaries on non-negative matrix factorization and concept
factorization are introduced in Section 2. Section 3 introduces
the proposed Discriminative Multiple Kernel Concept Fac-
torization method. The optimization algorithm is presented
in Section 4. Extensive experimental results on clustering are
presented in Section 5. Finally, we provide some concluding
remarks and suggestions for future work in Section 6.

II. RELATED WORK
A. NON-NEGATIVE MATRIX FACTORIZATION
Given a data matrix X = [x1, · · · , xn] ∈ Rd×n, each column
ofX is a sample vector. By solving the following optimization
problem, NMF [1], [2] aims to extract two non-negative
matrices W ∈ Rd×c and V ∈ Rn×c whose product can well
approximate the original matrix X.

min
W,V

||X−WVT
||
2, s.t. W ≥ 0,V ≥ 0. (1)

It can be seen that each data vector xi is approximated by
a linear combination of the columns of W, weighted by
the components of V, i.e. xi =

∑c
j wjvij. Thus, W can be

regarded as a set of basis and V can be regarded as the new
representation of each data point in the new basisW.

B. CONCEPT FACTORIZATION
By replacing the basis vectors in NMF with the non-negative
linear combination of the sample vectors, i.e., wj =∑n

j′=1 xj′ujj′ , CF [4] performs factorization in linear space by
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solving:

min
U,V

||X− XUVT
||
2, s.t. U ≥ 0,V ≥ 0. (2)

Besides, it can be easily verified that the kernelized concept
factorization can be written as

min
U,V

tr(K)− 2tr(VTKU)+ tr(UTKUVTV)

s.t. U ≥ 0,V ≥ 0, (3)

where K ∈ Rn×n is the kernel matrix, and K = XXT for the
linear case. It has been shown that the optimal value of U and
V in the kernel concept factorization model can be obtained
by the following multiplicative update rules:

Uij = Uij
(KV)ij

(KUVTV)ij
(4)

Vij = Vij
(KU)ij

(VUTKU)ij
(5)

For the kernel matrix with negative entries, the multiplicative
update rules become

Uij = Uij

(KV)ij +
√
(KV)2ij + 4P+ij P

−

ij

2P+ij
(6)

Vij = Vij

(KU)ij +
√
(KU)2ij + 4Q+ijQ

−

ij

2Q+ij
(7)

where K+ = (|K| + K)/2, K− = (|K| − K)/2, and we
further denote P+ = K+UVTV, P− = K−UVTV, Q+ =
VUTK+U, Q− = VUTK−U.

III. DISCRIMINATIVE MULTIPLE KERNEL CONCEPT
FACTORIZATION
In this section, we extend kernel concept factorization to auto-
matically learn an appropriate kernel from the convex linear
combination of several pre-computed kernel matrices within
the multiple kernel learning framework. We also present the
multiple kernel local discriminative regularization to capture
the local structure of multiple base kernels. Then, we have
the Discriminative Multiple Kernel Concept Factorization
method for data representation.

A. MULTIPLE KERNEL CONCEPT FACTORIZATION
Suppose there are altogether m different kernel func-
tions {Ki

}
m
i=1 available for the clustering task in hand.

Accordingly, there are m different associated feature spaces
denoted as {H}mi . To combine these kernels and also
ensure that the resulted kernel still satisfies Mercer con-
dition, we construct an augmented Hilbert space H̃ =

⊕
m
i=1H

i by concatenating all feature spaces φµ(x) =
[µ1φ1(x);µ2φ2(x); . . . ;µmφm(x)]T with different weight µi
(µi ≥ 0), or equivalently the importance factor for kernel
function Ki. It can be verified that clustering in feature space
H̃ is equivalent to employing the following combined kernel

function [32]

K̃(x, x′) =
m∑
i=1

µ2
iK

i(x, x′). (8)

It is known that the convex combination, with µ (µi ≥ 0),
of the positive semi-definite kernel matrices {Ki

}
m
i=1 is still a

positive semi-definite kernel matrix. By replacing the single
kernel in Eq. (3) with the combined kernel, we present the
multiple kernel concept factorization by solving:

min
U,V,µ

tr(Kµ)− 2tr(VTKµU)+ tr(UTKµUVTV)

s.t. U ≥ 0, V ≥ 0, µ ≥ 0,
m∑
i=1

µi = 1, (9)

where (Ki)ab = Ki(xa, xb) is the kernel Gram matrix of
the i-th predefined kernel function over the unlabeled dataset
X, and (Kµ)ab = Kµ(xa, xb) is the kernel matrix of the
consensus kernel function Kµ(·, ·).

B. LOCALIZED DISCRIMINATIVE MULTIPLE KERNEL
REGULARIZATION
In this subsection, we propose a new Local Discriminant
Multiple Kernel regularization to utilize both manifold infor-
mation and discriminant information for multiple kernel clus-
tering.We extract a local clique, for each data point from each
base kernel, comprising of this data point and its neighboring
points. We build a local discriminant model such local clique
for better data separation and representation. We integrate all
the local discriminant models for each point and each base
kernel and get the localized Discriminative Multiple Kernel
regularization.

Given a centered data set consisting of n data points
{xi}ni=1 ∈ Rd , the goal of clustering is to find a disjoint
partitioning {πj}cj=1 of the data where πj is the j-th clus-
ter. We define the cluster indicator matrix defined as P =
[p1,p2, . . . ,pc] = [Pij] ∈ {0, 1}n×c. Specifically,

Pij =
{
1 if xi ∈ πj,
0 if xi /∈ πj,

(10)

We then introduce the scaled cluster indicator matrix as Y =
P(PTP)−1, where Y = [y1, y2, . . . , yc] = [Yij] ∈ Rn×c.
Specifically,

Yij =


1
|πj|

if xi ∈ πj,

0 if xi /∈ πj,
(11)

where |πj| is the sample size of the j-th clusterπj. Denote gj =∑
x∈πj

x
|πj|

as the mean of the j-th cluster. Therefore, we can
define the within-cluster scatter, between-cluster scatter, and
total scatter matrices as Sw =

∑c
j=1

∑
x∈πj (x − gj)(x −

gj)T ,Sb = XYYTXT ,St = XXT . It has been pointed out that
tr(Sw) captures the intra-cluster distance, and tr(Sb) captures
the inter-cluster distance. And we have St = Sw + Sb. For
high-dimensional data, a reliable estimation of the total scat-
ter (covariance) matrix can be obtained by adding additional
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regularization and we have S̃t = XXT
+ γ Id , where Id is

the identity matrix of size d and γ > 0 is a regularization
parameter.

Intuitively, to better cluster the data, the distance between
data from different clusters should be as large as possible
while the distance between data from the same cluster should
be as small as possible [56]. Inspired by Fisher criterion and
the discriminant clustering [57], the optimal scaled cluster
assignment matrix Y∗ can be obtained by minimize the fol-
lowing linear discriminant model

Y∗ = argmin
Y

tr(YTY− YTXT (XXT
+ γ I)−1XY).

By using the Woodbury identity, the above problem can be
equivalently reformulated as [57],

Y∗ = argmin
Y

tr
(
YT (HKH+ γ In)−1Y

)
, (12)

whereH = I− 1
n1n1

T
n is the centeringmatrix and the equation

H = HT
= HH holds, the kernel matrixK = XTX for linear

kernel function.
Given the p-th kernel candidate matrix, we consider a local

cliqueN p
i comprising τ data points including the i-th sample

and its τ − 1 nearest neighbors determined by the kernel
matrix Kp, and employ a local kernel discriminant model to
evaluate the clustering results for the data points. Let denote
Yp be the scaled partition matrix determined by kernel matrix
Kp and Yp

(i) ∈ Rτ×c be the local scaled cluster assignment
matrix for the i-th clique withKp. The localized discriminant
model can be written as

Yp∗
(i) = argmin

Yp(i)
tr
(
(Yp

(i))
T (HτK

p
iHτ + γ Iτ )

−1Yp
(i)

)
= argmin

Yp(i)
tr
(
(Yp

(i))
TLpi Y

p
(i)

)
, (13)

whereLpi = (HτK
p
iHτ+γ Iτ )

−1 is the local Laplacianmatrix.
It can be seen that a larger local discriminant score indicates
that the samples in the local clique from different clusters are
better separated.

Moreover, we denote Lp as the aggregated Laplacian
matrix induced from Kp, which can be obtained by

Lp =
n∑
i=1

Sp(i)L
p
i (S

p
(i))

T , (14)

where Sp(i) ∈ Rn×k is the local selection matrix with its
element (Sp(i))jj′ = 1 if the j-th sample is the j′-th neighbor
of the i-th sample determined by Kp; (Sp(i))jj′ = 0, otherwise.

The overall clustering results can then be obtained by
globally optimizing the local discriminant models of all the
local cliques.

Yp∗
= argmin

Yp

n∑
i=1

tr
(
(Yp

(i))
T (HτK

p
iHτ + γ Iτ )

−1Yp
(i)

)
= argmin

Yp

n∑
i=1

tr
(
(Yp

(i))
TLpi Y

p
(i)

)

= argmin
Yp

n∑
i=1

tr
(
YSp(i)L

p
i (S

p
(i))

TY
)

= argmin
Yp

tr((Yp)T
n∑
i=1

Sp(i)L
p
i (S

p
(i))

TY)

= argmin
Yp

tr((Yp)TLpYp). (15)

Considering the fact that different kernels have different
local neighborhoods, it is desired to aggregated these aggre-
gated local discriminant models. Inspired by the linear com-
bination of multiple kernel learning, we also introduce the
multiple kernel aggregated Laplacian by the linear combina-
tion of these kernel-specific Laplacian matrices

Lµ =

m∑
p=1

µ2
pL

p. (16)

It is believed that the above Laplacian matrix well cap-
ture the local information and discriminant information in
multiple kernels. To further improve the performance for the
task of clustering and the learning of concept factorization,
we further replace the unknown scaled partition matrix with
the non-negative low-dimensional representation and propose
the novel Local Discriminative Multiple Kernel Regulariza-
tion, which can be formulated as

min
V

tr(VTLµV)

s.t. VTV = I,V ≥ 0. (17)

To efficiently address the constraint VTV = I, we relax
the equation condition by integrating a penalty term into
optimization problem and get

min
V

tr(VTLµV)+ ξ ||VTV− I||2

s.t. V ≥ 0, (18)

where ξ the a regularization parameter.

C. LOCALIZED DISCRIMINATIVE MULTIPLE KERNEL
CONCEPT FACTORIZATION
Based on the multiple kernel concept factorization in Eq. (9)
and the localized discriminative regularization in Eq. (18),
we propose the novel Discriminative Multiple Kernel Con-
cept Factorization (DMKCF) method for data representation
and clustering, which can be formulated as follows.

min
U,V,µ

tr(Kµ)− 2tr(VTKµU)+ tr(UTKµUVTV)

+ λtr(VTLµV)+ ξ ||VTV− I||2

s.t. U ≥ 0,V ≥ 0,µ ≥ 0,
m∑
i=1

µi = 1. (19)

The objection function in Eq. (19) contains five terms, where
the first three terms are the kernel concept factorization,
the fourth term is the local discriminative multiple kernel
regularization and the last term is the orthogonal constraint
for unique solution.

VOLUME 8, 2020 175089



L. Mu et al.: Discriminative Multiple Kernel Concept Factorization for Data Representation

It can be seen that the consensus kernel Kµ is generated
from the linear combination of base kernels. Instead of using
the consensus kernelKµ to extract the local structure, we also
use each base kernel to capture the kernel-level local discrim-
inant structure, where the discrete neighborhood structure of
base kernel will not be changed during the learning proce-
dure. Finally, the consensus local structure Lµ is also gen-
erated from the linear combination of base graph Laplacian
{Li}mi=1. As a result, the integrated graph Laplacian Lµ will
not be affected by the discrete neighborhood structure change
of Kµ.

IV. OPTIMIZATION
Because the optimization problem in Eq. (19) comprises three
different variables, it is hard to derive its closed solution
directly. Thus we derive an alternative iterative algorithm
to solve the problem, which converts the problem with a
couple of variables (U,V,µ) into a series of sub problems
where only one variable is involved. The convergence and
complexity analysis are further presented.

A. UPDATE U
When other variables are fixed, the rest optimization problem
with respect to the variable U can be formulated as follows

min
U

tr(UTKµUVTV)− 2tr(VTKµU)

s.t. U ≥ 0. (20)

It can be seen that Eq. (20) is similar with Eq. (3). There-
fore, Eq. (20) can be updated by the following multiplicative
update rule for non-negative Kµ

Uij = Uij
(KµV)ij

(KµUVTV)ij
. (21)

For the kernelmatrixKµ with negative entries, themultiplica-
tive update rules become

Uij = Uij

(KµV)ij +
√
(KµV)2ij + 4B+ij B

−

ij

2B+ij
, (22)

where K+µ = (|Kµ| +Kµ)/2, K−µ = (|Kµ| −Kµ)/2, and we
further denote B+ = K+µUV

TV, B− = K−µUV
TV.

B. UPDATE µ

The optimization problem with respect to the variable µ can
be formulated as follows

min
µ

µTAµ

s.t. µ ≥ 0,
m∑
i=1

µi = 1, (23)

where A is a diagonal matrix with its diagonal element Aii =

tr(Ki)−2tr(VTKiU)+ tr(UTKiUVTV)+λtr(VTLiV). It can
be seen that Eq. (23) is a quadratic programming problem
with linear constraints which can be solved by existing off-
the-shelf packages.

C. UPDATE V
When other variables are fixed, the rest optimization problem
with respect to the variable V can be formulated as follows

min
V

tr(VUTKµUVT )− 2tr(VTKµU)+ λtr(VTLµV)

+ ξ tr(VTVVTV)− 2ξ tr(VTV)

s.t. V ≥ 0. (24)

Eq. (24) is a quadratic programming problem with
non-negative and orthogonal constraints. We can derive the
similar multiplicative update rule for the positive only kernel
matrix Kµ and Laplacian matrix Lµ as [6]

Vij = Vij
(KµU+ 2ξV)ij

(VUTKµU+ 2ξVVTV)ij
. (25)

For the kernel matrix Kµ or Laplacian matrix Lµ with nega-
tive entries, we first introduce the following notations

K+µ = (|Kµ| +Kµ)/2,

K−µ = (|Kµ| −Kµ)/2,

L+µ = (|Lµ| + Lµ)/2,

L−µ = (|Lµ| − Lµ)/2,

Q+ = VUTK+µU,

Q− = VUTK−µU,

T1 = 2ξ (V′V′TV′)ip,

T2 = (V′Q+ +K−µU+ λL
+
µV
′)ipV′

2
ip,

T3 = −(V′Q− + (K+µU)ip + λL
−
µV
′
+ 2ξV′)ipV′

4
ip,

and we then get the following multiplicative rule to update V

Vip =

√√√√−T2 +

√
T2
2 − 4T1T3

2T1
. (26)

In summary, we present the iterative updating algorithm of
optimizing Eq. (19) in Algorithm 1.

Algorithm 1 The Algorithm to Solve Eq. (19)

Input: {Ki
}
m
i=1, {L

i
}
m
i=1, U, V, λ, ξ

1: Initialize µ;
2: repeat
3: Update Kµ according to Eq. (8);
4: Update Lµ according to Eq. (16);
5: Update U according to Eq. (21) or Eq. (22);
6: Update V according to Eq. (25) or Eq. (26);
7: Update µ by solving Eq. (23);
8: until Converges

Output: U, V,µ

D. CONVERGENCE
In this subsection, we will investigate the convergence of
Algorithm 1. Here, we first use the auxiliary function
approach [1] to show that the objective function in Eq. (24)
with respect to V can be reduced monotonically.
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TABLE 1. Description of the data sets.

Definition IV-D1: [1]J (h, h′) is an auxiliary function for
L(h) if the following conditions holds

J (h, h′) ≥ L(h),J (h, h) = L(h). (27)
Lemma IV-D2: [1] If J (h, h′) is an auxiliary function for

J (.), then J (.) is non-increasing under the update

ht+1 = argmin
h

J (h, ht ) (28)

Proof: L(ht+1) ≤ J (ht+1, ht ) ≤ J (ht , ht ) = L(ht ).
In the following, we will present 2 theorems, which guar-

antee the convergence of Algorithm 1.
Theorem IV-D3: Let

L(V) = tr(VQ+VT )− tr(VQ−VT )− 2tr(VTK+µU)

+ 2tr(VTK−µU)+ λtr(V
TL+µV)− λtr(V

TL−µV)

+ ξ tr(VTVVTV)− 2ξ tr(VTV) (29)

Then the following function

J (V,V′)

=

n∑
i=1

k∑
p=1

(V′Q+)ipV2
ip

V′ip

−

n∑
i=1

k∑
p=1

k∑
q=1

Q−pqV
′
ipV′iq(1+ log

VipViq

V′ipV′iq
)

− 2
n∑
i=1

k∑
p=1

(K+µU)ipV
′
ip(1+ log

Vip

V′ip
)

+ 2
n∑
i=1

k∑
p=1

(K−µU)ip
V2
ip + V′2ip
2V′ip

+ λ

n∑
i=1

k∑
p=1

(L+µV
′)ipV2

ip

V′ip

− λ

n∑
i=1

n∑
j=1

k∑
p=1

(L−µ )ijV
′
ipV′jp(1+ log

VipVjp

V′ipV′jp
)

+ ξ

n∑
i=1

k∑
p=1

(V′V′TV′)ipV4
ip

V′3ip

− ξ

n∑
i=1

n∑
j=1

n∑
p=1

IijV′ipV′jp(1+ log
VipVjp

V′ipV′jp
) (30)

is an auxiliary function for L(V). Furthermore, it is a convex
function in V and its global minimum is

Vip =

√√√√−T2 +

√
T2
2 − 4T1T3

2T1
. (31)

Proof: See Appendix.
Theorem IV-D4: The objective function in Eq. (24) will be

non-increasing under the update rule in Eq. (26).
Proof: By Lemma IV-D2 and Theorem IV-D3, we can

get L(V0) = J (V0,V0) ≥ J (V1,V0) ≥ L(V1) . . .. So L(V)
is non-creasing.

The convergence of DMKCF under the update rules in
Algorithm 1 can be summarized as follows. For fixed µt

and Ut in the t-iteration, the objective function of the rest
sub-problem w.r.t V in Eq. (24) will be non-increasing under
rules in Eq. (25) or Eq. (26). The proof can be found in
Theorem IV-D4. For fixedµt andVt in the t-iteration, the sub
problem w.r.t the variable U in Eq. (20) is exactly the same
as the standard concept factorization model in Eq. (3). Thus,
the multiplicative update rules in Eq. (21) or Eq. (22) are
also the same as the standard concept factorization model in
Eq. (3), and will reduce the objective function in Eq. (20).
Please see [58] for details. For fixed Ut and Vt , the rest
objective function w.r.t µ in Eq. (23) will also be decreased
by the quadratic optimization tools. In summary, the objective
function in Eq. (19) will be non-increasing under the alterna-
tive optimization step w.r.t. U, V and µt . Since the objective
function in Eq. (19) is obviously lower bounded, the overall
optimization problem in Eq. (19) converges.

E. ALGORITHM COMPLEXITY ANALYSIS
In this subsection, we discuss the computational complexity
of our proposed algorithm, and use the big O notation to
express the complexity. The computation cost of finding τ -
nearest neighbors of all sample points in all the base kernels
is O(mn log τ ); O(τ 3) is the computation cost of single local
discriminant model; The computation cost of computing the
multiple Laplacian matrices is O(mnτ 3). The computation
cost of computing Kµ and Lµ is O(mn2); The computation
cost of the multiplicative updating in Eq. (21) or Eq. (22) is
O(n2k); The computation cost of the multiplicative updating
in Eq. (25) or Eq. (26) is also O(n2k); The computation cost
of solving Eq. (23) isO(n2k+m3). If the updating procedure
stops after t iterations, the overall cost of the multiplicative
updating isO(tn2(m+k)+ tm3). Because n� m and n� τ ,
the total cost of DMKCF isO(mn+n2mt). It can be seen that
the computational complexity of DMKCF is linear with the
number of kernels and iterations, quadratic with the number
of samples.

V. EXPERIMENT
In this section, to evaluate the effectiveness of our proposed
MKC algorithm, especially the effectiveness, four experi-
ments are designed. In the first experiment, we construct a
synthetic data set to test the robustness against noise and
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TABLE 2. Clustering comparison of all these 10 algorithms. We report the best results in terms of ACC/NMI/Purity respectively, from multiple random
initializations and parameters.

outliers of the proposed neighbor kernel. Second, we compare
our proposed algorithm with nine state-of-the-art MKC algo-
rithms on real-world data sets to evaluate its performance.
Then, we test the sensitivity of the algorithm against the
main hyperparameters. Finally, we apply neighbor kernels
to the existing MKC algorithms and test the capacity of
the proposed kernel on enhancing the performance of these
methods.

A. DATA SETS
We perform experiments on 10 different public datasets,
including 3 image ones (USPS49, PIE, COIL20),3 text
corpora ones (RELATHE,BBC,K1b) and 4 biological ones
(Prostate,ALLAML,SMKCAN,CLLSUB). They have been
widely used to evaluate the performance of different clus-
tering methods. The detailed statistics information and data
dimensionality of these datasets are summarized in Table 1.

B. COMPARED ALGORITHMS
To demonstrate how the clustering performance can be
improved by the proposed approach, we compared the results
of the following state-of-the-art multiple kernel clustering
algorithms, which include:

• CTSC.1 It is a co-training multiview spectral clustering
proposed by [33].

• Coreg.2 It is a co-regularized multiview spectral cluster-
ing proposed by [34].

• RMSC.3 The RMSC (Robust Multiview Spectral Clus-
tering) is proposed by [39]. We first transform the ker-
nels into probabilistic transition matrices following [39],
and then apply RMSC to get the final clustering results.

• RMKKM.4 The robust multiple kernel k-means method
with `2,1−norm for data clustering [24].

• MKKMMR.5 It improves the multiple kernel k-means
with matrix-induced regularization [25].

• LKAMKC.6 The LKAMKC algorithm is proposed in
[52] by introducing the local kernel alignment for mul-
tiple kernel clustering.

1We use the code at http://users.umiacs.umd.edu/~abhishek/code_
cospectral.zip.

2We use the code at http://users.umiacs.umd.edu/~abhishek/code_
coregspectral.zip.

3We use the code at http://ss.sysu.edu.cn/~py/RMSC.zip.
4We use the code at https://github.com/csliangdu/RMKKM.
5We use the code provided by the authors.
6We use the code provided by the authors.
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TABLE 3. Clustering comparison on (mean ACC)/(standard derivation)/(p-value). The results shown in boldface are significant better than the others, with
a significant level of 0.05.

• ONMKC.7 It learns an optimal neighborhood kernel
directly for multiple kernel clustering [26].

• LKGr.8 It learns a low-rank kernel matrix from the
neighborhood of candidate kernels. [59].

• JMKSC.9 It uses the correntropy metric weighting and
block diagonal regularizer for robust multiple kernel
subspace clustering [60].

C. EXPERIMENTAL SETTINGS
Following the similar strategy of other multiple kernel learn-
ing approaches, we apply 12 different kernel functions as
basis for multiple kernel clustering. These kernels include,
seven Gaussian kernels K(xi, xj) = exp(−||xi − xj||2/2δ2)
with δ =

√
t∗D0, whereD0 is themaximumdistance between

samples and t varies in the range of {−8,−4,−2, 1, 2, 4, 8},
four polynomial kernels K(xi, xj) = (a + xTi xj)

b with a =
{0, 1} and b = {2, 4} and a linear kernel K(xi, xj) =
xTi xj. Finally, all the kernels have been normalized through
K(xi, xj) = K(xi, xj)/

√
K(xi, xi)K(xj, xj) and then rescaled

to [0, 1].
There are some parameters to be set in advance. The

number of clusters is set to the true number of classes

7We use the code provided by the authors.
8We use the code at https://github.com/sckangz/KBS18.
9We use the code provided by the authors.

for all the data sets and clustering algorithms. The regu-
larization parameter γ in RMKKM [24] is searched over
{0.1, 0.2, · · · , 0.9} as suggested. We search the regulariza-
tion parameters τ in the range of {0.01, 0.1, · · · , 0.95} ∗
n, λ in the range of {2−15, 2−14, · · · , 215} for the method
of LKAMKC [52] as suggested. We search the regulariza-
tion parameters ρ in the range of {2−15, 2−13, · · · , 215},
λ in the range of {2−15, 2−13, · · · , 215} for the method
of ONMKC [26] as suggested. Since the original search
range of α, β, γ is not specified [59]. We search these
regularization parameters α, β, γ in the wide range of
{10−5, 10−3, · · · , 105} for the method of LKGr [59] to make
a fair comparison. We search the regularization parame-
ters α in the range of {10−4, 10−3, · · · , 101}, β in the
range of {1, 5, 10, 15, 20, 25, 30}, and γ in the range of
{10−1, 1, 5, 10, 15, 20, 25, 30} for the method of JMKSC
[60] as suggested. For our method DMKCF, the neighbor-
hood size k is set to k = 5 in all the experiments, the regu-
larization parameters γ, λ, ξ are searched over the range of
{10−5, 10−4, · · · , 105}.

In this paper, three measures, i.e., ACC, NMI and Purity,
are used to evaluate the clustering results.

D. EXPERIMENTAL RESULTS
The results of all clustering algorithms depend upon
the initialization [56]. For all the clustering algorithms,
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TABLE 4. Clustering comparison on (mean NMI)/(standard derivation)/(p-value). The results shown in boldface are significant better than the others,
with a significant level of 0.05.

TABLE 5. Clustering comparison on (mean Purity)/(standard derivation)/(p-value). The results shown in boldface are significant better than the others,
with a significant level of 0.05.
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FIGURE 1. ACC variants of λ, γ and ξ on K1b, SMKCAN, USPS49, respectively. (a-c) ACC variants of λ on K1b, SMKCAN, USPS49.
(d-f) ACC variants of γ on K1b, SMKCAN, USPS49. (g-i) ACC variants of ξ on K1b, SMKCAN, USPS49.

we independently repeat the experiments 20 times with ran-
dom initializations to reduce the statistical variation.

For each clustering algorithm, we report the best results
for each parameter corresponding to the best objective val-
ues in terms of ACC/NMI/Purity, respectively, from twenty
rounds of random initializations in Table 2. We also report
the averaged results over all these 10 data sets in the last
row of Table 2. It can be seen that our method consis-
tently outperform other state-of-the-art multipl kernel clus-
tering algorithms. Moreover, it can be seen that our method
achieves 14.79%, 31.15% and 13.93% improvement in terms
of ACC/NMI/Purity, respectively on the averaged results.
These results can well demonstrate the effectiveness of the
proposed method.

For each clustering algorithm, we also calculate the the
mean ACC/NMI/Purity from twenty rounds of random ini-
tializations for each parameter and then we additionally
report the best mean ACC/NMI/Purity together with the

standard deviation corresponding to the optimal parameter
and the p-value of the paired t-test against the best results
in Table 3, 4, 5. Thus, each cell in Table 3, 4, 5 include
the best mean ACC/NMI/Purity, the standard deviation and
the p-value. The best one and those having no significant
difference (p > 0.05) from the best one are marked in
bold. Again, we can observe that our method outperforms
better than other MKC algorithms in most cases. And the
improvements in most cases are also significant.

For all these compared multiple kernel clustering algo-
rithms, we can observe that the ACC/NMI/Purity in Table 2
corresponding to the best objective values are generally
higher than the mean ACC/NMI/Purity in Table 3, 4, 5. Since
it is still a nontrivial task to obtain the globally optimal
solutions for the clustering algorithms, it is reasonable to
choose the clustering results from the optimal initialization
corresponding to the best objective values in practical clus-
tering applications [56].
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FIGURE 2. The convergence behavior of our method on BBC data set.
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E. PARAMETER SENSITIVITY
In the subsection, we investigate the sensitivities of three
parameters λ, γ , and ξ in our method. Figure 1 plots the
clustering accuracy(ACC) with different values of these
parameters on K1b, SMKCAN, USPS49 respectively. These
figures show that our proposed algorithm is not very sensitive
to λ, γ and ξ within relative wide ranges.

F. CONVERGENCE ANALYSIS
Here we take the BBC data set as an example to empirically
investigate the convergence behavior of the proposedmethod.
In this experiment, we fix the three parameters λ = 1, γ = 1,
and ξ = 1, and set the maximal iterations to be 100 for sim-
plicity. We first provide the change of the objective function
value of our proposed method with increasing number of iter-
ations in Figure 2(a). Like [61], we then show how the value
of U,V get close to the optimal value U∗,V∗ with respect to
the iteration number t on this data set by computing ||Ut

−

U∗||F, ||Vt
−V∗||F, in Figure 2(b) and Figure 2(c), separately.

Although it is still not easy to provide theoretical results on
the convergence rate of the proposed optimization schema,
we further provide more empirical results on the sequences of
{
||Ut+1−U∗||F
||Ut−U∗||F

}, { ||V
t+1
−V∗||F

||Vt−V∗||F
}, { ||U

t+1(Vt+1)T−U∗(V∗)T ||F
||Ut (Vt )T−U∗(V∗)T ||F

} in Fig-
ure 2(d), Figure 2(e) and Figure 2(f) to demonstrate the
convergence rate as suggested [62]. It can be seen that the
objective function indeed decreases its value with the updat-
ing rules on this data set. It can also be seen that both Ut ,Vt

sequences can converge within a small number of iterations,
which also verifies the effectiveness and correctness of the
optimization scheme.

VI. CONCLUSION
In this paper, we propose a novel discriminative multiple
kernel concept factorization method for data clustering and
representation. Our method inherits the merit of concept fac-
torization and extends to handle the problem of kernel design
or selection. Our method also extracts the kernel level local
discriminant model with global integration and builds the
local multiple discriminant regularization to further capture
the local discriminant structure of data. An iterative algorithm
with convergence guarantee is also developed to find the
optimal solution. Extensive experiments on 10 benchmark
datasets further show that the proposed method outperforms
many multiple clustering algorithms.

APPENDIX
PROOF OF CONVERGENCE
Lemma VI-1: [63] For any nonnegative matrices A ∈

Rn×n, B ∈ Rk×k , S ∈ Rn×k ,S′ ∈ Rn×k , and A, B are
symmetric, then the following inequality holds

n∑
i=1

k∑
j=1

(AS′B)ijS2ij
S′ij

≥ tr(STASB) (32)

The objective function with respect to V in Eq. (24) can be
rewritten as

J (V) = tr(VQ+VT )− tr(VQ−VT )− 2tr(VTK+µU)

+ 2tr(VTK−µU)+ λtr(V
TL+µV)− λtr(V

TL−µV)

+ ξ tr(VTVVTV)− 2ξ tr(VTV) (33)

By applying Lemma VI-1, we have

tr(VQ+VT ) ≤
n∑
i=1

c∑
p=1

(V′Q+)ipV2
ip

V′ip
(34)

tr(VTL+µV) ≤
n∑
i=1

c∑
p=1

(L+µV
′)ipV2

ip

V′ip
(35)

Moreover, by the inequality a ≤ a2+b2
2b ,∀a, b > 0, we have

the following inequality

tr(VTK−µU) ≤
n∑
i=1

c∑
p=1

(K−µU)ip
V2
ip + V′2ip
2V′ip

(36)

tr(VTVVTV) ≤
n∑
i=1

c∑
p=1

(V′V′TV′)ipV4
ip

V′3ip
(37)

To obtain the lower bound for the remaining terms, we use
the inequality that z ≤ 1+ log z,∀z > 0, then

tr(VQ−V)

≥

n∑
i=1

c∑
p=1

c∑
q=1

Q−pqV
′
ipV′iq(1+ log

VipViq

V′ipV′iq
) (38)

tr(VTK+µU)

≥

n∑
i=1

c∑
p=1

(K−µU)ipV
′
ip(1+ log

Vip

V′ip
) (39)

tr(VTL−µV)

≥

n∑
i=1

n∑
j=1

c∑
p=1

(L−µ )ijV
′
ipV′jp(1+ log

VipVjp

V′ipV′jp
) (40)

tr(VTV)

≥

n∑
i=1

n∑
j=1

c∑
p=1

IijV′ipV′jp(1+ log
VipVjp

V′ipV′jp
) (41)

By summing over all the bounds in Eq. (34), (35), (36),
(37), (38), (39), (40) and Eq. (41), we can getJ (V,V′), which
satisfies (1) J (V,V′) ≥ J (V); (2)J (V,V) ≥ J (V).
To find the minimum of J (V,V′), we take

∂J (V,V′)
∂Vip

= 2
(V′Q+)ip

V′ip
Vip − 2

k∑
q=1

Q−qpV
′
iq
V′ip
Vip

− 2(K+µU)ip
V′ip
Vip
+ 2

(K−µU)ip
V′ip

Vip
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+ 2λ
(L+µV

′)ip
V′ip

Vip − 2λ
n∑
j=1

(L−µ )ijV
′
jp
V′ip
Vip

+ 4ξ
(V′V′TV′)ip

V′3ip
V3
ip − 4ξ

V′2ip
Vip

. (42)

and the following Hessian matrix of J (V,V′)

∂2J (V,V′)
∂Vip∂Vjq

= δipδjq

(
2
(B+V′P+)ip

V′ip
+ 2

(B−V′P−)ip
V′ip

+ 2
n∑
j=1

c∑
q=1

B−ij P
+
qp
V′ip
V2
ip

+ 2
n∑
j=1

k∑
q=1

B+ij P
−
qp
V′ip
V2
ip

+ 2
M−ip
V′ip
+ 2M+ip

V′ip
V2
ip

)

+ 2λ1
(Z+V′)ip
V′ip

+ 2λ1
d∑
j=1

Z−ij V
′
jp
V′ip
V2
ip

+ 2λ2
(QV′)ip
V′ip

(43)

is a diagonal matrix with positive diagonal elements.
Thus J (V,V′) is a convex function of V. By setting

∂J (V,V′)
∂Vip

Vip = 0, we have

0 = 2ξ (V′V′TV′)ipV4
ip

+((V′Q+)ip + (K−µU)ip + λ(L
+
µV
′)ip)V′

2
ipV

2
ip

− (
c∑

q=1

V′iqQ−qp + (K+µU)ip

+ λ

n∑
j=1

(L−µ )ijV
′
jp + 2ξV′ip)V′

4
ip (44)

Hence, we can obtain the global minimum of J (V,V′)
according to Eq. (26).
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