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ABSTRACT This article introduces a robust optimal week-ahead generation scheduling approach that takes
into account plug in hybrid electric vehicles (PHEVs) considering uncertainty in loads, renewable energy
resources, and PHEV charging behavior. Due to the complexity of the scheduling process there is crucial need
for a reliable optimal algorithm. The proposed approach can be applied in energy management platforms of
decarbonized eco-friendly power systems. Generation scheduling is modeled as a multi-objective optimiza-
tion problem: (a) minimize generation production cost and (b) minimize emission costs. The focal concern
is to (a) handle the scheduling of renewable energy resources against their volatilities, (b) integrating PHEVs
with uncertainties related to their state of charge, and (c) stochastic load behavior over a whole week. Two
heuristic-based algorithms are used to solve the optimization problem, namely Water Cycle Algorithm and
Gravitational SearchAlgorithmThe proposed scheduling approach is implemented inMATLAB R©Platform,
and is tested using two different microgrids sizes, 3 generator, and 10 generator unit systems integrating the
effect of week days profile, renewable energy intermittency and different PHEV state of charges using the
IEEE Reliability Test System (RTS) data. The results show promising performance of GSA over theWCA in
the energy management studies integrating three different types of sources; thermal units, Renewable Energy
Resources (RERs), and the PHEVs.

INDEX TERMS Economic dispatch (ED), gravitational search algorithm (GSA), hybrid plug in vehicle
(HPEV), IEEE reliability test system, probabilistic performance, water cycle algorithm (WCA).

NOMENCLATURE AND ACRONYMS
PGi thermal unit output power ‘‘i’’ at each hour
A, B, C the factors of the fuel cost function respec-

tively for each thermal generating unit
NG the number of thermal units
Pwind Wind plant output power at each hour ’’i’’
Psolar Solar plant output power at each hour ‘‘i’’
A CO2 emission factor
β the emission penalty factor
PPHEVj the output power of each vehicle j at hour ‘‘i’’
9dep the departure state of charge (DSOC)
9min the discharging minimum level
9max the charging up to maximum level

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiyi Li .

Ui(hour) state of each unit ‘‘i’’
X the number of available states in each hour
N the number of probabilities at each step
2N – 1 maximum value of X or N
Nvar Number of design variables in the WCA

algorithm
. U i,hour,day is the configuration on/off of each unit ‘‘i′′

SUH ,i,day,, are the cost of hot
SUC,i,day and cold startup of each unit ‘‘i′′

respectively.
toff ,hour,daymin,i is the minimum number of periods in hours

that each unit ‘‘i′′ remains in off-state
. Phour,daywind/solar Phour,daywind/solar is the hourly active electric power

of (wind-solar) plants
tonmin,i, t

off
min,i are the minimum hours that the unit has to

be on-line and off-line respectively.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 176895

https://orcid.org/0000-0002-2276-9377
https://orcid.org/0000-0001-9669-2088
https://orcid.org/0000-0002-0981-7514
https://orcid.org/0000-0001-7498-8005


R. A. Swief et al.: Optimal Energy Management Integrating PHEV Under Load and Renewable Uncertainties

APHEV is the operational cost coefficient of the
batteries of PHEVs

BPHEV is the maintenance cost coefficient of the
batteries of PHEVs

H The vehicle battery efficiency
NV2G number of connected vehicles hour ‘‘i’’
NV2Gmax the total available number of vehicles
N number of units that are on in the unit

commitment problem at each hour
NG. is the total number of thermal generators
toff ,hour,dayi .. is the number of periods in hours that

each unit ‘‘i′′ is still off until certain time
‘‘hour’’.

tC,i is the time of cold startup
Pricewind/solar is a linear cost function’s coefficient of

wind and solar plants at each hour.
ton,hour,dayi , are the hours that the unit is
toff ,hour,dayi on or off respectively until time period ‘‘t’’.
9‘‘Pres’’ the present state of charge (PSOC)
Raindrop a single solution in an array of 1× Nvar in

the WCA
NSn the number of streams that travel towards

certain rivers or the sea in the WCA.
Npop the number of population in the WCA.
Nsr the summation of the number of rivers in

the WCA
Dmax a small number and its value is near to zero

in the WCA

I. INTRODUCTION
De-carbonization is a vital enticement behind most
of the power system operation and planning studies.
De-carbonization aims to reduce the amount of carbon
dioxide CO2 emissions while providing improved energy ser-
vices. To achieve the de-carbonization target, integrating new
renewable energy resources (RERs) such as wind and solar
stations and encouraging wide adoption of low carbon trans-
portation such as Plug in Hybrid Electric Vehicles (PHEV) is
needed [1]. Driven by the stochastic nature of RERs, loads,
and PHEV State-of-Charge (SOC), suitable approaches are
required to properly capture the RER impact on power system
generation scheduling. Many studies have been presented
for different multi objective problems. Application of par-
ticipating RERs has been investigated for improving reliabil-
ity, reducing losses, reducing production cost, and reducing
emission costs in [2]–[4]. High RER penetration comes with
operational challenges due to their high level of intermittency.
With large scale PHEV integration, Vehicle to Grid (V2G)
services can be used to cover the RER volatility based on
pre-schedule table which is based on the SOC [5]–[7]. Many
studies in power system nowadays consider the probability
effect [8]–[10].

The problem complexity requires a robust optimization
technique to solve the multi objective problem (reduce
(i) generation production costs and (ii) emission costs) with

respect to operational constraints, and PHEV charging con-
straints. Two powerful heuristic based optimization tech-
niques, WCA and GSA, which are widely implemented
in power system studies, are applied to solve the multi-
objective generation scheduling problem. WCA is one of
the promising heuristic optimization techniques especially
in power system area. WCA has been introduced to solve
optimal microgrids integration considering emission cost,
reliability and loss minimization [11]–[14]. Gravitational
Search Algorithm is another heuristic-based optimization
technique that has been implemented for scheduling, sizing
and citing of DGs [15]–[20]. Compared to the previously
reported work which only considers either RERs [10] or
PHEVs [13] in the scheduling problem, this article augments
the RER with PHEVs, together with the impact of weekly
variation of loads, RER profile and SOC of PHEVs. As such,
this article presents a comprehensive unit commitment model
compared to previous work.

In this article, the optimal economic dispatch prob-
lem is formulated considering intermittent and dispatchable
sources. The model considers the weekly economic dispatch
of all types of sources to reduce both production and emission
costs. Moreover, the model includes uncertainties in daily
load profiles. The proposed methodology is tested using two
slandered systems integrating the effect of week days profile
applying IEEE Reliability RTS, and real stochastic data [8].

The rest of the paper goes as follows. Section 2 describes
the problem formulation, technical, operational, and PHEVs
constraints. Section 3 presents the data of the load, source,
PHEVs and the IEEE Reliability RTS. Section 4 explains the
two optimization techniques (GSA and WCA) showing their
point of strength and their governing parameters. Section 5
illustrates the results under different operating conditions.
Section 6 concludes the results of the proposed model.

II. PROBLEM FORMULATION ALGORITHM
A. PROBLEM FORMULATION
The multi-objective function under consideration is the
Average Probabilistic Economical EnergyDispatch (APEED),
which can be modeled as follows:

APEED = Minimize total cost

= min(avarge


7∑

day=1

PEEDday

) (1)

PEEDday = sum{Fuel cost,Startupcost,

Shutdown cost, emission cost}

=

NG∑
i=1

24∑
hour=1

{Fuelcostthermal(P
i,hour,day
G )

+Fuel costhour,daywind,solar + CPHEV (PPHEV )

+Startup costhour,dayi ×

(
1− Uday,hour−1

)
+Shutdown costhour,dayi ×

(
1− U i,day,hour−1

)
+Emission cost(Pi,,dayhour )} × U i,day,hour (2)
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• Where, day is a variable representing week days starting
from day = 1 (Monday) and ends up with day = 7
(Sunday). The thermal units’ fuel cost is defined as:

Fuel_costthermal =
NG∑
i=1

αi + βiP
i,day
G + γiP

i,day2

G (3)

The start-up cost relies on the boilers’ temperature while
switching from off to on state and the time period that thermal
unit was off in the previous;

Start_up costhouri

=

{
SUH ,i,day, toffmin,i ≤ toff ,hour,dayi ≤ toffi + tC,i

SUC,i,day, toff ,hour,dayi > toffmin,i + tC,i
(4)

where; Shutdown cost is generally deemed as a fixed amount.
• A linear function is used to estimate the fuel cost of
RERs [10]:

Fuel_costwind/solar = Pricewind/solar × Phour,daywind/solar (5)

• Batteries of PHEVs are considered as Battery Energy
Storage Systems (BESS). The operational cost function
of batteries of PHEVs is assumed to be a linear function
of the absolute of its discharged power at each hour as
shown[21]:

CPHEV (PPEHV ) = APHEV × PPHEV + BPHEV (6)

• The emission term is considered as a linear function in
the model as follows [22], [23]:

Emission cost =
7∑

day=1

NG∑
i=1

A×103×Pi,dayG × B (7)

• Minimum Up/Down time constraints:
Thermal generators cannot change its status instanta-

neously. The off-line (on-line) unit is turned on (off) after
a certain number of hours called minimum down (up) time.
Constraints for minimum up/down time of each generator is
as shown:

ton,hour,dayi ≥ tonmin,i
toff ,hour,dayi ≥ toffmin,i (8)

B. POWER BALANCE AND PHEVs OPERATING
CONSTRAINTS
Thermal and RERs generators are integrated with PHEVs
which can behave as loads, energy resources. as follows:

NG∑
i=1

Pi,hour,dayG + Phour,daywind + Phour,daysolar

+

NV2G(hour)∑
j=1

coofj ∗ ηPhour,dayPEVj

×

[
9
hour,day
Pres −9

hour,day
dep

]
= Demandhour,day + Phour,daylosses + Reservehour,day (9)

where coofj= 1 if the jthPHEV behaves as energy resources,
and -1 if it acts as a load at any given hour.
• To maintain certain amount of energy derived from
PHEVs, pre-contracts are assumed to be in place
between the utility and PHEV owners. This is essential
for utilities to give insight knowledge about the number
of vehicles connected to the grid, and their willingness
to participate in grid support (Vehicle to Grid V2G
Scheme). According to predetermined scheduling inter-
vals, the electric vehicles that are registered in the smart
electric network are the ones that are allowed to inject
power into the grid:

24∑
hour=1

Nhour,day
V2G = NV2Gmax (10)

• To maintain the battery life:

9
hour,day
down PPHEV ,j≤P

hour,day
PHEVj ≤ 9

hour,day
up PPHEV ,j (11)

III. THREE UNIT SYSTEM
This section describes in details the data associated with the
three unit test system used to prove the concept. Detailed data
attributed with the ten-unit test system can be found in [30].
The first test system under study consists of 3 thermal

units in addition to 2 renewable sources (Wind/Solar) and
5000 PHEV [24]. The data of the system under study can be
divided into five parts:
• 3 thermal units.
• 2 renewable resources.
• 5000 PHEV.
• Emission cost coefficient data
• Weekly Load profile in hourly resolution.

A. DATA OF THE 3 THERMAL UNITS
The operational and cost data of the thermal generator units
are represented in Tables 1-A, and 1-B, respectively.

TABLE 1. (A) Generator Operational Data. (B) Generator energy data.

B. DATA OF THE 2 RENEWABLE RESOURCES
Wind/Solar forecasted hourly profiles of a sample day are
represented in Figures 1a and 1b, respectively [25], [26].
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FIGURE 1. (a) Sample wind profile over the day. (b) Sample solar profile
over the day.

The levelized cost of energy for wind and solar energies are
assumed to be 10 $/MWh and 14.6 $/MWh, respectively [3].

C. DATA OF THE 5000 PHEV
The parameters of one of the 5000 PHEV units used in this
study are as follows [24]:
Maximum capability of the battery 25 kW
Minimum capability of the battery 10 kW
Average capability of the battery ‘‘Pavg’’ 15 kW
Rate of charging/discharging 1 per day
Departure state of charge (SOC) ‘‘9dep’’ 50%
Efficiency ‘‘η’’ 85%.

D. EMISSION COST COEFFICIENT DATA
Emissions in the thermal generators are caused due to burn
coal-fired fuel. Emission penalty factor ‘‘B’’ for the renew-
able power sources (wind and solar) is set at zero $/ton CO2.
CO2 emission factor for the PHEVs is considered for fuel oil,
which is obtained from Table 2. B is the emission penalty
factor in voluntary markets for planning purposes which is
around 10–15 $/ton CO2 [31]. ‘‘B’’ is defined to be the aver-
age of carbon prices, according to the World Bank’s annual
Carbon Pricing Watch Report 2017. A typical PHEV needs
about 8.22 kWh/day (41.1 MWhr/day for 5000 vehicles),
taking into consideration the emission factor for fuel oil from
Table 2

TABLE 2. CO2 Emission factor, A, for different energy resources [22].

E. LOAD PROFILE DATA
In this article the weekday/weekend effect on the load profile
variability is shown in Table 3. This is based on the IEEEReli-
ability test system (IEEE-RTS) load profile over the week.

TABLE 3. The load profile over the week [8].

IV. OPTIMIZATION TECHNIQUES
Gravitational Search Algorithm (GSA) and Water Cycle
Algorithm (WCA) have been used in several power systems
optimization applications. The following two subsections
describe the two algorithms.

A. GRAVITATIONAL SEARCH ALGORITHM (GSA)
Gravitational Search Algorithm (GSA) is a meta-heuristic
technique revealed by Esmat Rashedi et al. in 2009 apply-
ing the Newtonian gravitation laws [27]. Heavier particles
represent better solutions and move much slower and exert
stronger attraction forces than lighter particles. To explain the
mechanism of GSA:
• The spot of each of the N particles (which represent
the search agents in the algorithm) in an n-dimensional
space is distinct by:

Xi (t) =
(
x1i (t) , x

2
i (t) , . . . . . . .., x

d
i (t) , . . . .., x

n
i (t)

)
for i = 1, 2, 3, . . . ..,N

(12)

where xdi (t) describes the location of each particle i in
d-dimension at time t.

The gravitational forces between particles i and j is
described by:

Fdij (t) = G (t)
Mpi (t)×Mai (t)

Rij + ε
(xdj (t)− x

d
i (t)) (13)

where Maj (t) is the mass of particle j, Mpi (t) is the other
mass of particle i, Rij is the Euclidian distance between i and
j and ε is a constant [27].
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The gravitational constant G decays over time and is
governed by the following equation:

G (t) = Goe−αt/T (14)

where Go and α govern the search exploration. and their
quantities. T is the total number of iterations.

Then, Eq. (13) is modified as follows:

Fdi (t) =
∑

j=1,j6=i

rand jFdij (t) (15)

where rand j is a number randomly chosen between 0 and 1.
The acceleration is identified as follows:

αdi (t) =
Fdi (t)

Mii (t)
(16)

whereMii (t) is the inertia mass of particle i.
Throughout the exploration, particle i informs its

velocity and location as demonstrated in (17) and (18)
correspondingly:

V d
i (t + 1) = rand i×V d

i (t)+ α
d
i (t) (17)

xdi (t + 1) = xdi (t)+ V
d
i (t + 1) (18)

where rand i is a number randomly chosen between 0 and 1.
In order to accomplish the optimum solution of the

research problem, the following parameters are applied.

Algorithm parameter Value
Number of agents 50
Maximum number of iterations (T) 1000
Go 100
A 20

B. WATER CYCLE OPTIMIZATION ALGORITHM (WCA)
Since 2013, WCA is used to obtain the optimal solutions for
different optimization problems [20], [28], [29]. The algo-
rithm is based on the flow of the rivers and streams into the
sea, as illustrated in Figure 2.

Using the population based meta-heuristic techniques,
‘‘Raindrop’’ is a single solution in an array of 1 × N_ (var),
where N_ (var) is the dimension of the optimization problem,
i.e. the number of the design variable [28], [29]:

Raindrop = [X1,X2,X3 . . .XN ] (19)

A population of raindrops is generated as a matrix of
raindrops of size N_ (pop) ×N_ (var), where N_ (pop) is the
number of population as per the following Equation (21):

Population of raindrops

=



Raindrop1
Raindrop2

...

...

RaindropNpop



FIGURE 2. A simplified diagram of the water cycle (the hydrologic
cycle) [28].

=


X1
1 X1

2 X1
3 . . . X1

Nvar
X2
1 X2

2 X2
3 . . . X2

Nvar
...

...
...

...
...

XNpop
1 XNpop

2 XNpop
3 . . . XNpop

Nvar

 (20)

where (X1, X2, X3, XNar) are the choice variable values
which may be defined as floating point number (real values)
for continuous and discrete problems. The cost function of
raindrops is represented in the following Equation (22):

Ci = Costi= f(Xi
1,X

i
2,X

i
3, . . . ,X

i
N ),i= 1, 2, 3, . . . ,Npop.

(21)

Seas and rivers are chosen as minimum values (the best
individuals). Nsr is defined as the summation of the number
of rivers. The other raindrops (population) flow either to the
rivers or directly to the sea as per the following equations:

Nsr = Number of Rivers

+1, where 1 is for one sea (22)

NRaindrops = Npop − Nsr (23)

The intensity of the flow determines how to assign raindrops
to the rivers and the sea as follows:

Nsn = round

{∣∣∣∣∣ Costn∑Nsr
i=1 Cost i

∣∣∣∣∣×NRaindrops

}
, n = 1, 2...,Nsr. (24)

where N_(sn ) is defined as the number of streams, which
travels towards certain rivers or the sea. Figure 3 describes
the WCA optimization process in which X is the distance
between the stream and the river, can be randomly chosen
as follows:

X∈ (0,C ≤ d), 1 <C < 2 (25)

where d is the current distance between stream and river. The
value of X in Equation (25) is set according to a randomly
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FIGURE 3. Schematic view for water cycle algorithm [29].

distributed number whether (uniformly or in an appropriate
distribution) between 0 and (C× d). Enabling C> 1, streams
are permitted to flow in various directions towards rivers. This
concept can explain rivers flowing into the ocean. Therefore,
the new position for streams and rivers can be obtained as
follows:

Xi+1
stream = Xi

stream+rand× C× (Xi
River−X

i
stream) (26)

Xi+1
River = Xi

River+rand× C× (Xi
Sea−X

i
River) (27)

where rand is a randomly distributed number in a uniform
way between 0 and 1. If the solution obtained by a stream is
better than its linking river, the positions of river and stream
are swapped (i.e., stream becomes river and river becomes
stream). Figures 3-5 show the algorithm schematic diagrams
and the flow chart of the WCA.

FIGURE 4. The position of the stream (raindrop) and the river
replacement [29].

The star is the river and the black circle is the best among
other streams. The procedure of the water cycle optimization
technique is as shown in Figure 5.

V. SIMULATION AND RESULTS
The two algorithms (GSA and WCA) are implemented using
MATLAB R©and are used to find the optimal weekly genera-
tion dispatch of the two systems described in Section III.

This sections presents the results with special focus on
identifying:

FIGURE 5. A flowchart for water cycle optimization algorithm.

• the effect of integrating PHEVs with the wind/solar
sources

• The effect of weekly load profile variability...
• The difference between the performance of WCA and
GSA as applied to the problem under investigation.

Tables 4 &5 show the results of unit commitment scheduling
for a heavily loaded day (Tuesday) applying both WCA &
GSA for the 3 generator test system.

In Tables 4&5, in any specific hour, if the sign of the
PHEV is negative, that means the PHEV works as a load.
Table 6 shows the comparison in both production and emis-
sion costs between GSA and WCA solvers for Tuesday.

Comparing the results obtained from Table 6 with
the results from [3], the results show the superiority of
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TABLE 4. The generation for tuesday applying WCA (peak load 100%).

GSA over WCA. The overall costs are11.2% less using the
GSA algorithm.

The same observation can be made using a Sunday
load profile (light loaded day), as shown in Table 6.
Figures 6 and 7 show the share of each generation type in the
production and emission costs for Sunday using WCA and
GSA techniques.

Summing the costs over the entire week emphasizes the
fact that GSA is superior to WCA in solving the multi-day
unit commitment problem. The results over the whole week
which contain all possibilities and uncertainties of the load
and the renewable sources show that, the total production
(emission) costs is 15.35% (12.08%) less compared to the
WCA. The results are depicted in Figure 8&9. The advantage
of the study is to schedule the thermal and the renewable
resources based on more realistic values. From Table 6 &7,
Tuesday emission cost result is (3658 $) while Sunday emis-
sion cost is (1783$). If the assumption built on the same
load of Tuesday over the whole week about 50% over price
will be in the calculation of emission cost, or less by 50%

TABLE 5. The generation for tuesday applying GSA (peak load 100%).

TABLE 6. Production and emission costs (Tuesday) applying WCA and
GSA for the three generator system.

TABLE 7. Production and emission costs (Sunday) applying WCA and GSA.

if Sunday load value considered over the whole week. So,
the real consideration of load profiles and system volatility
will give an accurate insight for operator to take the right
decisions. The only disadvantage is that can take a bit longer
time than old techniques but with reliable solution.

The optimization algorithms tend to consume all the
amount of energy supplied from renewable resources and
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TABLE 8. The generation for tuesday applying GSA.

FIGURE 6. Pie chart applying WCA for Sunday Scheduling.

FIGURE 7. Pie chart applying GSA for Sunday Scheduling.

PHEVs. With the assumption of fixed profile for the Wind,
Solar, and PHEVs, the energy served for each day almost

FIGURE 8. The production cost applying WCA & GSA over the whole week.

the same. The effect of the day profiles is clear on Tues-
day, the heavy loaded day, which is having the maximum
reduction of emission cost because the optimizer tends to take
the whole renewable resources energy. Some effect is distin-
guished on Sunday, the light load day, the optimal solution
does not consume the whole offered renewable energy can be
obtained, so the emission cost is at its minimum value.

To show the ability of the GSA to handle larger systems,
the algorithm is used to produce the weekly generation sched-
ule of the 10 generator unit data [30] as shown in Table 8.

One thing to note is the impact of PHEV charging/
discharging effect on the thermal generation contribution.
As it can be revealed from Table 8, if the PHEVs work
properly, the most expensive thermal unit is not needed to
share in the energy scheduling, e.g. generator 2 in the 3 unit
system and generator 1 in the 10 unit system. If the PHEV
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FIGURE 9. The emission cost applying WCA & GSA over the whole week.

operate as load, particularly during the system peak hours,
the need for generators 2 in 3 unit system and generator 1 in
10 unit is vital to reduce both production and emission costs.

VI. CONCLUSION
This article introduced a comprehensive model for weekly
generation scheduling of small scale systems taking into
account (a) PHEV, (b) wind/solar resources intermittency,
and (c) load variability. The model is formulated as an opti-
mization problem together with its operating constraints.
The optimized problem is then solved using two recent
heuristic-based approaches, namely GSA and WCA algo-
rithms. The results verify the novelty of the model and the
GSA in taking the optimal scheduling decision to reduce the
overall production and emission costs. The proposed model
under study clinches some of the important points:
• Integrating RERs is an important approach to establish
and guarantee the assessment of decarbonized system.

• Due to the volatility of the RERs behaviors, the PHEV
can help in reducing the volatility of the RERs.

• In the time of PHEV acts as a load, the most expensive
generator mostly integrated into the generation in return
to smooth the generation profile.

• The Water Cycle Algorithm and Gravitational Search
Algorithm are two promising techniques, but in the
scheduling energy management, Gravitational Search
Algorithm proves its prevailing performance over all
week days and for 3 units and 10 unit systems.
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