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ABSTRACT The ability of any retrieval system to extract features by using its feature descriptor is the
primary criterion tomeasure its efficiency. In this paper a novel technique for feature extraction of biomedical
images is presented. The mooted system uses the Radial Associated Laguerre Moments (RALMs) as a
feature descriptor to obtain features from two types of medical images: computer tomography (CT) and
magnetic resonance images (MRI). RALMs represent one sort of discrete orthogonal moments. RALMs
extract the features from images using orthogonal moments to retrieve images from a database. Our
approach is extensively assessed with noise-free and noisy images from three different benchmark databases:
Emphysema-CT, NEMA CT, and NEMA MRI. The first two databases are used for CT image retrieval,
while the third is for MR image retrieval. The proposed approach was tested against the state-of-the art local
feature descriptors: Local Binary Pattern (LBP), and local diagonal extrema pattern (LDEP). It was also
evaluated against orthogonal Fourier-Mellin moments (OFMMs) as a global descriptor. The comparison
shows a significant improvement in favor of the proposed approach in terms of three different performance
metrics: ARP,ARR, and F_score. The proposed approachwas also compared against the convolutional neural
network (CNN) as a deep learning based method over the NEMA-MRI dataset. The RALMs based approach
showed a significant improvement when compared against two state-of-the-art medical image retrieval
approaches: Histogram of Compressed Scattering Coefficients (HCSCs) and a local bit-plane decoding-
based AlexNet descriptor (LBpDAD), the study has done over the TCIA-CT dataset. The proposed approach
was also tested with big well-known dataset from the international skin imaging collaboration (ISIC) 2018.

INDEX TERMS Image retrieval systems, Laguerre moments, medical imaging.

I. INTRODUCTION
Everywhere in the world hospitals and medical institutes
create and store a large variety of datasets of biomedical
images (BMI) during the routine clinical practices. These
datasets contain the images produced by the diverse biomed-
ical modalities, which include X-Ray, ultrasound (US), com-
puted tomography (CT), and magnetic resonance imaging
(MRI). Such imaging modalities allow physicians to make
their diagnosis effectively. The mastery to retrieve the BMI
correctly is crucial for the researchers in medical sciences
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where: it helps the physicians to make precise diagnosis [1],
it provides real-time decision support [2] and it has its benefits
when used as a part of a radiology teaching system [3]. Also
it used as a tool for teaching and research in the medical
institutes. For these reasons, studies have recently carried
out to specify the importance of biomedical image retrieval
(BMIR) as a core area of research.

Images can be recognized and retrieved via content-based
image retrieval (CBIR) systems. Rao et al. [4], introduced
CBIR system using Exact Legendre Moments (ELM) [5]
for gray scale images. Rao and Rao [6], introduced a CBIR
system to retrieve natural and texture images. Mudhafar et al.
[7], proposed an effective image retrieval method based on a
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new support vector machine NSVM and convolution neural
network CNN. BMIR systems represent one type of image
retrieval systems based totally on the extraction of appropri-
ate features (i.e. shape, color, texture, etc). There are two
main types of features: local and global. Global features
describe the entire image, while local features describe the
part or some parts of the image. Global features usually
used in object detection, classification, and image retrieval,
whereas the local descriptors used for object identification or
recognition. It observed that the texture feature is the most
common amongst many BMIR systems [8]–[12]. However,
because of the importance of medical images, only texture
feature is not sufficient to describe the image, hence the
aggregate of many descriptors such as texture, shape, edges,
etc., is required for constructing an efficient BMIR system.

The medical images are available in a different format.
But we restricted our study with only two types of biomed-
ical images: CT and MRI. The earliest studies on CT and
MRI introduced by Manjunath et al. [13]. Felipe et al. [14],
suggested the co-occurrence matrix (CM) technique for CT
and MRI images. Unary et al. [15], introduced a robust and
fast retrieval system for MRI of brain images. Ojala et al.
[16], suggested an efficient texture feature descriptor called
local binary pattern (LBP). Based on LBP, the feature vec-
tor formed through the intensity of each pixel. LBP, joint
LBP, and image intensity histograms are used by Sørensen
et al. [17], to make quantitative analysis to CT images of
pulmonary emphysema. Peng et al. [18], introduced a feature
extractor technique primarily based on the structure and the
local brightness to analyze the CT images of the chest. Hosny
et al. [19], presented an accurate method based on orthogonal
moments for the reconstruction of noisy medical images.
Quddus and Basir [20], introduced an approach based on
noisy and multimodal observations to retrieve the 2-D MRI
images. Murala and Wu presented essential contributions
concerning the retrieval of CT and MRI images [21]–[23].
Moreover, Murala et al. [21] introduced a local ternary co-
occurrence pattern (LTCoP). Later on Murala and Wu [22]
suggested a strategy to retrieve BMI known as local mesh
pattern (LMeP). The method presented in [22] developed to
construct an algorithm called LMePVEP [23].

Local diagonal extrema pattern (LDEP) is a novel strat-
egy introduced by Dubey et al. [24] to retrieve CT images.
The main idea of LDEP is that the local extremes for local
diagonals computed through first-order derivatives for local
diagonals. The relationship between the central pixel and its
neighbors computed via the comparison amongst the central
pixel’s intensity value and the local extrema of its neighbors.
Later on Dubey et al. [25] suggested another method called
LWP. According to LWP, the local wavelet decomposition
for the local neighborhood of any pixel computed. Then the
values obtained are compared with the transformed values of
the central pixel. LWP calculated for all pixels of the image.
Finally, the histogram computed as a feature vector. Depend-
ing on a novel method called local bit plane dissimilarity pat-
tern (LBDISP) Dubey et al. [26] introduced the BMIR system

for CT images. LBDISP proposed to handle the problem of
both less discriminative and high discriminative. Based on
LBDISP, Dubey et al. [27] suggested a new technique named
as, local bit-plane decoded pattern (LBDP). The main reason
that makes LDEP and its variants superior over other methods
such as LBP, LTCoP, and LMeP is the high performance with
shallow dimension in the feature vector.

Deep et al. [28] suggested a new technique named direc-
tional local ternary quantized extrema pattern (DLTerQEP)
for BMIR. The proposed strategy exceeds the LBP, where
it considers the pixels around the central pixel through four
directions: 0◦, 45◦, 90◦, and 135◦. In contrast, the LBP con-
siders only the local region around the central pixel. Deep
et al. [29] introduced a novel local feature vector forMRI, and
CT BMI named local mesh ternary pattern (LMeTP), which
also based on ternary patterns. Recently, Deep et al. [30]
introduced a new descriptor called local quantized extrema
quinary pattern (LQEQryP) for BMI indexing and retrieval
pattern. Verma and Raman [31] introduced a novel texture
descriptor for image retrieval, and it named as, local tri-
directional pattern (LTDP). Most of the previous local pat-
terns consider only the center pixel for information extrac-
tion; according to LTDP, all pixels in the neighborhood found
where they compared with the nearest pixels and center pixel
for pattern information. Another feature descriptor called
local neighborhood difference pattern (LNDP) is introduced
by Verma and Raman [32], based on the differences in the
intensity of the pixel. Pang et al. [33] introduced BMIR and
indexing system based on deep preference learning.

Rehman S. U et al. introduced several studies for seizure
effective image features using Convolutional neural net-
work (CNN), hence using it in machine learning applica-
tions [34]–[38]. Lan et al. [39] introduced medical image
retrieval system for CT images. They used scattering trans-
form and particular variation of deep convolutional networks
to derive texture characteristics of medical CT images then
a novel feature, named histogram of compressed scattering
coefficients (HCSCs), using the scattering representations of
CT images is introduced. Dubey et al. [40] suggested biomed-
ical image retrieval system called a local bit-plane decoding-
based AlexNet descriptor (LBpDAD). It combines the advan-
tages of local bit-plane decoded features and the convolu-
tional neural network-based features such as AlexNet.

Several pre-mentioned methods have an essential role in
BMI retrieval and many other pattern matching applications,
but still, the main problem is that all of them are local
descriptors. Medical datasets classified into different classes
based on two different criteria. These criteria include both the
images that represent the whole body parts and the images
that describe the type of tissues of the same part or organ.
Subsequently, the descriptors used with BMI must have the
ability to differentiate between the entire BM images of var-
ious body parts and also between the local changes in the
shape or the texture of the same organ. Thus both local and
global descriptors are required for efficient retrieval of BM
images. Global descriptors are also required to differentiate
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between the images of various body parts. In contrast, local
descriptors can distinguish between the different kinds tissues
of the same organ (like, tumorous or non-tumorous) or the
same structure (like the shape of ventricular in brain MRI).
The reason behind the failure of the pre-mentioned techniques
to be highly efficient in retrieving BM images not only their
local nature but also their low performance against noisy
datasets; since BM images sometimes may be noisy in life.

Kumar et al. [41] proposed an efficient approach based on
Zernike moments as a global descriptor to retrieve CT and
MRI images. Ashutosh et al. [42] introduced a new global
descriptor based on orthogonal Fourier-Mellin moments
(OFMMs) for efficient indexing and retrieval of BM images:
CT and MRI.

Laguerre moments represent one type of discrete orthog-
onal moments [43], [44]. The experimental results obtained
by Qjidaa et al. [43] specified the effectiveness of Laguerre
moments as feature descriptors. Bojun et al. [44] sug-
gested a kind of discrete orthogonal moments called RALMs
for invariant pattern recognition and image reconstruction.
The numerical results obtained in [44] proved that RALMs
perform better than orthogonal Fourier-Mellin Moments
(OFFMs) in image reconstruction and rotation invariant for
both noisy and free noisy images. So, RALMs will be
more appropriate for BMIR applications. So, in this study,
we present a retrieval system based on RALMs for biomedi-
cal uses.

The current study encompasses some contributions that can
be summarized as follows:

• A novel method was introduced for BMIR based on
RALMs. It is useful and efficient, as it can capture multi-
pronged edge information, texture, shapes and structural
from BMI.

• Elaborated experiments were performed to specify the
performance and ability of the RALMs to retrieve the
BM images against other state-of-the-art approaches.
The results show the superiority of the proposed method
over the compared methods on three medical datasets:
Emphysema-CT, NEMA CT, and NEMA MRI.

• Other experiments were performed to specify the out-
perform of the proposed approach with noisy images.

The remainder of this study comes in four sections as fol-
lows: Section 2 discusses, in brief, the compared techniques.
The proposed RALMs-based retrieval approach presented in
Section 3. Our results figured and discussed in Section 4.
Finally, section 5 offers a conclusion.

II. FEATURE EXTRACTION TECHNIQUES
In the following subsections, the study briefly explains the
local and global descriptors included in the comparison: LBP,
LDEP, and OFMMs.

A. LBP TECHNIQUE
Ojala et al. [16] proposed an LBP operator. This operator was
used by Sørensen et al. [17] to make quantitative analysis for

FIGURE 1. An example of LBP operator with a 3× 3 window.

the CT of pulmonary emphysema. LBP distinguishes each
pixel in the image with a decimal value called LBPs code.
This decimal value has been resulted from the subtraction of
the central pixel’s value from its surrounding pixel values.
If the resulting value is negative, it is encoded to 0; other-
wise, it is encoded to 1. As shown in Fig.1, the binary code
10111010 occurred as a result of concatenating all the binary
values in a clockwise direction starting from the value at the
northwest corner. The decimal value equivalent to the binary
code 10111010 would be 186, this value is called the LBPs
code for the given 3× 3 window.

Consider a pixel at (xc, yc), then LBP at (xc, yc) is obtained
in decimal form as:

LBPN ,R (xc, yc) =
N−1∑
s=0

Th (gs − gc) 2s (1)

where, gc and gs represent gray values of that pixel at the
center and the other pixels around it, R is the radius of the
circle neighborhood pixels, and N is the number of pixels in
the neighborhood of the central pixel.

The threshold function Th (x) is defined as:

Th (x) =

{
1 if x ≥ 0;
0 otherwise;

(2)

The most popular form of LBP is LBP8,1. It used in a
variety of applications in imaging sciences and also used for
retrieval of MRI and CT images. The main advantage of LBP
is the simplest form of its formula and also the simplicity of
its implementation.

Ojala et al. [16] proposed the LBP for the texture analysis
in the first place. Then, its uses has expanded to comprise
image analysis [45], [46], retrieval of images and videos [47],
[48], environment modeling [49], [50], visual inspection [51],
[52], motion analysis [53], [54], biomedical and atmospheric
image analysis [55], [56], remote sensing [57], and so on.
The main problem of LBP is that its feature vector has a
high dimension; this creates a problem in its computational
complexity. For example, in the case of LBP8,1, The feature
vector contains 256 features from a single image. These
features represent the binary codes acquired from the eight
surrounding neighbors. To overcome that drawback, LBP
extended to ULBP. U is known as the measure of uniformity,
and it refers to the number of the bits transitioned between
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0 and 1. LBP is called ULBP if U ≤ 2. For example, patterns
like 11111111 (0 transitions), 10001111 (2 transitions), and
00110000 (2 transitions) are ULBP, while 00110110 (4 tran-
sitions), and 10101000 (5 transitions) are LBP.

B. LDEP TECHNIQUE
Dubey et al. [24], presented a new technique called LDEP.
They used it as a retrieval system for CT images. As in
[24], LDEP demonstrated high performance over many other
approaches such as LTP, LTCoP, LMeP, etc. Therefore,
LDEP is used to compare RALMs-based approaches. LDEP
approach uses the first derivative of the local diagonal to find
the values and indexes of the local diagonal extrema to take
advantage of the linkage among any pixel at the center and
its neighbors at the local diagonal. What makes LDEP more
efficient is that it considers only the diagonal neighbors. So,
the dimension of the feature vector shrinks, and the retrieval
task consequently increases in speed.

LDEP for any central pixel (x, y) calculated as follows:
At first, the difference between the value of the pixel at

the center (x, y) and its local diagonal extrema computed as
illustrated below

1x,y
max = I x,yϕmax − I

x,y, (3)

1
x,y
min = I x,yϕmin − I

x,y, (4)

both I x,yϕmin and I
x,y
ϕmax refer to the intensity values of the local

diagonal extremes of the pixel (x, y).
The relationship among the central pixel and its local diag-

onal extrema is defined as

R=


0, if

(
sign

(
1
x,y
max
)
=0 and sign

(
1
x,y
min

)
=0

)
1, if

(
sign

(
1
x,y
max
)
=1 and sign

(
1
x,y
min

)
=1

)
,

2, otherwise

(5)

such that,

sign (λ) =

{
1, if λ ≥ 0
0, if λ < 0.

(6)

Finally, the components of the LDEP vector of a pixel (x, y)
computed as

LDEPx,yJ

=

{
1, if J = (ϕmax + 8R) or J = (ϕmin + 4+ 8R) ,
0, otherwise

(7)

where, LDEPx,yJ is the component number J .
Hence, the LDEP feature vector for any pixel (x, y) is given

by:

LDEPx,y =
(
LDEPx,y1 ,LDEPx,y2 , . . . ,LDEPx,ydim

)
, (8)

where dim is the length of the vector.

C. OFMMS TECHNIQUE
OFMMs were firstly introduced by Sheng and Shen [58]
for invariant pattern recognition. For the function f (r, ϕ),
OFMMs of order n and repetition l is defined as

ϕnl =
n+ 1
π

2π∫
0

1∫
0

Qn(r)e−ilϕf (r, ϕ) rdrdϕ,

n = 0, 1, 2, . . . , l = 0,±1,±2, . . . , (9)

where Qn(r) is the radial function that is defined as

Qn (r) =
n∑

s=0

(−1)n+s
(n+ s+ 1) !

(n− s) !s! (s+ 1) !
rs. (10)

The radial function Qn (r) is orthogonal over the range
0 ≤ r ≤ 1

1∫
0

Qn (r)Qm (r)rdr =
1

2 (n+ 1)
δmn, (11)

δmn is the Kronecker delta, and r = 1 is the maximum size of
any encountered object in a particular application. Hence the
basis functions Qn(r)e−ilϕ are orthogonal over the interior of
the unit circle.

For digital images, it required to use the modified form of
(9) which introduced by Sheng et al. [58],

ϕnl =
4 (n+ 1)
πN2

N−1∑
i=0

N−1∑
k=0

Qn
(
ri,k
)
e−ilϕik f (xi, yk) , (12)

where the coordinates (xi, yk) are given by

xi =
2i+ 1− N

N
, yk =

2k+ 1− N
N

,

i, k = 0, 1, 2, . . . ,N− 1

III. PROPOSED RADIAL ASSOCIATED LAGUERRE
MOMENTS (RALMS)- BASED IMAGE RETRIEVAL SYSTEM
In this section, we propose the RALMs as a global descrip-
tor to retrieve the biomedical images. The ALMs [43] is
one kind of discrete orthogonal moments. ALMs defined
in the existence of the associated Laguerre polynomials
(ALPs) [60]–[62] (basis functions), which are orthogonal
over the whole right-half plane.

ALMs of the image I (x, y) with an order of m+ n and a
size of NxN are defined as follows:

M̃
α

mn (x) =
N−1∑
x=0

N−1∑
y=0

L̃
α

m (x)L̃
α

n (y)I (x, y) ,

m, n = 0, 1, 2, . . . ,N− 1 (13)

where,
{
Lαm
}
, for α > −1 are the ALPs that are orthogo-

nal to the weight function w (x) = xαe−x on the interval
0 ≤ x ≤ +∞, that is∫
∞

0
e−xxαLαn (x)L

α
m (x) dx =

0(n+ α + 1)
n!

δnmm, n ≥ 0

(14)
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FIGURE 2. Flowchart of the proposed retrieval system RALMs.

FIGURE 3. Plot (a) Laguerre polynomial values and (b) Normalized laguerre polynomial values at α = 0.

where, δnm is a Kronecker delta, δnm = 1 if m = n and δnm =
0 otherwise.

The ALPs defined as:

Lαn (x) =
n∑

k=0

(n+ α) !
(n− k) ! (k+ α) !k!

xk (15)

but due to the high increase of the polynomial values with
increasing of the order, we restrict our study with the normal-
ized orthogonal ALPs L̃

α

n (x), that is defined as:

L̃
α

n (x) =

√
e−xxαn!
(n+ k) !

Lαn (x) (16)

As shown in Fig. (3) and Fig. (4) it is noted that the values
of the normalized polynomials L̃

α

n (x) are bounded on a finite
interval, a thing that doesn’t occur with non-normalized poly-
nomials Lαn (x).

As shown in (13) ALMs are defined over the Cartesian
coordinates so that it is not suitable for identifying the rota-
tional invariance, so that we have the motive to define the
RALMs of order p and repetition l as

˜RM
α

pl =
1
2π

m−1∑
r=0

2π∑
θ=0

L̃
α

p (r) e
−jlθ I (r, θ) , (17)
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FIGURE 4. Plot (a) Laguerre polynomial values and (b) Normalized laguerre polynomial values at α = 1.

where, I (r, θ) , refers to the image intensity function in polar
coordinates. The image has a size of N× N pixels, and m
denotes N/2. Since θ is a real quantity measured in radians,
one can rewrite (17) as follow:

˜RM
α

pl =
1
n

m−1∑
r=0

n−1∑
θ=0

L̃
α

p (r) e
−jlθ I (r, θ) , (18)

where n is at 360.
Radial representation aims to deduce the rotation invariants

easily as follow:
consider the image I (r, θ), which become I (r, θ + ∅) after

rotation by angle ∅. In this case, RALMs represent as

R̂M
α

pl

=
1
2π

1∫
r=0

2π∫
θ=0

L̃
α

p (r) I (r, θ + ϕ) e
−jl(θ+ϕ)rdθdr, (19)

R̂M
α

pl

=
e−jlϕ

2π

1∫
r=0

2π∫
θ=0

L̃
α

p (r)I (r, θ) e
−jlθ rdθdr, (20)

R̂M
α

pl

= e−jlϕ

 1
2π

1∫
r=0

2π∫
θ=0

L̃
α

p (r)I (r, θ) e
−jlθ rdθdr

 , (21)

from (17), one can deduce the following

R̂M
α

pl = e−jlϕ ˜RM
α

pl, (22)∥∥∥ R̂Mα

pl

∥∥∥ = ∥∥∥e−jlϕ ˜RMα

pl

∥∥∥ = ∥∥∥e−jlϕ∥∥∥ . ∥∥∥ ˜RMα

pl

∥∥∥ , (23)

∥∥∥e−jlϕ∥∥∥ = √(cos (−lϕ))2 + (sin(−lϕ))2 = 1, (24)

then ∥∥∥R̂αpl∥∥∥ = ∥∥∥ R̃αpl∥∥∥ , (25)

From (25) It evident that RALMs are with rotational invari-
ance.

The value of the parameter α has an essential role in pattern
recognition. It controls the shifting to the image region of
interest. The authors in [40] proved that the most accurate
recognition occurs at the values of α from 6 to 10 in case of
noisy and noisy free images, so that, in our study, we use the
same values.

The superiority of the RALMs in many image recognition
applications in noise-free and noisy cases is due to the fol-
lowing worthwhile properties:

1. RALMs represent orthogonal moments, where it’s basis
functions are orthogonal. Hence each RALM coefficient
can capture distinctive and unique parts of the image, also
no redundancy in the information.

2. Themagnitudes of RALMs coefficients are approximately
the same in both cases of noisy free and noisy images.
Hence RALMs would be robust against noisy images.

3. RALMs are robust against image rotation and scaling,
where the magnitudes of RALMs coefficients are approx-
imately the same for the image before and after either
rotation or scaling.

4. The basis functions of RALMs can capture different
unique types of information from the image based on
the different values of order. These unique features are
average intensity value, variance, texture information, and
edge information in a different orientation. Together, these
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features provide the best representation of an image, where
they represent a multidimensional view of an image.

5. For the compared method except for OFMMs, the feature
values of an image can change when rotating or scaling
the image. They can also change in case of noisy images.
This change in the values of the features is due to the
representation of those values, where it represents the
differences between the center pixel and its neighbors in
the spatial domain. These inter-pixel differences tend to
change with any changes in the image, such as rotation,
scaling, and noisy cases. However, in the case of RALMs,
it’s values are still the same before and after any change in
the image because of its orthogonality property. Therefore,
RALMs are more suitable for real-life applications such as
BMIR

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
In the following subsections, the study exposes the datasets
that used to test our strategy. It also discusses the experimental
results in detail through some evaluation measures.

FIGURE 5. Venn diagram to specify the meaning of precision and recall.

FIGURE 6. Example images from the Emphysema-CT database, one image
from each group.

A. DATASETS
The evaluation of our system done through three benchmark
datasets.
Emphysema-CT dataset: The first dataset [63] comprises

168 tissue images of the same body part for 39 various

FIGURE 7. Comparison of the RALMs technique with the other compared
approaches by passing various query images (1-100) in case of (a) ARP (b)
ARR (c) F_score on Emphysema-CT dataset.

cases. Images in Emphysema-CT come in three classes based
on the texture of lung tissues: Centrilobular Emphysema
(CLE) that contain 50 images, Normal tissue (NT) that
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includes 59 images and Paraceptal Emphysema (PSE) that
contain 59 images.
The NEMA-CT dataset: The second dataset [64] consists

of different categories of CT images for different body parts
that created to assist in the research and diagnosis purpose.
In our study, we considered the following cases of NEMA-
CT database: CT0001, CT003, CT0021, CT0030, CT0031,
Ct0053, CT0054, CT0057, CT0060, and CT0083. We col-
lected 608 CT images have the dimension 512× 512. These
images represent different body parts. Images are grouped
into 10 classes having 54, 60, 66, 50, 15, 60, 52, 104, 75 and
69 images.
The NEMA-MRI dataset: The third dataset [65] con-

tains different categories of MRI images for differ-
ent body parts. The study considered the following
datasets cases: BRAINSAG, LOCKNEE, MOVEKNEE,
MOVEKNIN, MOVEKNINT, VOLBRAIN, VHMFLGSM,
and KNEE3D. In this study, we collected 371 MRI images
that have the dimension 256 × 256. These images are
categorized into five categories having 60, 63, 72, 76, and
100 images.

As we mentioned that the BMI in the first database
(Emphysema-CT) are of the same organ, while the second
and the third (NEMA-CT and NEMA-MRI) comprise BMI
for various organs. For better results, any retrieval system to
give better results with such datasets, must have the ability to
distinguish among the BM images that seem to be the same
but are different locally as in the Emphysema-CT database.
Also the retrieval systemmust have the ability to differentiate
between the BM images which are globally different as in
NEMA-CT and NEMA-MRI databases.

B. EVALUATION MEASURES
To specify the performance of our system, three experiments
were carried out and showed in-detail through the following
subsections. A comparison between the performance of the
RALMs approach and other recently released approaches:
LBP, LDEP, OFMMs, HCSCs and LBpDAD is performed.
Further experiments were carried out under noisy conditions
to specify the high efficiency of our approach as a retrieval
system when compared with the other methods. In our study,
we have used the same evaluation criteria used in [24]. To esti-
mate the likeness between the feature vectors of two images,
we use the following distance similarity measure

D1 (Q,DB) =
dim∑
i=0

∣∣∣∣∣ fDBji−fQi
1+ fDBji−fQi

∣∣∣∣∣ , (26)

where dim represents the length of the feature vectors; fDBji
denotes ith feature for jth image and fQi is the ith feature of the
query image. Fig. 2 represents the framework of the proposed
system.

The current study compared the performance of the present
approach with the existing methods through two evaluation
measures. These measures used by Murla and Jonathan [21],
[24] are called average retrieval precision (ARP), and average

FIGURE 8. The retrieved images using RALMs for a query from the
Emphysema-CT database.

FIGURE 9. Example images from the NEMA-CT database, one image from
each group.

retrieval rate (ARR). ARP was also used by Girgis and Reda
[66]. We used another performance measure called F_score.
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As shown in Fig. 5. q is a query image, R(q) represents the
set of all images that are retrieved by our system, and L(q)
represents the set of all images that are relevant to the query
image. Precision and recall defined as follow: -

precision:P (q) =
|R(q) ∩ L(q)|
|R(q)|

(27)

recall:R (q) =
|R(q) ∩ L(q)|
|L(q)|

(28)

where the |•| operator represents the cardinality of a set (i.e.,
the number of objects in the collection). Hence, ARP and
ARR can be defined as follow:

ARP (%) =
100
|DB|

|DB|∑
i=1

P (Ii) (29)

ARR (%) =
100
|DB|

|DB|∑
i=1

R (Ii) (30)

F_score (%) =
2(ARP)(ARR)
ARP+ ARR

(31)

where |DB| represent the count of all images in the dataset.
In our experiment, we consider every image in the dataset as a
query image, while the rest images in the DB represent target
images for the query.

C. EMPIRICAL FINDINGS OVER EMPHYSEMA-CT DATASET
Emphysema-CT database [63] exists mainly to help physi-
cians diagnosing chronic obstructive pulmonary disease
(COPD). The main characteristic of Emphysema is its abil-
ity to damage the lung tissues. Appropriate classification of
healthy lung tissues and emphysematous is essential for accu-
rate diagnosis of the disease. Fig. 6 depicts one image from
each class of the Emphysema-CT Database. Fig. 7 shows the
retrieval performance in terms of ARP, ARR, and F_score for
the proposed RALMs technique against the compared meth-
ods at different values for the number of returned images.

TABLE 1. Improvement percentage in retrieval rates of RALMs when
compared with the other methods on the Emphysema-CT dataset.

Table1 summarizes the results of the performance mea-
sures. From table 1, one can observe that the RALMs
approach is superior over LBP, LDEP, and OFMMs tech-
niques in terms of the performance metrics: ARP, ARR,
and F_score. The improvement in the retrieval rate for

FIGURE 10. The retrieved images using RALMs for a query from NEMA-CT
database.

the proposed approach when compared with that of the
existing methods is showed through table 1. The average
gain of the RALMs approach increased in comparison with
OFMMs, LBP, and LDEP approaches by the percentages
7.44%, 18.06%, and 18.65%, respectively, in terms of all the
performance metrics. Fig. 8 presents the query results of the
RALMs approach over the Emphysema-CT dataset.

TABLE 2. Improvement percentage in retrieval rates of RALMs when
compared with the other methods on the NEMA-CT dataset.

D. EMPIRICAL FINDINGS OVER NEMA-CT DATASET
The NEMA-CT (National Electrical Manufactures
Association-Computed Tomography) [64] is an open-access
information resource for medical researches. All image
datasets are in DICOM format. Fig. 9 depicts sample images
from each category of the dataset. Graphs in fig. 11 shows the
excellence of the RALMs technique when it is compared with
the other methods in terms of the performancemeasuresARP,
ARR, and F_score at different values for the top matches.
Table 2 summarizes the results obtained when comparing
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FIGURE 11. Comparison of the RALMs technique with the other
compared approaches by passing various query images (1-100) in case of
(a) ARP (b) ARR (c) F_score on NEMA-CT dataset.

the RALMs with the OFMMs, LBP, and LDEP approaches.
From table 2, it is obvious that the average gain in retrieval
rates of the three performance measures of RALMs comes
in following percentages 5.48%, 10.006%, and 6.15% when
compared with the approaches OFMMs, LBP and LDEP
respectively. Fig. 10 depicts the query results of the RALMs-
based approach over theNEMA-CT database. Results in table
1 and table 2 show the superiority of the retrieval process
in case of NEMA-CT over that of Emphysema-CT. This

FIGURE 12. Example images from the NEMA-MRI database, one image
from each group.

FIGURE 13. The retrieved images using RALMs for a query from the
NEMA-MRI database.

superiority is due to that the three classes of Emphysema-CT
contain images of different tissues of the same body part (i.e.
lung) while each category in NEMA-CT includes images of
various body parts. Hence, it is easy to distinguish between
BM images of different organs if it is compared to images of
the same lung tissue part.

E. EMPIRICAL FINDINGS OVER NEMA-MRI DATABASE
Magnetic resonance images (MRI) are helpful in diagno-
sis. They facilitate the distinction between the diseased and
healthy tissues of the body. Fig. 12 depicts an example from
different classes of the NEMA-MRI dataset [65]. Graphs
in fig. 14 shows the superiority of the RALMs proposed
approach over the compared methods in case of the per-
formance metrics: ARP, ARR, and Fscore at different values
for the top matches images. Table 3 summarizes the results
obtained when comparing the RALMs with the OFMMs,
LBP, and LDEP approaches. From table 3, it is obvious
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FIGURE 14. Comparison of the RALMs technique with the other
compared approaches by passing various query images (1-100) in case of
(a) ARP (b) ARR (c) F_score on the NEMA-MRI dataset.

that the average gain in retrieval rates of the three perfor-
mance measures of RALMs comes in following percent-
ages 1.48%, 3.24% and 6.09% when compared with the
approaches OFMMs, LBP and LDEP respectively. The query
results of the RALMs-based methods over the NEMA-MRI
database are depicted in Fig. 13. Table 3 shows that the
retrieval rate is higher in case of the NEMA-MRI dataset
when compared to NEMA-CT. This occurs because NEMA-
MRI, contains only five categories that are very different from
each other as observed in Fig. 12. Hence the misclassification
among these different categories would be very rare.

Furthermore, we investigated the efficiency of the pro-
posed method (i.e. RALMs) against the convolutional neu-
ral network CNN as a deep learning based method over
NEMA_MRI dataset. We used two sequence CNN layers
with CNN architecture. The first uses 128 filters with kernel
size of 3×3, while the second uses 64 filters with kernel size
of 3 × 3. We used Max-Pooling technique in both two lay-
ers. Next a flatten layer followed by a fully-connected layer
of 32 nodes. A dropout technique is applied with 0.4 value to
decrease the overfitting, also all layers used RELU activation
function. The comparison occurred with maximum number
of returned images equal 60. Table 4, shows the obtained
results over the three performance measures: ARP, ARR and
F_score. The results specified the superiority of CNN in case
of ARR and F_score but not in case of ARP. Despite of
the superiority of CNN but still there are some challenges
which push us to invest in such moments based approach (i.e.
RALMs). The most important of these challenges are: lack of
data, overfitting and imbalance datasets. All these challenges
occur due to CNN requires huge number of data to train,
the quality of data (i.e. noisy images or low quality images)
and when number of images in some classes dominate over
other classes respectively. All the pre mentioned problems
push us to research in different approaches like the proposed
approach (RALMs), which do not require any data to train
and not affected by noise conditions as proved through sub-
section F .

TABLE 3. Improvement percentage in retrieval rates of RALMs when
compared with the other methods on the NEMA-MRI database.

TABLE 4. Comparison results between RALMs and CNN on the
NEMA-MRI database. (all values are in percentage).

F. EMPIRICAL FINDINGS OVER TCIA-CT DATABASE
The efficiency of the proposed approach was also com-
pared against other two medical image retrieval approaches
named HCSCs [39] and LBpDAD [40]. These two
approaches were tested over a benchmark dataset called
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The Cancer Image Archive (TCIA-CT) [67] as discussed
in [39], [40]. TCIA contains a large number of can-
cer images. In our study we used the TCIA-CT dataset;
it contains 604 Colo_prone 1.0 B30f CT images in
DICOM format with series number 1.3.6.1.4.1.9328.50.4.2
of study instance UID 1.3.6.1.4.1.9328.50.4.1 for subject
1.3.6.1.4.1.9328.50.4.0001. TCIA-CT dataset is divided into
8 classes having 75, 50, 58, 140, 70, 92, 78 and 41 images.
Fig. 15 depicts a sample image from each class. As reported
in [39], [40], in the current study we used 10 images as a
maximum number of returned images. The retrieval perfor-
mance in terms of ARP, ARR and Fscore is shown in table
5 and the obtained results show a significant improvement
in favor of the proposed approach. The average gain in
retrieval rates of the three performance measures of RALMs
comes in following percentages 0.9840% and 1.5207% when
compared with the approaches LBpDAD and HCSCs respec-
tively. Fig. 16 depicts the query results of the RALMs-based
approach over the TCIA-CT dataset.

FIGURE 15. Sample images from each class of TCIA-CT dataset.

FIGURE 16. The retrieved images using RALMs for a query from TCIA-CT
database.

FIGURE 17. Sample images from each class of ISIC 2018 dataset.

FIGURE 18. The retrieved images using RALMs for a query image from the
ISIC 2018 dataset.

FIGURE 19. Example images from the Gaussian white noise
Emphysema-CT database, one image from each group.

G. EMPIRICAL FINDINGS OVER ISIC 2018 DATABASE
The proposed approachwas also tested over a big well-known
database from the International Skin Imaging Collaboration
(ISIC) 2018 [68]. This database contains 10,015 skin images,
grouped into seven classes: MEL contains 1113, NV con-
tains 6705 images, BCC contains 514 images, AKIEC con-
tains 327 images, BKL contains 1099 images, DF contains
115 images, and VASC contains 142 images. Fig. 17 depicts
one sample image from each class.

The retrieval performance in terms of ARP, ARR and
Fscore with maximum number of 100 returned images is
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FIGURE 20. The retrieved images using RALMs for a query from a noisy
Emphysema-CT database.

FIGURE 21. Example images from the Gaussian white noise NEMA-CT
database, one image from each group.

shown in table 6. According to the results obtained in table 6,
the retrieval rate is lowwhen compared to the results obtained
by NEMA-CT and NEMA-MRI. Furthermore, this low rate
is attributed to that the seven classes of ISIC 2018 contain
different images for the same body part (i.e., skin), while each
class in both NEMA-CT and NEMA-MRI contains images of
various body parts. Hence, it is easy to distinguish between
images of different organs if this is compared to images of
the same part. Fig. 18 depicts the query results of the RALMs-

FIGURE 22. Comparison of the RALMs technique with the other compared
approaches by passing various query images (1-100) in case of (a) ARP (b)
ARR (c) F_score on Gaussian white noise Emphysema-CT database.

based approach over the ISIC 2018 dataset. It is worthy noted
that the query image and the retrieved images are of the same
class (i.e., NV).

H. EMPIRICAL FINDINGS OVER NOISY DATABASES
The present study employs Gaussian white noise with zero
means to test the efficiency of RALMs against the other
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FIGURE 23. RALMs against the compared techniques in case of (a) ARP and (b) ARR in both cases of Gaussian white noise and noise-free Emphysema-CT.

FIGURE 24. RALMs against the compared techniques in case of (a) ARP and (b) ARR in both cases of Gaussian white noise and noise-free NEMA-CT.

TABLE 5. Improvement percentage in retrieval rates of RALMs when
compared with LBpDAD and HCSCs on the TCIA-CT database.

compared methods in case of noisy images. Figs. 19,
21, and 27 represent samples of noise images from the

three datasets namely: Emphysema-CT, NEMA-CT, and
NEMA-MRI databases respectively. Also. Figs. 22, 29, and
30 represent the retrieval performance of RALMs method
against the compared approaches in case of ARP, ARR, and
F_score at different values for the number of returned images.
Tables 7, 9, and 12 show the retrieval rates for RALMs, that
results are close to the results obtained in case of noise-
free datasets for all performance metrics. Also from tables

TABLE 6. Results of RALMs on the ISIC 2018 dataset. (all values are in
percentage).
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FIGURE 25. RALMs against the compared techniques in case of (a) ARP and (b) ARR in both cases of Gaussian white noise and noise-free NEMA-MRI.

FIGURE 26. The retrieved images using RALMs for a query from a noisy
NEMA-CT database.

7, 9, and 12 we observed that the average efficiency gain in
retrieval rates is in favor of RALMs at the expense of the
compared methods for the three databases (Emphysema-CT,
NEMA-CT, and NEMA-MRI) with the following percent-
ages (7.24%, 21.74%, 21.28%), (13.17%, 61.14%, 66.14%)
and (3.95%, 42.99%, 40.82%) respectively, overall the three
performance measures. Figs. 23, 24, and 25 show a com-
parison between the proposed approach and the compared
approaches in terms of ARP and ARR retrieval performance
metrics, on noisy and noisy free cases of Emphysema-CT,
NEMA-CT, and NEMA-MRI databases respectively.

FIGURE 27. Example images from the Gaussian white noise NEMA- MRI
database, one image from each group.

TABLE 7. Improvement percentage in retrieval rates of RALMs when
compared with the other methods in case of Gaussian white noise with
Emphysema-CT database.

We observed that the maximum drop for Emphysema-CT,
NEMA-CT, and NEMA-MRI was in favor of LBP, followed
by LDEP, then OFMMs in case of noisy datasets. For the
noisy free datasets, the maximum drop was in favor of LDEP
followed by LBP, then OFMMs in both of Emphysema-CT
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FIGURE 28. The retrieved images using RALMs for a query from Gaussian
white noise NEMA-MRI database.

TABLE 8. Comparison results between the retrieval rates of RALMs in
case of the two types of noise with Emphysema-CT database. (all values
are in percentage).

TABLE 9. Improvement percentage in retrieval rates of RALMs when
compared with the other methods in case of Gaussian white noise with
NEMA-CT database.

TABLE 10. Comparison results between the retrieval rates of RALMs in
case of the two types of noise with NEMA-CT database. (all values are in
percentage).

and NEMA-MRI, but in case of NEMA-CT the maximum
reduction was in favor of LBP followed by LDEP then
OFMMs. Figs. 20, 26, and 28 represent the query results of
RALMs approach over noisy Emphysema-CT, noisy NEMA-

TABLE 11. Comparison results between the retrieval rates of RALMs in
case of the two types of noise with NEMA-MRI database. (all values are in
percentage).

TABLE 12. Improvement percentage in retrieval rates of RALMs when
compared with the other methods in case of Gaussian white noise with
NEMA-MRI database.

CT, and noisy NEMA-MRI, respectively. From figs. 23, 24,
and 25, we observed that there exists a drop in case of noisy
images when compared to noisy free images on all three
noisy test datasets in case of ARP and ARR performance
measures. This drop is high in case of the compared methods
but still relatively low with the proposed approach. All these
indicators establish the truth of the robustness of the RALMs
values against noisy conditions.

Furthermore, the study investigated the effectiveness of the
proposed approach (RALMs) against another type of noise
(i.e., Pepper & salt). Tables 8, 10 and 11 show the comparison
between the retrieval performance of RALMs with Gaussian
noise and Pepper & salt noise over noisy Emphysema-CT,
noisy NEMA-CT, and noisy NEMA-MRI, respectively. The
results obtained ensure the robustness of RALMs against the
different types of noise. To avoid any redundancy, we plotted
only the results concerning the Gaussian white noise.

V. CONCLUSION
In conclusion, this study presented a new retrieval system
for biomedical images proposed using Radial Associated
Laguerre Moments (RALMs) as a global descriptor. Thanks
to the orthogonality of its basis functions (ALPs), which
allow a multidimensional view of an image and invariant of
the coefficients of RALMs. The performance of the proposed
system assessed through several experiments that applied on
three BM datasets: Emphysema-CT, NEMA-CT for com-
puter tomography images, and NEMA-MRI for magnetic res-
onance images. The experiments performed with noise-free
and noisy datasets. The numerical results after being inves-
tigated show a significant improvement in favor of the pro-
posed approach against the compared techniques: OFMMs

175684 VOLUME 8, 2020



G. Hassan et al.: Efficient Retrieval System for Biomedical Images Based on RALMS

FIGURE 29. Comparison of the RALMs technique with the other
compared approaches by passing various query images (1-100) in case of
(a) ARP (b) ARR (c) F_score on Gaussian white noise NEMA-CT database.

as a global descriptor, LBP, and LDEP as local descriptors
in terms of the three performance measures ARP, ARR, and
F_score. The RALMs based approach was also specified a
significant improvement when compared with the HCSCs
and the LBpDAD approaches over the TCIA-CT dataset.
Good results obtained when tested the proposed approach
over a big well-known dataset (i.e., ISIC 2018). Due to the
leverage of the proposed approach in the case of gray medical

FIGURE 30. Comparison of the RALMs technique with the other
compared approaches by passing various query images (1-100) in case of
(a) ARP (b) ARR (c) F_score on Gaussian white noise NEMA-MRI database.

images, it could upgrade through the quaternion concept that
is applicable to color images.
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